66,120 research outputs found

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    A complex network approach to stylometry

    Get PDF
    Statistical methods have been widely employed to study the fundamental properties of language. In recent years, methods from complex and dynamical systems proved useful to create several language models. Despite the large amount of studies devoted to represent texts with physical models, only a limited number of studies have shown how the properties of the underlying physical systems can be employed to improve the performance of natural language processing tasks. In this paper, I address this problem by devising complex networks methods that are able to improve the performance of current statistical methods. Using a fuzzy classification strategy, I show that the topological properties extracted from texts complement the traditional textual description. In several cases, the performance obtained with hybrid approaches outperformed the results obtained when only traditional or networked methods were used. Because the proposed model is generic, the framework devised here could be straightforwardly used to study similar textual applications where the topology plays a pivotal role in the description of the interacting agents.Comment: PLoS ONE, 2015 (to appear

    UGENT-LT3 SCATE system for machine translation quality estimation

    Get PDF
    This paper describes the submission of the UGENT-LT3 SCATE system to the WMT15 Shared Task on Quality Estima-tion (QE), viz. English-Spanish word and sentence-level QE. We conceived QE as a supervised Machine Learning (ML) problem and designed additional features and combined these with the baseline feature set to estimate quality. The sen-tence-level QE system re-uses the word level predictions of the word-level QE system. We experimented with different learning methods and observe improve-ments over the baseline system for word-level QE with the use of the new features and by combining learning methods into ensembles. For sentence-level QE we show that using a single feature based on word-level predictions can perform better than the baseline system and using this in combination with additional features led to further improvements in performance
    • …
    corecore