549 research outputs found

    Novel m-PSO-SVM based Interface Controller Design for Haptic System

    Get PDF
    The haptic system has two key performance issues: stability and transparency. A haptic interface controller (HIC) is designed to address these issues. Addressing these issues becomes a complex problem as both are complementary to each other. Here, when transparency of the system is increased, its stability degrades and vice-versa. To overcome this problem, intelligent optimized solutions are used in this paper to design a HIC controller for the haptic system. SVM and NN techniques have been employed to identify the performance of the controller, ensuring stability and transparency both. The disadvantages of NN in terms of the number of neurons and hidden layers are overcome by SVM. Further, the performance of SVM is highly dependent upon the selection of free parameters. So, further, a modified PSO technique is employed for the optimal selection of these parameters to enhance the performance of SVM. Hence, this novel proposed hybrid technique of m-PSO optimized SVM is applied for the optimal design of the HIC to find out an optimal solution between trade-off the transparency and stability of the haptic device simultaneously. To appreciate the efficacy of the proposed technique, the result obtained with this is compared with HIC design using neural network and conventional ZN method also. This designed controller ensures stability as well as transparency, even under the presence of uncertainty, delay, and quantization error

    Prediction of Superconducting Transition Temperatures for Fe- Based Superconductors using Support Vector Machine

    Get PDF
    Quench for materials that can persistently carry electrical current without loss of power is confined to low temperatures. The future dream of room temperature superconductors is hampered by the absence of unique theory that fully explains superconductivity as well as high cost of the equipment involved in the characterization of the potential samples. Support vector machine (SVM) is hereby proposed to predict the superconducting transition temperature of any family of iron-based superconductors at ambient pressure using lattice parameters of the samples. Accuracy of over 99% obtained in our developed model is not only creating an efficient and low cost way of predicting transition temperature but also  makes lattice parameter a premise through which full understanding of superconductivity can be grown. Keywords: Iron-based superconductor, Support vector machine, correlation coefficient and superconducting transition temperatur

    Regional Forecasting with Support Vector Regressions: The Case of Spain

    Get PDF
    This study attempts to assess the forecasting accuracy of Support Vector Regression (SVR) with regard to other Artificial Intelligence techniques based on statistical learning. We use two different neural networks and three SVR models that differ by the type of kernel used. We focus on international tourism demand to all seventeen regions of Spain. The SVR with a Gaussian kernel shows the best forecasting performance. The best predictions are obtained for longer forecast horizons, which suggest the suitability of machine learning techniques for medium and long term forecasting

    A novel hybrid technique for short-term electricity price forecasting in deregulated electricity markets

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Short-term electricity price forecasting is now crucial practice in deregulated electricity markets, as it forms the basis for maximizing the profits of the market participants. In this thesis, short-term electricity prices are forecast using three different predictor schemes, Artificial Neural Networks (ANNs), Support Vector Machine (SVM) and a hybrid scheme, respectively. ANNs are the very popular and successful tools for practical forecasting. In this thesis, a hidden-layered feed-forward neural network with back-propagation has been adopted for detailed comparison with other forecasting models. SVM is a newly developed technique that has many attractive features and good performance in terms of prediction. In order to overcome the limitations of individual forecasting models, a hybrid technique that combines Fuzzy-C-Means (FCM) clustering and SVM regression algorithms is proposed to forecast the half-hour electricity prices in the UK electricity markets. According to the value of their power prices, thousands of the training data are classified by the unsupervised learning method of FCM clustering. SVM regression model is then applied to each cluster by taking advantage of the aggregated data information, which reduces the noise for each training program. In order to demonstrate the predictive capability of the proposed model, ANNs and SVM models are presented and compared with the hybrid technique based on the same training and testing data sets in the case studies by using real electricity market data. The data was obtained upon request from APX Power UK for the year 2007. Mean Absolute Percentage Error (MAPE) is used to analyze the forecasting errors of different models and the results presented clearly show that the proposed hybrid technique considerably improves the electricity price forecasting

    Fault Diagnosis and Failure Prognostics of Lithium-ion Battery based on Least Squares Support Vector Machine and Memory Particle Filter Framework

    Get PDF
    123456A novel data driven approach is developed for fault diagnosis and remaining useful life (RUL) prognostics for lithium-ion batteries using Least Square Support Vector Machine (LS-SVM) and Memory-Particle Filter (M-PF). Unlike traditional data-driven models for capacity fault diagnosis and failure prognosis, which require multidimensional physical characteristics, the proposed algorithm uses only two variables: Energy Efficiency (EE), and Work Temperature. The aim of this novel framework is to improve the accuracy of incipient and abrupt faults diagnosis and failure prognosis. First, the LSSVM is used to generate residual signal based on capacity fade trends of the Li-ion batteries. Second, adaptive threshold model is developed based on several factors including input, output model error, disturbance, and drift parameter. The adaptive threshold is used to tackle the shortcoming of a fixed threshold. Third, the M-PF is proposed as the new method for failure prognostic to determine Remaining Useful Life (RUL). The M-PF is based on the assumption of the availability of real-time observation and historical data, where the historical failure data can be used instead of the physical failure model within the particle filter. The feasibility of the framework is validated using Li-ion battery prognostic data obtained from the National Aeronautic and Space Administration (NASA) Ames Prognostic Center of Excellence (PCoE). The experimental results show the following: (1) fewer data dimensions for the input data are required compared to traditional empirical models; (2) the proposed diagnostic approach provides an effective way of diagnosing Li-ion battery fault; (3) the proposed prognostic approach can predict the RUL of Li-ion batteries with small error, and has high prediction accuracy; and, (4) the proposed prognostic approach shows that historical failure data can be used instead of a physical failure model in the particle filter

    Predicting the Istanbul Stock Exchange Index Return using Technical Indicators: A Comparative Study

    Get PDF
    The aim of this study to examine the performance of Support Vector Regression (SVR) which is a novel regression method based on Support Vector Machines (SVM) approach in predicting the Istanbul Stock Exchange (ISE) National 100 Index daily returns. For bechmarking, results given by SVR were compared to those given by classical Linear Regression (LR). Dataset contains 6 technical indicators which were selected as model inputs for 2005-2011 period. Grid search and cross valiadation is used for finding optimal model parameters and evaluating the models. Comparisons were made based on Root Mean Square (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Theil Inequality Coefficient (TIC) and Mean Mixed Error (MME) metrics. Results indicate that SVR outperforms the LR for all metrics

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Short Term Electricity Forecasting Using Individual Smart Meter Data

    Get PDF
    AbstractSmart metering is a quite new topic that has grown in importance all over the world and it appears to be a remedy for rising prices of electricity. Forecasting electricity usage is an important task to provide intelligence to the smart gird. Accurate forecasting will enable a utility provider to plan the resources and also to take control actions to balance the electricity supply and demand. The customers will benefit from metering solutions through greater understanding of their own energy consumption and future projections, allowing them to better manage costs of their usage. In this proof of concept paper, our contribution is the proposal for accurate short term electricity load forecasting for 24hours ahead, not on the aggregate but on the individual household level
    corecore