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1. Introduction 
 

Knowledge-based system (KBS) is a problem solving approach that makes use of human 
knowledge in possible ways. Usually, the knowledge used in KBS may be obtained directly 
from domain expert or through some kind of machine learning based on available data. The 
quality of knowledge used has an important impact on the performance of KBS. The success 
of development and application of an intelligent system requires the availability of two 
groups of people: AI experts who hold the techniques and tools for problem solving, and 
domain experts who know well the problem to be solved and hold domain knowledge 
leading to a necessity of the development of intelligent system. However, in reality, it is 
often a challenge to get the both groups working together to derive the inherent synergies. 
Knowware System (KWS) is a framework proposed as development tool for design and 
development of KBS. KWS offers classes of knowledge-based processing unit to support 
developer in modelling their KBS, and generates the target KBS based on the definition from 
developer. A typical KBS generated by KWS is a hybrid intelligent system that contains a 
knowledge hierarchy and an inference engine. The knowledge hierarchy consisting of 
multiple components forms a static inference structure in KBS while the inference engine 
controls the dynamic inference flow through managing execution of components. 
The inference in a hybrid KBS constructed by KWS is a truth value flow inference, with 
knowledge-based processing handled locally in each individual components and a truth 
value flow throughout the entire KBS. As a uniformed format, interval-valued confidence 
defined as fuzzy number has been proposed to represent the imprecision and uncertainty 
during inference. The KWS inference engine realizes control of inference through three 
aspects: the management of protocol between components, the control of execution order of 
components, and the confidence transfer. 

 
2. Knowware System 
 

The Knowware System (KWS) has been proposed for the development of knowledge-based 
systems. It can accept from user knowledge sources represented in varied formats and select 
appropriate intelligent techniques to construct desired knowledge-based processing units of 
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hybrid KBS, therefore allow the KBS developer more easily and conveniently model and 
develop a customized intelligent system. 

 
2.1. Hierarchical Modeling of KBS 
In a typical application, the mapping relation between inputs and output of the problem 
may be complex, and description of such a mapping relation using a global knowledge can 
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to 
multiple units, with each of the units described by a corresponding local knowledge base, 
and the type of knowledge and the inference mechanism in each of the units varied upon 
the specific problem solving and the availability of knowledge. Following this sprit, 
hierarchical problem representation represents a domain problem with a hierarchy and uses 
multiple AI techniques for problem solving. 

 
2.2. Construction of KBS using KWS 
The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L. 
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which 
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not 
only allows developers to easily design their system, but also realizes an automatic 
construction of the target KBS based on the developers’ design. 
As a typical development process, KWS receives the description of KBS from developer and 
then automatically constructs the target KBS. Therefore a Knowledge Description Language 
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use 
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS 
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details 
of implementation. 

 
Fig. 1. Structure of KBS constructed by KWS 

 
2.2.1. Sub-Systems of KWS for KBS Construction 
There are three subsystems of KWS supporting the automatic construction of customized 
KBS. 
Intelligent Editor – It provides a friendly GUI for the developer to design a KBS. Developers 
use the graphic description to describe their KBS. Editor also does error checking for the 

 

process of developing KBS. Once design is confirmed, Editor will construct the internal 
inference structure of target KBS based on the graphic description, and generate the 
corresponding KDL text. 
KDL Processor – It receives the KDL description of a target KBS, and compiles it to a 
corresponding knowledge hierarchy as the internal inference structure, using suitable 
intelligent components stored in the warehouse with possible customization. The KDL text 
can be either from the interactive editor or user’s input. In the latter case, it also checks the 
syntax of KDL text inputted. 
Installer – It saves the internal knowledge hierarchy in a suitable data format when a user’s 
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy 
with the KWS inference engine as well as the installer itself to a stand-alone target 
application. The embedded installer will be responsible to reload the saved KBS upon user’s 
calling of the application. 

 
2.2.2. Work Flow of KWS 
In order to develop a desired intelligent system, the developer can choose any of the 
knowware that fits into his/her need, via two possible ways. One is to define his/her target 
system in KDL text and then call the KDL processor for compilation to generate the internal 
inference structure. The other alternative is to use the intelligent editor to design the target 
system step-by-step and get the target knowledge hierarchy constructed after confirmation. 
In the latter case, the editor also generates a corresponding KDL text so the developer can 
make modification conveniently later on. For a KBS successfully constructed, the installer 
will save the internal inference structure to a suitable format and reconstruct it later upon 
request. Figure 2 shows the work flow of KWS. 
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hybrid KBS, therefore allow the KBS developer more easily and conveniently model and 
develop a customized intelligent system. 

 
2.1. Hierarchical Modeling of KBS 
In a typical application, the mapping relation between inputs and output of the problem 
may be complex, and description of such a mapping relation using a global knowledge can 
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to 
multiple units, with each of the units described by a corresponding local knowledge base, 
and the type of knowledge and the inference mechanism in each of the units varied upon 
the specific problem solving and the availability of knowledge. Following this sprit, 
hierarchical problem representation represents a domain problem with a hierarchy and uses 
multiple AI techniques for problem solving. 

 
2.2. Construction of KBS using KWS 
The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L. 
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which 
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not 
only allows developers to easily design their system, but also realizes an automatic 
construction of the target KBS based on the developers’ design. 
As a typical development process, KWS receives the description of KBS from developer and 
then automatically constructs the target KBS. Therefore a Knowledge Description Language 
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use 
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS 
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details 
of implementation. 

 
Fig. 1. Structure of KBS constructed by KWS 

 
2.2.1. Sub-Systems of KWS for KBS Construction 
There are three subsystems of KWS supporting the automatic construction of customized 
KBS. 
Intelligent Editor – It provides a friendly GUI for the developer to design a KBS. Developers 
use the graphic description to describe their KBS. Editor also does error checking for the 

 

process of developing KBS. Once design is confirmed, Editor will construct the internal 
inference structure of target KBS based on the graphic description, and generate the 
corresponding KDL text. 
KDL Processor – It receives the KDL description of a target KBS, and compiles it to a 
corresponding knowledge hierarchy as the internal inference structure, using suitable 
intelligent components stored in the warehouse with possible customization. The KDL text 
can be either from the interactive editor or user’s input. In the latter case, it also checks the 
syntax of KDL text inputted. 
Installer – It saves the internal knowledge hierarchy in a suitable data format when a user’s 
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy 
with the KWS inference engine as well as the installer itself to a stand-alone target 
application. The embedded installer will be responsible to reload the saved KBS upon user’s 
calling of the application. 

