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Abstract: In recent years, a widespread research is conducted with the growth of malware resulted in the 

domain of malware analysis and detection in Android devices. Android, a mobile-based operating system 

currently having more than one billion active users with a high market impact that have inspired the 

expansion of malware by cyber criminals. Android implements a different architecture and security controls 

to solve the problems caused by malware, such as unique user ID (UID) for each application, system 

permissions, and its distribution platform Google Play. There are numerous ways to violate that fortification, 

and how the complexity of creating a new solution is enlarged while cybercriminals progress their skills to 

develop malware. A community including developer and researcher has been evolving substitutes aimed at 

refining the level of safety where numerous machine learning algorithms already been proposed or applied 

to classify or cluster malware including analysis techniques, frameworks, sandboxes, and systems security. 

One of the most promising techniques is the implementation of artificial intelligence solutions for malware 

analysis. In this paper, we evaluate numerous supervised machine learning algorithms by implementing a 

static analysis framework to make predictions for detecting malware on Android.  

 
Key words: Supervised machine learning, classification, regression, data mining, obfuscation, security, 
Google Play, malware.  

 
 

1. Introduction 

In the last decade, a lot of machine learning and data mining based methods applied to detect intrusion, 

malware and the classification of them where many clustering and classification techniques implied to 

classify the malware into families and to also identify new malware families. Android is an open source 

mobile based operating system with more than one billion active users. This operating system is built on 

the Linux Kernel and integrates an architecture that is divided into five components. As security 

mechanisms Android makes use of two models of permissions, the first refers to a sandbox environment at 

the kernel level to prevent access to the file-system and other resources. The second model is a permissions 

API exposes to the user during an application to be installed. This tool allows requests to access some 

device resources [1] and [2].  

Every application is assembled into an Android Application Package (APK) file includes application code 

(.dex files), resources, and the AndroidManifest.xml file that is a vital element provides the information of 

the features and the security configuration of every application including the information of the 

permissions API, activities, services, content providers and the broadcast receivers [3]. After Decompiling 

the APK file, we consider the AndroidMenifest.xml file for checking the permission used and then look into 
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java file where the API functions are called. Also consider the asset and resource file to check is there any 

dex executable (ELF) image file or any code hiding image script available or not. In AndroidMenifest.xml file, 

permissions are used:  

 

<uses-permission android:name="android.permission.INTERNET"/>  

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />     

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>  

<uses-permission android:name="android.permission.WAKE_LOCK" />      

<uses-permission android:name="android.permission.READ_PHONE_STATE" />      

<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/> 

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/> 

<uses-permission android:name="android.permission.GET_ACCOUNTS"/> 

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION"/> 

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/> 

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" /> 

<uses-permission android:name="android.permission.GET_TASKS"/> 

<uses-permission android:name="android.permission.ACCESS_BACKGROUND_SERVICE"/> 

<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/> 

<uses-permission android:name="android.permission.SYSTEM_ALERT_WINDOW"/> 

<uses-permission android:name="com.android.vending.BILLING" /> 

 

As per as security researcher, red marked permissions are commonly used in malicious android apps or 

games. We have also found some sensitive functions also called: 

 

(TelephonyManager) context.getActivity().getSystemService("phone")).getDeviceId() 

(TelephonyManager) context.getActivity().getSystemService("phone")).getLine1Number() 

(ActivityManager) context.getActivity().getSystemService("activity") 

List<RunningAppProcessInfo> procInfos = ((ActivityManager) 

context.getActivity().getSystemService("activity")).getRunningAppProcesses(); 

for (int i = 0; i < procInfos.size(); i++) { 

if (((RunningAppProcessInfo) 

procInfos.get(i)).processName.equals(args[0].getAsString())) { 

b = Boolean.valueOf(true); 

} 

} 

String[] strArr = new String[]{"android.permission.ACCESS_COARSE_LOCATION", 

"android.permission.ACCESS_FINE_LOCATION", 

"android.permission.ACCESS_WIFI_STATE", "android.permission.CHANGE_WIFI_STATE", 

"android.permission.VIBRATE", "android.permission.READ_CALENDAR", 

"android.permission.WRITE_CALENDAR", 

"com.google.android.gms.permission.ACTIVITY_RECOGNITION"}; 

