7,938 research outputs found

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Topological Properties in Ontology-based Applications

    Get PDF
    Proceedings of: 11th International Conference on Intelligent Systems Design and Applications, Córdoba, Spain, 22 – 24 November, 2011.Representation and reasoning with spatial properties is essential in several application domains where ontologies are being successfully applied; e.g., Information Fusion systems. This requires a full characterization of the semantics of relations such as adjacent, included, overlapping, etc. Nevertheless, ontologies are not expressive enough to directly support widely-use spatial or topological theories, such as the Region Connection Calculus (RCC). In addition, these properties must be properly instantiated in the ontology, which may require expensive calculations. This paper presents a practical approach to represent and reason with topological properties in ontology-based systems, as well as some optimization techniques that have been applied in a video-based Information Fusion application.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC,CAM CONTEXTS (S2009/ TIC-1485) and DPS2008-07029-C02-02.Publicad

    Fuzziness, Indeterminacy and Soft Sets: Frontiers and Perspectives

    Full text link
    The present paper comes across the main steps that laid from Zadeh's fuzziness ana Atanassov's intuitionistic fuzzy sets to Smarandache's indeterminacy and to Molodstov's soft sets. Two hybrid methods for assessment and decision making respectively under fuzzy conditions are also presented through suitable examples that use soft sets and real intervals as tools. The decision making method improves an earlier method of Maji et al. Further, it is described how the concept of topological space, the most general category of mathematical spaces, can be extended to fuzzy structures and how to generalize the fundamental mathematical concepts of limit, continuity compactness and Hausdorff space within such kind of structures. In particular, fuzzy and soft topological spaces are defined and examples are given to illustrate these generalizations.Comment: 15 pages, 2 figures, 3 Tables, 30n reference
    corecore