 
2.2.2. Work Flow of KWS 
In order to develop a desired intelligent system, the developer can choose any of the 
knowware that fits into his/her need, via two possible ways. One is to define his/her target 
system in KDL text and then call the KDL processor for compilation to generate the internal 
inference structure. The other alternative is to use the intelligent editor to design the target 
system step-by-step and get the target knowledge hierarchy constructed after confirmation. 
In the latter case, the editor also generates a corresponding KDL text so the developer can 
make modification conveniently later on. For a KBS successfully constructed, the installer 
will save the internal inference structure to a suitable format and reconstruct it later upon 
request. Figure 2 shows the work flow of KWS. 
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2.2.3. Knowledge Description Language 
The Knowledge Description Language makes it possible for developers to describe their 
target KBS in a text format. The knowledge-based processing units offered by KWS will be 
used as building blocks to make up the KBS. The input/output of each intelligent 
component (IC) called field must be specified, this information indicates the linking between 
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts: 
1) declaration of fields, each including name and data type; 2) declaration of intelligent 
components, each including name, component class and type, knowledge source, fields of 
input(s) and output linked with. The details of intelligent component and field will be 
presented in Sections 2.3. An example of KDL text is shown in Figure 3. 
 

Support-Field-Name = ( Field1 ) , Support-Field-Data { Char ( 2 ) } 
Result-Field-Name = ( Field2 ) , Result-Field-Data { Char ( 2 ) } 
InCom-Name = ( Filter-01 ) , InCom-Body {  
 Filter Dictionary 
 NoCondition 
 Standard { Program = ( Standard Dictionary ) ,  

Knowledge-Source = ( Filter01_Knowledge ) } 
 Input = ( Field = ( Field1 ) ) , Output = ( Field = ( Field2 ) ) 
} 

Fig. 3. An example of KDL 

 
2.2.4. Generation of Target KBS 
The last process of developing KBS using KWS is the generation of target KBS. The 
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with 
hierarchy record, corresponding components, knowledge sources, inference engine, and 
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing 
and reloading of KBS is done by the Installer which also provides a GUI to the end-user 
based on the input/output of target KBS. 
 

 
Fig. 4. Packing the KBS using Installer 
 
Upon call to the target KBS received the installer will be started first to reload the KBS with 
all the necessary components, knowledge sources, and inference engine. 
 

 

 
Fig. 5. Reloading the KBS using Installer 

 
2.3. Components and Fields 
The KWS warehouse stores pre-defined knowledge-based processing units that are the basic 
building blocks of KBS. Intelligent components are further classified by the nature of 
processing, in terms of the corresponding input and output. A KWS offers a set of k classes 
of intelligent components defined as 
 

COM = {com1, …, comk},  
and 
 

comi = < cli ti, si, ci >,  
 

where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈ 

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci 

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there 
is a mapping function fCL: 
 

fCL: ICL K  OCL  
 

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K 
represents the corresponding knowledge-based processing. The features and properties of 
intelligent components under different classes are determined by their mapping function fCL. 
It is an important feature of the KWS that an intelligent component under certain class 
always follows the same syntax for the interface with other intelligent components no 
matter which specific intelligent approach is adopted for the knowledge-based processing 
inside it. At the same time, intelligent components under the same class may behave 
differently when different approaches of knowledge-based processing are applied in 
problem solving. For instances, a decision-making may be done by applying traditional 
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural 
networks; a knowledge discovery may be achieved by data mining applying different 
approaches; a prediction may be made by statistical methods or by using neural networks. 
When an intelligent component is defined as ‘conditional component’, it chooses suitable 
knowledge source to be applied among the alternatives provided according to run-time 
conditions detected. We have designed ten classes of intelligent components under two 
different categories: processing components and learning components, with each category 
including several classes based on the nature of function.  
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2.2.3. Knowledge Description Language 
The Knowledge Description Language makes it possible for developers to describe their 
target KBS in a text format. The knowledge-based processing units offered by KWS will be 
used as building blocks to make up the KBS. The input/output of each intelligent 
component (IC) called field must be specified, this information indicates the linking between 
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts: 
1) declaration of fields, each including name and data type; 2) declaration of intelligent 
components, each including name, component class and type, knowledge source, fields of 
input(s) and output linked with. The details of intelligent component and field will be 
presented in Sections 2.3. An example of KDL text is shown in Figure 3. 
 

Support-Field-Name = ( Field1 ) , Support-Field-Data { Char ( 2 ) } 
Result-Field-Name = ( Field2 ) , Result-Field-Data { Char ( 2 ) } 
InCom-Name = ( Filter-01 ) , InCom-Body {  
 Filter Dictionary 
 NoCondition 
 Standard { Program = ( Standard Dictionary ) ,  

Knowledge-Source = ( Filter01_Knowledge ) } 
 Input = ( Field = ( Field1 ) ) , Output = ( Field = ( Field2 ) ) 
} 

Fig. 3. An example of KDL 

 
2.2.4. Generation of Target KBS 
The last process of developing KBS using KWS is the generation of target KBS. The 
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with 
hierarchy record, corresponding components, knowledge sources, inference engine, and 
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing 
and reloading of KBS is done by the Installer which also provides a GUI to the end-user 
based on the input/output of target KBS. 
 

 
Fig. 4. Packing the KBS using Installer 
 
Upon call to the target KBS received the installer will be started first to reload the KBS with 
all the necessary components, knowledge sources, and inference engine. 
 