IntentFilter intentFilter = new IntentFilter("android.intent.action.PACKAGE_ADDED"); 

intentFilter.addAction("android.intent.action.PACKAGE_REMOVED"); 

intentFilter.addAction("android.intent.action.PACKAGE_REPLACED"); 

intentFilter.addDataScheme("package"); 
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registerReceiver(this.f2955D, intentFilter); 

intentFilter = new IntentFilter(); 

intentFilter.addAction("android.net.wifi.SCAN_RESULTS"); 

intentFilter.addAction("android.net.wifi.STATE_CHANGE"); 

intentFilter.addAction("android.net.wifi.WIFI_STATE_CHANGED"); 

intentFilter.addAction("android.net.wifi.supplicant.CONNECTION_CHANGE"); 

registerReceiver(this.an, intentFilter); 

 

During the last couple of years, the growth of malicious software on Android has enlarged due to several 

motives including the philosophy of Android, placing in the mobile market and the volume of sensitive 

information. There are numerous tools and techniques exists for examining threats for android operating 

system. Some of them are described below [1], [4]:  

• Static analysis techniques assess malicious behavior in source code, data or binary files without 

running the application in a straight line. Its complexity has increased due to the practice assimilated by 

cybercriminals in the expansion of applications and it already shown that it is conceivable to avoid it using 

obfuscation techniques. 

• Dynamic analysis techniques study the conduct of malware in execution by analyzing the running 

processes, the user interface, network connections, sockets opening through applying gesture simulation. 

Besides, previously exist methods allow to escape the process grasped by the dynamic analysis to stop its 

malicious behavior the malware can detect environments sandbox. 

• Machine learning techniques projected to deliver systems capable to learn how to recognize malware 

without presence of programmed explicitly. 

In this paper the results of several supervised machine learning methods including Support vector 

machines (SVM), Neural networks, Naïve Bayes, Decision Trees, Discriminant Analysis and K-Nearest 

neighbors (KNN) are assessed; in the classification of an application based on its permissions. Analyzing the 

outcomes experiment by these algorithms we found that the K-Nearest neighbors (KNN) algorithm has the 

best results in the classification prediction. Finally, the outcomes of this experiment aid as a source to 

propose new challenges in the design and development of new tools for the prediction to detect malicious 

software on Android. 

The following sections of the article are composed of: Section 2 presents classification of android 

malicious application, Section 3 to Section 5 contains information about static analysis framework and the 

dataset used to the evaluation of algorithms, section 6 includes the results of the experiment, finally in 

section 7 include the conclusions and proposals for future work. 

2. Classification of Android Malicious Application 

We now briefly review classification of Android malicious application which motivates our work [5]-[7]: 

String Obfuscation (Permission & function): To fingerprinting current methods of malware has started 

to use string-based features such as permissions and apps/package names including the declaration of 

application permissions, follow a strict syntax and must appear in the clear; other strings, such as names 

and identifiers, can be easily randomized or encrypted. 

Native Code (Existence of executable file): To unburden malicious functionality from the main Dalvik 

Executable (DEX) to dynamic linked libraries (DLL) or other executable (ELF) files, Native code is 

recurrently used which are then invoked at runtime. 

Dynamic Code Loading (Code injection from remote host/system): Native code and additional Dalvik 

Executable code are mostly loaded using a library from another app or from a remote system after being 

180 Volume 7, Number 4, October 2018

International Journal of Computer and Communication Engineering



  

recovered at runtime. We found many examples of dynamic code loading where the code was loaded from 

outside of the app. Now numerous consistent software frameworks employ this technique, which is more 

attractive to malware writers, though the simple presence of dynamic code loading may not have malicious 

functionality.  

Code Hiding (Bash/shell scripts extension change or hiding malicious code in image file uses a 

decoding algorithm to extract a malicious executable payload): To make the application look benign to 

cursory review the malware writers often proactively hide malicious components from the source code. The 

‘GingerMaster’ malware is one of most who hides Bash scripts for its packaged root exploit under 

inoffensive file names in its resources like install.png and gbfm.png. Another malicious apps take an 

advance stepby using a technique of steganography by hiding malicious code inside a valid image file. The 

app practices a decoding algorithm to extract a malicious executable payload but loads the image through a 

outwardly benign action. Finally, Android malware can hide its malicious behavior in APK file hosted as a 

source of the main app. When the app gets executed the system dynamically loads the hidden component by 

installing the hidden APK. 