 

 
Fig. 5. Reloading the KBS using Installer 

 
2.3. Components and Fields 
The KWS warehouse stores pre-defined knowledge-based processing units that are the basic 
building blocks of KBS. Intelligent components are further classified by the nature of 
processing, in terms of the corresponding input and output. A KWS offers a set of k classes 
of intelligent components defined as 
 

COM = {com1, …, comk},  
and 
 

comi = < cli ti, si, ci >,  
 

where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈ 

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci 

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there 
is a mapping function fCL: 
 

fCL: ICL K  OCL  
 

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K 
represents the corresponding knowledge-based processing. The features and properties of 
intelligent components under different classes are determined by their mapping function fCL. 
It is an important feature of the KWS that an intelligent component under certain class 
always follows the same syntax for the interface with other intelligent components no 
matter which specific intelligent approach is adopted for the knowledge-based processing 
inside it. At the same time, intelligent components under the same class may behave 
differently when different approaches of knowledge-based processing are applied in 
problem solving. For instances, a decision-making may be done by applying traditional 
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural 
networks; a knowledge discovery may be achieved by data mining applying different 
approaches; a prediction may be made by statistical methods or by using neural networks. 
When an intelligent component is defined as ‘conditional component’, it chooses suitable 
knowledge source to be applied among the alternatives provided according to run-time 
conditions detected. We have designed ten classes of intelligent components under two 
different categories: processing components and learning components, with each category 
including several classes based on the nature of function.  
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KWS also provides a possibility for the developers to include their own mathematical 
formulas or algorithms as user-defined procedures and make them intelligent components. 
Once such a procedure is defined, it becomes a special knowledge-based processing unit for 
possible use in other intelligent components in the same KBS under development. 
Each of the input(s) and output of component is linked with a Field; fields are the basic data 
units indicated for input and output of processing intelligent components. They provide a 
pipeline for the data flow between components. An intelligent component can have multiple 
inputs, but only one output. 
There are seven classes of processing component and three classes of learning component 
supported by KWS, as listed in Table 1. 
 

Processing Component 
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad” 
members. 

Filtering
K

FilteringFiltering OIf :  

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering  
OFiltering; 

2. The input and output share the same type of data structure; 
3. The length of output should not be longer than that of input; 

Recognition class applies its knowledge to “read out” the meaning of a single input pattern. 
Lpf K

cognition :Re
 

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each 
of li(1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output usually have different types of data structure; 
3. The processing establishes one-to-one relation between an input pattern and an output label. 

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly 
summarized meaning. 

Ppf K
ionSummarizat :  

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization 
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or 
explanation; 

3. The degree or the level of abstraction of the output is determined by the knowledge applied and 
the inference mechanism adopted. 

Confirmation checks the input, and gives “Yes/No” to each of the candidates. 
YNDf K

conConfirmati :  

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii 
(1 ≤ i ≤ k) {Yes, No}; 

2. It can be used as a conditional checker to support other intelligent components; 
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided. 

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic 
terms or values, such as high, expensive, going-up, or so. 

JPDf K
JPJudgement :  

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list 
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined 
linguistic terms; 

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply 
represented as Yes/No; 

3. Changing the LT may change the behaviour of intelligent component. 
Projection projects an input data set with k features to an output data set with j ≤ k features. 

 

j
K

kojection DDf :Pr
 

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj 
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >}  is an n-entry data set with j ( j ≤ k) features, and 
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk 
under the projection defined; 

2. The process does not remove any data entry, but “remove” some of its features; 
3. After projection, the data set will remain the entries but each of them appears in a space of 

probably lower dimension. 
Decision checks the input as a situation and recommends a possible decision. 

ADsf K
Decision :  

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision 
with possible confidence value associated; 

2. This class of intelligent components is usually used at a late or final stage of intelligent systems, 
but not at the beginning; 

3. For a complicated problem, multiple techniques and approaches may be required to form the 
inference strategy used in the component. 

Learning Component 
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for 
input and gives output as the knowledge discovered. 

D
K

DeryDis KDf :cov
 

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected 
form, such as rules, relations, or other types; 

2. Its output result can be applied as knowledge source to support other intelligent components; 
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing. 

Training can train some rule on it based on the user input’s data. 
Post-Processing  support Learning Component for post-processing. 

Table 1. Intelligent component 

 
2.4. KWS Inference Engine 
The inference structure of a KBS constructed by KWS is represented as a knowledge 
hierarchy with multiple intelligent components connected. The task of construction can be 
done either by the intelligent editor or the KDL processor. 
The knowledge hierarchy forms a static inference structure of the target KBS. A single 
intelligent component realizes the mapping from its input to its output with the support of 
its local knowledge base. The entire mapping of the KBS is achieved through the integration 
of intelligent components. There is no direct mapping relation from the input to the output 
of the KBS, but each intelligent component contributes to part of the mapping. 
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in 
individual intelligent components, and also to connect the inference of individual 
components to the inference flow of the entire KBS. 
One of the main challenges facing KWS for the construction of intelligent system is the 
complexity associated to inference mechanism having multi-level, and multi-modal 
knowledge integration. Each single intelligent component is actually a smaller KBS for a 
sub-problem of the target application, and its input and output can be directly linked to 
problem domain or the result from different stages of processing. How to assemble 
intelligent components to get a meaningful and unified data/information flow in the entire 
intelligent system constitutes a key task. Inference engine is necessary to control the 
execution which is realized through three aspects: 1) The management of protocol between 
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KWS also provides a possibility for the developers to include their own mathematical 
formulas or algorithms as user-defined procedures and make them intelligent components. 
Once such a procedure is defined, it becomes a special knowledge-based processing unit for 
possible use in other intelligent components in the same KBS under development. 
Each of the input(s) and output of component is linked with a Field; fields are the basic data 
units indicated for input and output of processing intelligent components. They provide a 
pipeline for the data flow between components. An intelligent component can have multiple 
inputs, but only one output. 
There are seven classes of processing component and three classes of learning component 
supported by KWS, as listed in Table 1. 
 

Processing Component 
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad” 
members. 

Filtering
K

FilteringFiltering OIf :  

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering  
OFiltering; 

2. The input and output share the same type of data structure; 
3. The length of output should not be longer than that of input; 

Recognition class applies its knowledge to “read out” the meaning of a single input pattern. 
Lpf K

cognition :Re
 

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each 
of li(1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output usually have different types of data structure; 
3. The processing establishes one-to-one relation between an input pattern and an output label. 

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly 
summarized meaning. 

Ppf K
ionSummarizat :  

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization 
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value; 

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or 
explanation; 

3. The degree or the level of abstraction of the output is determined by the knowledge applied and 
the inference mechanism adopted. 

Confirmation checks the input, and gives “Yes/No” to each of the candidates. 
YNDf K

conConfirmati :  

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii 
(1 ≤ i ≤ k) {Yes, No}; 

2. It can be used as a conditional checker to support other intelligent components; 
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided. 

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic 
terms or values, such as high, expensive, going-up, or so. 

JPDf K
JPJudgement :  

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list 
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined 
linguistic terms; 

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply 
represented as Yes/No; 

3. Changing the LT may change the behaviour of intelligent component. 
Projection projects an input data set with k features to an output data set with j ≤ k features. 

 

j
K

kojection DDf :Pr
 

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj 
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >}  is an n-entry data set with j ( j ≤ k) features, and 
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk 
under the projection defined; 

2. The process does not remove any data entry, but “remove” some of its features; 
3. After projection, the data set will remain the entries but each of them appears in a space of 

probably lower dimension. 
Decision checks the input as a situation and recommends a possible decision. 

ADsf K
Decision :  

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision 
with possible confidence value associated; 

2. This class of intelligent components is usually used at a late or final stage of intelligent systems, 
but not at the beginning; 

3. For a complicated problem, multiple techniques and approaches may be required to form the 
inference strategy used in the component. 

Learning Component 
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for 
input and gives output as the knowledge discovered. 

D
K

DeryDis KDf :cov
 

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected 
form, such as rules, relations, or other types; 

2. Its output result can be applied as knowledge source to support other intelligent components; 
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing. 

Training can train some rule on it based on the user input’s data. 
Post-Processing  support Learning Component for post-processing. 

Table 1. Intelligent component 

 
2.4. KWS Inference Engine 
The inference structure of a KBS constructed by KWS is represented as a knowledge 
hierarchy with multiple intelligent components connected. The task of construction can be 
done either by the intelligent editor or the KDL processor. 
The knowledge hierarchy forms a static inference structure of the target KBS. A single 
intelligent component realizes the mapping from its input to its output with the support of 
its local knowledge base. The entire mapping of the KBS is achieved through the integration 
of intelligent components. There is no direct mapping relation from the input to the output 
of the KBS, but each intelligent component contributes to part of the mapping. 
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in 
individual intelligent components, and also to connect the inference of individual 
components to the inference flow of the entire KBS. 
One of the main challenges facing KWS for the construction of intelligent system is the 
complexity associated to inference mechanism having multi-level, and multi-modal 
knowledge integration. Each single intelligent component is actually a smaller KBS for a 
sub-problem of the target application, and its input and output can be directly linked to 
problem domain or the result from different stages of processing. How to assemble 
intelligent components to get a meaningful and unified data/information flow in the entire 
intelligent system constitutes a key task. Inference engine is necessary to control the 
execution which is realized through three aspects: 1) The management of protocol between 
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components; 2) The control of execution order of components; and 3) The confidence 
transfer. 

 
3. Truth Value Flow Inference 
 

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z. 
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a 
network structure (L. Ding et al, 1996) and finds rationality in connection to the description 
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with 
TVFI, where CP and CQ are the confidence of P and Q respectively; w is the weight of rule (L. 
Ding and Z. Shen, 1994) controlling the channel of transferring the truth of P to the truth of 
Q. 

 
Fig. 6. Truth value flow inference 
 
Based on the concepts of truth value flow inference and symbolical-numerical duality, we 
can construct a fuzzy inference with a static structure of nodes representing the relationship 
between propositions symbolically, and with a dynamic flow implementing the truth (or 
confidence) transfer among the individual nodes. This idea can be extended to KBS 
represented in network structure, with each intelligent component be treated as an extended 
node realizing a mapping relation between its input and output, and the entire KBS be an 
inference network (L. Ding and H.C. Lui, 1999). 

 
3.1. Data Flow and Truth Value Flow in a Component 
In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the 
inference into a content level as well as a truth (confidence) level and handle them 
simultaneously. In this way, the content level of inference relies only on the knowledge 
sources stored “locally” in individual intelligent components whereas the truth (confidence) 
level of inference contributes to the flow of truth (confidence) throughout the entire system. 
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the 
knowledge hierarchy. 
In each intelligent component, two kinds of processing will be executed when receiving data 
in its inputs: content (or data) processing, and truth value (or confidence value) processing. 
These two types of processing are handled in intelligent component simultaneously to 
obtain the final result of the component that is the content of processing result associated 
with its corresponding confidence value. This concept can be shown as in Figure 7. 
 

 

 
Fig. 7. An example of separated inputs in two levels 

 
3.2. Interval-Valued Confidence 
We adopted interval-valued confidence to represent the truth of fact and knowledge, and 
the confidence of inference. Here, the term “interval” is used in some different way from its 
usual meaning. Our motivation comes from several points. 
1) A given truth value t  [0, 1] with some possible uncertainty or imprecision can 

always be understood as a fuzzy number defined on the closed interval [0, 1]. In an 
extreme case, t can be represented as a special fuzzy number with left, middle and 
right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum. 

2) With more accurate information available, the range between the left and right 
parameters of such a fuzzy truth can be reduced. In another extreme case, we may 
have all the three parameters be t, if no uncertainty is considered, and it then comes 
back to usual case of single point of truth. 

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to 
allow more tolerance of imprecision in inference in terms of truth (confidence) 
calculation. 

Three-parametric triangular truth value has some good features of easy representation and 
processing, intuitive interpretation consistent with common sense, convenient conversion 
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets. 
 

Definition 1 (general definition): A confidence value C of inference result is represented in 
the following general format: 
 

C = (a, m, b), (1) 
 

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a 
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0, 
1] (Figure 8-a). 
 

Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact 
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t, 
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be 
understood as a special case (t, t, t) of Definition 1. 
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components; 2) The control of execution order of components; and 3) The confidence 
transfer. 

 
3. Truth Value Flow Inference 
 

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z. 
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a 
network structure (L. Ding et al, 1996) and finds rationality in connection to the description 
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with 
TVFI, where CP and CQ are the confidence of P and Q respectively; w is the weight of rule (L. 
Ding and Z. Shen, 1994) controlling the channel of transferring the truth of P to the truth of 
Q. 