Reflection (Execute in run time): Reflection, a common feature of Java frameworks, but it is also an 

infamous impediment to static analysis, if though it’s difficult to determine statically that which code is 

getting executed at runtime. In a recent large-scale training, Lindorfer et al. showed that the general use of 

reflection among numerous android apps. 

3. Related Works 

It is necessary to do a study of the most appropriate machine learning algorithm because not all 

algorithm work efficiently for the same problem. In the analysis of detecting malware on Android is 

necessary to have a representative volume of applications both malicious and benign require a set of data 

for learning and testing. Through static or dynamic analysis, the challenge is to abstract the most 

appropriate evidence allowing an algorithm to classify the application as malicious or benign. There are 

some studies of the usage of machine learning algorithms with static and dynamic analysis as follows. 

 Machine Learning with Static Analysis 3.1.

Urcuqui & Cadavid [8] propose a new module that implements a static analysis framework with six of 

machine learning algorithms including Naïve Bayes, Bagging, K-Neighbors, Support Vector Machines (SVM), 

Stochastic Gradient Descent (SGD) and Decision Tree to detect malware on Android and obtain the best 

result with the K-Neighbors algorithm in the classification task. To do experiment through the development 

of a permission scanner, the 558 AndroidManifest.xml was assessed in contrast to a list of 330 permissions 

with creating a binary vector that correspond to the permissions accessed by each application. Finally, the 

K-Neighbors algorithm presented the best results for the dataset was both in the classification (94% for 

benign software classification and 95% for malware) and in its performance (94%). 

Sahs, J. and Khan, L. [9], proposed a supervised machine learning technique to detect malware on Android 

with the classification algorithm named Support Vector Machine (SVM) and static analysis as a technique to 

get the information of the Applications. During their experimentation, they used Androguard tool to extract 

information from the APKs and the Scikit-learn framework [10]. They created a binary vector containing 

the information of each permission used by every application and a control flow chart (CFG) from the 

Android Manifest file. The algorithm used a test set contained 2081 of benign and 91 of malicious 

applications including five kernels’ information: one on binary vectors, one on chains, one on diagrams, a 

kernel for the sets, a kernel for common permissions and another for each application. Finally, they reached 

a low false negative rate but a false positive rate. 

According to Ghorbanzadeh, M., Chen, Y., Ma, Z., Clancy, TC and McGwier, R. [11], where they proposed to 
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assess the security vulnerabilities seeming in a structure of permissions of an Android application. They 

used a dataset of 1700 benign and malicious applications in their study, they also used an Apktool tool that 

allows decompiling an APK file to obtain .xml files like AndroidManifest.xml. They used 70% of data for 

training, 10% of data for validation and 20% of data for testing purpose. The Neural Network algorithm was 

applied with a binary vector representing the permissions requested by each application consists of 

two-layer structure with 10 neurons and an output layer of 34 neurons. Finally, they got an accuracy of 

65%. 

Yerima, S. Y., Sezer, S., McWilliams, G. and Muttik, I., proposed [12] one of a supervised machine learning 

method called Bayesian classifier, applied to learn the system containing (i) detector of calls to the API, (ii) 

detector of commands, (iii) detector of permissions, (iv) detector of encrypted code and (v) presence of 

secondary APKs or files.jar. In this experimentation every detector generated binary variables by analyzing 

APKs from the data with constructing a class to characterize the application as suspicious or benign. To do 

their work they used a set of 1600 application (800 for benign and 800 for malware) for training purpose, 

for the test purpose they used 400 applications (200 for benign and 200 for malware). Finally, the 

momentous outcome obtained TPR 90.6%, FNR 0.094%, accuracy of 93.5% and AUC of 97.22% for a total of 

20 features and 1600 applications.  

 Machine Learning with Dynamic Analysis 3.2.

DroidDolphin [13] is a dynamic analysis framework used in big data and machine learning to detect of 

malware on Android. Running the application on virtual environments its start analysis by extracting 

information from API calls and 13 activities. During this experimentation the supervised machine learning 

algorithm named SVM used the LIBSVM library [14]. The DroidDolphin used a set of 32000 benign and 

32000 malicious applications for training purpose, 1000 of healthy and 1000 of malicious application for 

testing purpose, and got outcome a precision of 86.1% and an F-score of 0.875. 