 
Fig. 6. Truth value flow inference 
 
Based on the concepts of truth value flow inference and symbolical-numerical duality, we 
can construct a fuzzy inference with a static structure of nodes representing the relationship 
between propositions symbolically, and with a dynamic flow implementing the truth (or 
confidence) transfer among the individual nodes. This idea can be extended to KBS 
represented in network structure, with each intelligent component be treated as an extended 
node realizing a mapping relation between its input and output, and the entire KBS be an 
inference network (L. Ding and H.C. Lui, 1999). 

 
3.1. Data Flow and Truth Value Flow in a Component 
In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the 
inference into a content level as well as a truth (confidence) level and handle them 
simultaneously. In this way, the content level of inference relies only on the knowledge 
sources stored “locally” in individual intelligent components whereas the truth (confidence) 
level of inference contributes to the flow of truth (confidence) throughout the entire system. 
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the 
knowledge hierarchy. 
In each intelligent component, two kinds of processing will be executed when receiving data 
in its inputs: content (or data) processing, and truth value (or confidence value) processing. 
These two types of processing are handled in intelligent component simultaneously to 
obtain the final result of the component that is the content of processing result associated 
with its corresponding confidence value. This concept can be shown as in Figure 7. 
 

 

 
Fig. 7. An example of separated inputs in two levels 

 
3.2. Interval-Valued Confidence 
We adopted interval-valued confidence to represent the truth of fact and knowledge, and 
the confidence of inference. Here, the term “interval” is used in some different way from its 
usual meaning. Our motivation comes from several points. 
1) A given truth value t  [0, 1] with some possible uncertainty or imprecision can 

always be understood as a fuzzy number defined on the closed interval [0, 1]. In an 
extreme case, t can be represented as a special fuzzy number with left, middle and 
right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum. 

2) With more accurate information available, the range between the left and right 
parameters of such a fuzzy truth can be reduced. In another extreme case, we may 
have all the three parameters be t, if no uncertainty is considered, and it then comes 
back to usual case of single point of truth. 

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to 
allow more tolerance of imprecision in inference in terms of truth (confidence) 
calculation. 

Three-parametric triangular truth value has some good features of easy representation and 
processing, intuitive interpretation consistent with common sense, convenient conversion 
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets. 
 

Definition 1 (general definition): A confidence value C of inference result is represented in 
the following general format: 
 

C = (a, m, b), (1) 
 

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a 
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0, 
1] (Figure 8-a). 
 

Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact 
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t, 
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be 
understood as a special case (t, t, t) of Definition 1. 
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Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b  
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c): 
 

m = (a + b) / 2, (2) 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Interval-Valued Confidence 
 

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A. 
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and 
false = (0, 0, 1). 

 
Fig. 9. Linguistic truth value true and false 
 
Definition 4 (AND operation): The operation of AND on two interval-valued confidences 
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ANDIVC (C1, C2) = (Ca, Cm, Cb)                        
= [min(a1, a2), min(m1, m2), max(m1, m2)]. 

(3) 

 
Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 = 
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ORIVC (C1, C2) = (Ca, Cm, Cb)                            
= [min(m1, m2), max (m1, m2), max(b1, b2)]. 

(4) 

 
Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C = 
(a, m, b), represented as in (1) is defined as 
 

NOTIVC (C) = (Ca, Cm, Cb)                                
= (1  b, 1  m, 1  a).                                    

(5) 

 
Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and 
false, we have: 
 

 

ORIVC(true, false)                                               
= [min(1, 0), max(1, 0), max(1, 1)] = true, 

(6) 

ANDIVC(true, false)                                            
     = [min(0, 0), min(1, 0), max(1, 0)] = false, 

(7) 

NOTIVC(true)                                                     
    = (1  1, 1  1, 1  0) = (0, 0, 1) = false,       

(8) 

NOTIVC(false)                                                     
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.       

(9) 

 
The results of (6) ~ (9) are consistent with conventional definitions. However, we can also 
find that our operations provide interesting results when applying OR to both true, or AND 
to both false: 
 

ORIVC(true, true)                                                
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1), 

(10) 

ANDIVC(false, false)                                            
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0). 

(11) 

 
We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for 
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible 
room for “not-false”. These two represent the extreme cases of IVC. 
In order to have a further clear view of the properties of IVC with the corresponding 
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false, 
strong-true and strong-false, represented in IVC format. The highlighted parts show that the 
results well meet commonsense interpretation. 
 
Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued 
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12) 
 
with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …, 
mk, and Cb the second smallest value among the m1, …, mk. 
 

(a) AND 

ANDIVC F T s-F s-T 
F F F s-F F 
T F T F T 

s-F s-F F s-F F 
s-T F T F s-T 

ORIVC F T s-F s-T 
F F T F T 
T T T T s-T 

s-F F T s-F T 
s-T T s-T T s-T 

(b) OR 

NOTIVC  
F T 
T F 

s-F s-T 
s-T s-F 
(C) NOT 

Table 2. Logical operations on true, false, strong-true, string-false 
 
Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences 
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13) 
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Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b  
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c): 
 

m = (a + b) / 2, (2) 
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(b) 

 
(c) 

Fig. 8. Interval-Valued Confidence 
 

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A. 
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and 
false = (0, 0, 1). 

 
Fig. 9. Linguistic truth value true and false 
 
Definition 4 (AND operation): The operation of AND on two interval-valued confidences 
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ANDIVC (C1, C2) = (Ca, Cm, Cb)                        
= [min(a1, a2), min(m1, m2), max(m1, m2)]. 

(3) 

 
Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 = 
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as 
 

ORIVC (C1, C2) = (Ca, Cm, Cb)                            
= [min(m1, m2), max (m1, m2), max(b1, b2)]. 

(4) 

 
Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C = 
(a, m, b), represented as in (1) is defined as 
 

NOTIVC (C) = (Ca, Cm, Cb)                                
= (1  b, 1  m, 1  a).                                    

(5) 

 
Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and 
false, we have: 
 

 

ORIVC(true, false)                                               
= [min(1, 0), max(1, 0), max(1, 1)] = true, 

(6) 

ANDIVC(true, false)                                            
     = [min(0, 0), min(1, 0), max(1, 0)] = false, 

(7) 
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    = (1  1, 1  1, 1  0) = (0, 0, 1) = false,       

(8) 

NOTIVC(false)                                                     
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.       

(9) 

 
The results of (6) ~ (9) are consistent with conventional definitions. However, we can also 
find that our operations provide interesting results when applying OR to both true, or AND 
to both false: 
 

ORIVC(true, true)                                                
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1), 

(10) 

ANDIVC(false, false)                                            
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0). 

(11) 

 
We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for 
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible 
room for “not-false”. These two represent the extreme cases of IVC. 
In order to have a further clear view of the properties of IVC with the corresponding 
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false, 
strong-true and strong-false, represented in IVC format. The highlighted parts show that the 
results well meet commonsense interpretation. 
 
Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued 
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12) 
 
with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …, 
mk, and Cb the second smallest value among the m1, …, mk. 
 

(a) AND 

ANDIVC F T s-F s-T 
F F F s-F F 
T F T F T 

s-F s-F F s-F F 
s-T F T F s-T 

ORIVC F T s-F s-T 
F F T F T 
T T T T s-T 

s-F F T s-F T 
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F T 
T F 
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Table 2. Logical operations on true, false, strong-true, string-false 
 
Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences 
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as 
 

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13) 
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with Ca being the second largest value among the m1, …, mk, Cm the largest value among the 
m1, …, mk, and Cb the largest value among the b1, …, bk. 
It is necessary to notice that in general the OR(g)IVC and AND(g)IVC operations do not satisfy 
connective laws as usual logic OR and AND. This can be seen from the following examples. 
 
Example 1: Generalized OR(g)IVC and generalized AND(g)IVC operations do not satisfy 
connective laws. 
Suppose C1 = (0.7, 0.9, 0.9), C2 = (0.6, 0.6, 1), and C3 = (0.4, 0.4, 1), with Definition 7 we have: 
 

AND(g)IVC (C1, C2, C3) = (0.4, 0.4, 0.6).        (14) 
 
However, we also have 
 

ANDIVC [ANDIVC (C1, C2), C3]                     
= ANDIVC [(0.6, 0.6, 0.9), (0.4, 0.4, 1)] = (0.4, 0.4, 0.6),  

(15) 

ANDIVC [C1, ANDIVC (C2, C3)]                    
=ANDIVC [(0.7, 0.9, 0.9), (0.4, 0.4, 0.6)]= (0.4, 0.4, 0.9). 

(16) 

 
Similarly with Definition 8, we have 
 

OR(g)IVC (C1, C2, C3) = (0.6, 0.9, 1).              (17) 
ORIVC [ORIVC (C1, C2), C3]                           

= ORIVC [(0.6, 0.9, 1), (0.4, 0.4, 1)] = (0.4, 0.9, 1), 
(18) 

ORIVC [C1, ORIVC (C2, C3)]                           
= ORIVC [(0.7, 0.9, 0.9), (0.4, 0.6, 1)] = (0.6, 0.9, 1). 

(19) 

 
The highlighted parts show the difference between (15) and (16), and between (18) and (19). 
This feature can be interpreted by the truth value flow inference adopted in KWS. It is 
understood that the corresponding structures of TVFI for (14), (15) and (16) are different 
(Figure 10), and the same applies to (17), (18) and (19). Figure 10 gives three structures of 
TVFI. The nodes of the structures are representing intelligent components for knowledge-
based processing, and handling truth value flow from the input side to the output side. So 
the (a), (b), and (c) actually represent different internal inference flows, though they have the 
same input interface A1, A2 and A3, and output interface B for the entire structure. 
 

A1

A2

A3

B

A1, A2, A3→B

 
  

(a) AND(g)IVC (A1, A2, A3) (b) ANDIVC [ANDIVC (A1, A2), A3] (c) ANDIVC [A1, ANDIVC (A2, A3)] 
Fig. 10. TVFI structures 
 
When a single-valued confidence of conclusion is desired, we need to consider 
defuzzification in the last stage of inference in hybrid KBS. As defuzzification is considered 
a matter of application-specific, we here propose two simplified calculations based on the 

 

idea of conventional center of gravity approach (J.-S.R. Jang et al, 1997; R.R. Yager and D.P. 
Filev, 1994) with the reference to the left, middle and right points of IVC. 
 
Definition 9 (compromised defuzzification): The compromised defuzzification Defcom(C) of 
IVC C = (a, m, b), 0  a  m  b  1, is defined as the center of gravity of α-cut with α= 0.5 
(Figure 11-a). 
Since the IVC is a fuzzy number defined as a piece-wise linear function with the 
corresponding left, middle, and right points, we have the following calculation: 
 

Defcom(C) = [(a + m)/2 + (m + b)/2] / 2. (20) 
 
Definition 10 (simple defuzzification): The simple defuzzification Defsim(C) of IVC C = (a, m, 
b), 0  a  m  b  1, is defined as the middle point m (Figure 11-b): 
 

Defsim (C) = m. (21) 

 
(a) Compromised defuzzification with IVC 

 
(b) Simple defuzzification with IVC 

Fig. 11. Defuzzification with IVC 
 
Example 2: Single-valued confidence and interval-valued confidence with corresponding 
AND/OR operators. 
 
A. Single-Valued Confidence using Min/Max for AND/OR operation 
Consider the following rule and facts given: 
 

rule 1:  if the topic is interesting, 
and the weather is good, 
then I will attend the seminar; 

fact 1:  the topic is interesting; 
fact 2:  the weather is good. 

The most common way of handling and is to use min as t-norm to calculate the overall truth 
of the premise from the two subpremises, and when both facts are 0.5 true, for instance, we 
get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic: 
 

fact 1’:  the topic is interesting (0.9 true). 
 

With min, we will still get the same truth 0.5 for the premise, i.e., the influence of interesting 
topic has been buried by the fact of weather as long as its truth is not lower than the other 
fact. However, we tend to agree that a more interesting topic (0.9) makes a person more 
willing to go to the seminar than a moderately interesting topic (0.5) given the same weather 
condition (0.5). The following example shows a similar problem with or operation. 
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with Ca being the second largest value among the m1, …, mk, Cm the largest value among the 
m1, …, mk, and Cb the largest value among the b1, …, bk. 
It is necessary to notice that in general the OR(g)IVC and AND(g)IVC operations do not satisfy 
connective laws as usual logic OR and AND. This can be seen from the following examples. 
 