Feizollah, A., Anuar, N. B., Salleh, R., Amalina, F., Ma’arof, R. U. R., & Shamshirb and, S. [15] proposed a 

model by applying of five supervised machine learning classification algorithms (NB, KNN, DT, MLP and 

SVM). They used 100 samples of malware applications from the Android Genome Project and 12 samples of 

healthy applications. They extracted numerous information of the traffic of the network using dynamic 

analysis and detected the malicious activities from the Android devices. Finally, the machine learning 

obtained the results where KNN was the best algorithm with a TPR index of 99.94% against an RPF result of 

0.06%. 

 Dataset 3.3.

In 2012 a malicious dataset was published by a group of researches known as the Android Genome 

Project (MalGenome) [16]. In their experimentation they use 1260 malicious application with 49 dissimilar 

categories. Before publishing this dataset to the public, they characterized as a part outcome where 1083 of 

the malware (86.0%) were repackaged versions of genuine applications, 36.7% had the capability to raise 

privileges and 45.3% ware projected to premium messaging services subscribing. They got accuracy best 

for 79.6% and worst for 20.2% to detect malware with the evaluation of four security software. 

4. Supervised Machine Learning 

Based on evidence in the incidence of indecision, the supervised machine learning technique builds a 

model to make predictions using a known set of input data and responses by training a model to make 

predictions for the response to new data. A test dataset may also be used to validate that built model [17]. 

Supervised machine learning splits into two broad categories: (i) Classification (When the algorithm uses 

the data to predict a category), (ii) Regression (When a value is used to predict a continuous measurement 
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for an observation). 

Common classification algorithms [18]: 

 Support vector machines (SVM) 

 Neural networks 

 Naïve Bayes classifier 

 Decision trees 

 Discriminant analysis 

 K-Nearest neighbors (k-NN) 

Common regression algorithms [18]: 

 Linear regression 

 Nonlinear regression 

 Generalized linear models 

 Decision trees 

 Neural networks 

Steps in Supervised Learning [19]: 

1. Determine the type of training: Everyone needs to take decision for the selection of suitable data that 

is going to be used as a training set.  

2. Gather a training set: A set of input objects and corresponding outcomes should be gathered from the 

real-world uses such as human experts or from measurements. 

3. Determine the input feature representation of the learned function and structure: The number 

of features within the data should contain adequate information to correctly predict the output because the 

accuracy of the learned function is fully depended on the representation of input object. 

4. Complete the design: To run the learning algorithm using collected training set some supervised 

learning algorithms necessitate the user to regulate certain parameters to optimize the performance of the 

training set. 

5. Evaluate the accuracy of the learned function: Measure the performance of the outcome of the 

function using a test set separated from the training. 

5. Methodology 

In this section, several corresponding experiments are conducted to estimate the performance of the 

supervised machine learning algorithms based on the Android’s configuration permission for the 

assessment of the outcomes. In our methodology section we build a model using a study of static analysis of 

the application configuration permissions containing train and test datasets, assessment standards, the 

outcomes of the experimentation of these algorithms. The dataset can be described as Table 1: 

 

Table 1. Dataset Description 
 Android Malware Training Set Test Set 

Value Count Percent Count Percent Count Percent 

0 199 50.00% 116 48.54% 83 52.20% 

1 199 50.00% 123 51.46% 76 47.80% 

 

 Implementation of Static Analysis Framework Using Supervised Learning 5.1.

The proposed framework is divided into five steps: 

1. Gather a training set: A total of 558 APKs were collected where 279 low-privilege applications of the 
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open source dataset and a random selection of 279 MalGenome malware. 

2. Extraction: To attain the AndroidManifest.xml file from the collected APK we used the ApkTool 2.3.0 

Tool (Released-21 Sep 2017). 

3. Features vector: We used MATLAB (2017a) for the development purpose with creating the binary 

vectors by accessing of every application’s permission, and a label of application classification was added to 

determine whether the application as benign or malicious. A new dataset also created using the previous 

outcomes containing the permissions accessed by each application in binary. Each application is allotted a 

vector defined by V = (R1, R2, ..., R330, C) containing the information of the permissions using. 

 𝑅𝑖 = *0,   in another case
1,   if detected an access permission 

 

𝐶𝑖 = *0,   in another case
1,   if the application is malicious  

4. Training and testing: For our experimentation, we divided the dataset into two sections where 60% 

of the data used for training and 40% of the data, selected randomly, for testing purpose. Finally, we trained 

and verified our experiment by each supervised machine learning algorithms (Support vector machines 

(SVM), Neural networks, Naïve Bayes, Decision Trees, Discriminant Analysis and K-Nearest neighbors). 