Example 1: Generalized OR(g)IVC and generalized AND(g)IVC operations do not satisfy 
connective laws. 
Suppose C1 = (0.7, 0.9, 0.9), C2 = (0.6, 0.6, 1), and C3 = (0.4, 0.4, 1), with Definition 7 we have: 
 

AND(g)IVC (C1, C2, C3) = (0.4, 0.4, 0.6).        (14) 
 
However, we also have 
 

ANDIVC [ANDIVC (C1, C2), C3]                     
= ANDIVC [(0.6, 0.6, 0.9), (0.4, 0.4, 1)] = (0.4, 0.4, 0.6),  

(15) 

ANDIVC [C1, ANDIVC (C2, C3)]                    
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Similarly with Definition 8, we have 
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The highlighted parts show the difference between (15) and (16), and between (18) and (19). 
This feature can be interpreted by the truth value flow inference adopted in KWS. It is 
understood that the corresponding structures of TVFI for (14), (15) and (16) are different 
(Figure 10), and the same applies to (17), (18) and (19). Figure 10 gives three structures of 
TVFI. The nodes of the structures are representing intelligent components for knowledge-
based processing, and handling truth value flow from the input side to the output side. So 
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same input interface A1, A2 and A3, and output interface B for the entire structure. 
 

A1

A2

A3

B

A1, A2, A3→B

 
  

(a) AND(g)IVC (A1, A2, A3) (b) ANDIVC [ANDIVC (A1, A2), A3] (c) ANDIVC [A1, ANDIVC (A2, A3)] 
Fig. 10. TVFI structures 
 
When a single-valued confidence of conclusion is desired, we need to consider 
defuzzification in the last stage of inference in hybrid KBS. As defuzzification is considered 
a matter of application-specific, we here propose two simplified calculations based on the 

 

idea of conventional center of gravity approach (J.-S.R. Jang et al, 1997; R.R. Yager and D.P. 
Filev, 1994) with the reference to the left, middle and right points of IVC. 
 
Definition 9 (compromised defuzzification): The compromised defuzzification Defcom(C) of 
IVC C = (a, m, b), 0  a  m  b  1, is defined as the center of gravity of α-cut with α= 0.5 
(Figure 11-a). 
Since the IVC is a fuzzy number defined as a piece-wise linear function with the 
corresponding left, middle, and right points, we have the following calculation: 
 

Defcom(C) = [(a + m)/2 + (m + b)/2] / 2. (20) 
 
Definition 10 (simple defuzzification): The simple defuzzification Defsim(C) of IVC C = (a, m, 
b), 0  a  m  b  1, is defined as the middle point m (Figure 11-b): 
 

Defsim (C) = m. (21) 

 
(a) Compromised defuzzification with IVC 

 
(b) Simple defuzzification with IVC 

Fig. 11. Defuzzification with IVC 
 
Example 2: Single-valued confidence and interval-valued confidence with corresponding 
AND/OR operators. 
 
A. Single-Valued Confidence using Min/Max for AND/OR operation 
Consider the following rule and facts given: 
 

rule 1:  if the topic is interesting, 
and the weather is good, 
then I will attend the seminar; 

fact 1:  the topic is interesting; 
fact 2:  the weather is good. 

The most common way of handling and is to use min as t-norm to calculate the overall truth 
of the premise from the two subpremises, and when both facts are 0.5 true, for instance, we 
get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic: 
 

fact 1’:  the topic is interesting (0.9 true). 
 

With min, we will still get the same truth 0.5 for the premise, i.e., the influence of interesting 
topic has been buried by the fact of weather as long as its truth is not lower than the other 
fact. However, we tend to agree that a more interesting topic (0.9) makes a person more 
willing to go to the seminar than a moderately interesting topic (0.5) given the same weather 
condition (0.5). The following example shows a similar problem with or operation. 
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rule 2:  if Mr. A and Mr. B are first cousin, 
or second cousin, 
then they have a close relationship; 

fact 3: Mr. A and Mr. B are first cousin; 
fact 4:  Mr. A and Mr. B are second cousin. 

 
With max, the most common way of calculating t-conorm, when either fact 3 or fact 4 is 0.5 
true and the other is 0 true, we can obtain the overall truth of premise to be max(0.5, 0) = 0.5. 
However, it is also possible that Mr. A and Mr. B have both first cousin and second cousin 
relationship when one’s parents being first cousin. Assume both subpremises with 0.5 
confidence, we will still have the same 0.5 for the truth of premise using max calculation. 
Conventionally, two persons that are in both first cousin and second cousin relation should 
more likely to have a close relationship than only being one kind of cousin having their 
double connections of relative. Obviously, max does not well reflect this situation. 
From the above examples, we can see that a single-valued truth (confidence) does not 
provide sufficient room for the description of imprecise knowledge, especially in decision 
making applications, where subjective knowledge and experience play an important role 
and the truth of subjective knowledge is hardly to be measurable in absolute sense. It is also 
very often that in real applications, a single-valued truth (confidence) does not necessarily 
mean in the explicit way as it seems. For instance, when a user inputs 0.8 as the truth of 
good weather, it should not be simply treated as a precise value 0.8 but some thing around 
0.8. 
 
B. Interval-Valued Confidence using ANDIVC/ORIVC  
We apply the IVC and corresponding operations to the previous examples. For fact 1 and 
fact 2, we have 
 

ANDIVC [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]  
= [min(0.5, 0.5), min(0.5, 0.5), max(0.5, 0.5)] 
= (0.5, 0.5, 0.5), 
 

and for fact 1’ and fact 2, we have 
 

ANDIVC[(0.9, 0.9, 0.9), (0.5, 0.5, 0.5)] (13) 
= [min(0.9, 0.5), min(0.9, 0.5), max(0.9, 0.5)] 
= (0.5, 0.5, 0.9). 