5. Classification: After training and testing using these supervised learning algorithms we reached at 

position with classifying the applications as benign or malicious shown in Fig. 1. So that the user can take 

decision to install that application on their Android devices. 

 

 
Fig. 1. A static analysis framework to detect malware on Android. 

 

 Measurement Metrices 5.2.

Confusion Matrix: A confusion matrix is a matrix which contains information about actual and predicted 

classifications in Table 2 done by a classification to measure numerous algorithm performance using the 

matrix data [20], [21]. 

 

Table 2. Confusion Matrix 
 Actual class 

Positive Negative 

 
Predicted Class 

Positive True Positive (TP) False Positive (FP) 
Negative False Negative (FN) True Negative (TN) 
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 Accuracy (AC) is the proportion of the total number of corrected predictions. Overall, how often is 
the classifier correct? 

Accuracy =
No. of correctly classified data (TP + TN)

Total
 

 Misclassification Rate (1-Accuracy) describe the overall, how often is it wrong? 

misclassification =
No. of misclassified data (FP + FN)

Total
 

 Precision (P) is the proportion of the correctly predicted positive cases determined by: 

precision =
TP

TP +  FP
 

 The recall or true positive rate (TP) is the proportion of the correctly identified positive cases 
defined by: 

recall =
TP

TP +  FN
 

 f1- Score is a weighted average of the True Positive (TP) rate (recall) and Precision (P). 

 ROC Curve is a graph to summarize the performance of the classifier over all probable thresholds 

generated by plotting the True Positive (TP) Rate in Y-axis against the False Positive (FP) Rate in 

X-axis. 

6. Experimentation and Result 

 Technologies Used 6.1.

The experiments are done using MATLAB (2017a) on the machine where the System Model was 

MacBookPr011.5, Processor was Intel(R) Core(TM) i7-4870HQ CPU @ 2.506Hz (8 CPUs), ~2.SGHz 64-bit 

PC. 

 Result and Discussion 6.2.

The supervised machine learning algorithms used in our experiment including Support vector machines 

(SVM), Neural networks (NN), Naïve Bayes (NB), Decision Trees (DT), Discriminant Analysis (DA) and 

K-Nearest neighbors (kNN). After applying these algorithms, the results got from the test are summarized in 

Table 3. 

 

Table 3. Result of the Performance of Supervised Machine Learning Algorithms 

Algorithms 
Precision Recall Misclassification rate 

Accuracy 
0 1 0 1 0 1 

NB 0.85 0.87 0.82 0.83 0.15 0.17 0.84 
DA 0.81 0.84 0.89 0.89 0.14 0.15 0.86 
kNN 0.96 0.96 0.97 0.96 0.04 0.04 0.96 
DT 0.93 0.93 0.93 0.92 0.06 0.05 0.94 
NN 0.87 0.90 0.85 0.89 0.12 0.10 0.89 
SVM 0.91 0.93 0.92 0.94 0.08 0.06 0.93 

 

From the results we get, Naive Bayes and Discriminant analysis give the worst results both in the 

classification for benign and malicious behavior and the performances of them are 84% and 86% 

respectively. The neural network algorithm gives the average result with 89% performance. Decision Tree 
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and SVM algorithms provide almost similar results with 94% and 93% performances respectively. Finally, 

the algorithm that presented the best results for our dataset was K-Nearest Neighbors both in the 

classification (96% for benign software classification and 96% for malware) and overall performance is 

96%. The above results can be seen through the ROC curve (Fig. 2) and the misclassification curve (Fig. 3). 

 

 
Fig. 2. ROC curve. 

 

 
Fig. 3. Misclassification rate. 

 

7. Conclusion and Future Work 

In this article we propose the assessment numerous supervised machine learning algorithm to detect 

malware on Android from their access permissions. From the experiment we can show that, the assessment 

of our dataset presents as best classification algorithm K-Neighbors. As future work suggestions, we will try 

to do the following:  

 Assess trained classifiers in contradiction of another set of vigorous applications with over privileges. 

 Study and Train other artificial intelligence techniques. 

 Implement a system that will allow the algorithm to learn from wicked classifications. 

 Discover other features of Android for the training and testing.  
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