It shows that fact 1’ together with fact 2 gives more potential to have a truth higher than 0.5 
(Figure 12). 
For fact 3 (0.5 true) or fact 4 (0 true), we have 
 

ORIVC[(0.5, 0.5, 0.5), (0, 0, 0)] 
= [min(0.5, 0), max(0.5, 0), max(0.5, 0)] 
= (0, 0.5, 0.5), 
 

and for fact 3 (0.5 true) or fact 4’ (0.5 true), we have 
 

 

ORIVC[(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)] 
= [min(0.5, 0.5), max(0.5, 0.5), max(0.5, 0.5)] 
= (0.5, 0.5, 0.5). 
 

It shows that fact 3 together with fact 4’ has a stronger belief for truth 0.5 (Figure 13). 

 
Fig. 12. An example of ANDIVC 
 

 
Fig. 13. An example of ORIVC 

 
From above discussion, we can see that using IVC and the corresponding operations defined 
for confidence calculation, partial conclusion with a relatively stronger confidence about 
true or false will not easily make the influence of other parts be totally ignored in inference. 

 
3.3.  Confidence Transfer and Interpretability 
The processing in intelligent component can be further classified in several categories 
according to the description of mapping relation. 

 
3.3.1. Component with Interpretable Mapping Relation 
When mapping relation between input and output of intelligent components can be 
interpreted by a mathematic formula or an algorithm described by procedure. The mapping 
relation is considered interpretable, and precise in the sense that the processing does not 
affect uncertainty and imprecision. In this type of intelligent components, the confidence of 
output remains the same as that of input. 
 
Example 3: A component performs some simple data processing, such as sorting. The 
output of component is the sorted result based on certain condition specified with 
knowledge source. In this case, the mapping relation between input and output can be 
determined by algorithm, and the corresponding output truth value remains the same as the 
input truth value. 
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From above discussion, we can see that using IVC and the corresponding operations defined 
for confidence calculation, partial conclusion with a relatively stronger confidence about 
true or false will not easily make the influence of other parts be totally ignored in inference. 

 
3.3.  Confidence Transfer and Interpretability 
The processing in intelligent component can be further classified in several categories 
according to the description of mapping relation. 

 
3.3.1. Component with Interpretable Mapping Relation 
When mapping relation between input and output of intelligent components can be 
interpreted by a mathematic formula or an algorithm described by procedure. The mapping 
relation is considered interpretable, and precise in the sense that the processing does not 
affect uncertainty and imprecision. In this type of intelligent components, the confidence of 
output remains the same as that of input. 
 
Example 3: A component performs some simple data processing, such as sorting. The 
output of component is the sorted result based on certain condition specified with 
knowledge source. In this case, the mapping relation between input and output can be 
determined by algorithm, and the corresponding output truth value remains the same as the 
input truth value. 
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If a component uses rule-based knowledge (fuzzy or precise) that can be approximately 
interpreted by AND, OR, and NOT relations, the mapping relation is also a kind of 
interpretable, but the truth of output may be affected by the knowledge-based processing. 
The corresponding truth value of output can be determined by the logic relations used in 
the rules. 

 
3.3.2. Component with Less Interpretable Mapping Relation 
When an IC uses less interpretable knowledge representation, e.g., neural networks, or case-
based reasoning, the mapping relationship realized by the IC may not be interpreted in 
composition of logic operations and therefore the input confidence of the IC cannot be 
simply transferred to its output side to obtain the output confidence through its internal 
inference structure (L. Ding and S.L. Lo, 2008). A further extension of the framework of truth 
value flow inference using IVC (L. Ding, 2008) is needed to cope with this problem. It is 
achieved by two steps: 
1) First carry out the internal inference of such an IC by assuming that the input is 

completely true (i.e. with full confidence); 
2) Combine the input confidence with the result confidence as one unified output 

confidence at the output side of an IC after its processing. 
We adopt the concept of truth base introduced with the exponential form of fuzzy logic (Z. 
Shen and L. Ding, 1994) for the interpretation of confidence transfer. 
 
A. Truth base and confidence representation 
The exponential form of fuzzy logic (EF) was proposed for confidence comparison and high 
order fuzziness simplification (Z. Shen and L. Ding, 1994). It provides a possible way for 
confidence transfer in intelligent components that use less interpretable representation of 
knowledge. An important concept introduced with EF is the truth base. For instance, saying 
“P is 0.8 true” may be understood in two ways: “P has complete truth (1) with 0.8 confidence”, 
or “P has 0.8 truth with full confidence (1)”. The difference is from the use of different truth 
bases: in the former, we put our truth base at 1, whereas in the latter, we put our truth base 
at 0.8. Obviously, it is reasonable to make these two ways of understanding be exchangeable 
from one to the other equivalently. 
Usually by default we take completely true as the basis of our discussion about confidence, 
e.g.: 1 in fuzzy valued logic, or true in fuzzy linguistic valued logic, but it is also useful to 
have a different truth base for the convenience of discussion and have confidences of 
different truth bases be convertible from one to other. 
The EF is originally defined with both truth-I and truth-II of fuzzy valued logic and fuzzy 
linguistic valued logic (Z. Shen and L. Ding, 1994). In KWS truth-I of fuzzy valued logic is 
adopted. 
 
Definition 11 (EF on fuzzy valued logic): Let t ∈ [0, 1] be a truth value in fuzzy valued logic, 
then t can be represented in its exponential form Bc when 
 

t = (B – U) × c + U, (22) 
 

 

where B ∈ [0, 1] is called the fuzzy truth base, c ∈ (-∞, ∞) is called confidence exponent, U is the 

unknown point for inference. In truth-I, we further specify U = 0, and B∈(0, 1]. 
It is important to be aware of that a super confidence c > 1 may cause a loss of information 
in inference (Z. Shen and L. Ding, 1994), so a truth base B ≥ t is usually recommended. 
When applying the EF originally defined with single truth value to IVC, we have the IVC 
format of unknown UIVC = (0, 0, 0), the IVC format of truth base BIVC = (B, B, B) with B ∈ (0, 1], 
and the IVC format of confidence exponent C = (ac, mc, bc). So the above (22) can be rewritten 
as: 
 

tIVC = (at, mt, bt) = (B × ac, B × mc, B × bc). (23) 
 
Definition 12 (Base changing in EF): The exponential form of a fuzzy truth t on truth base B1 
can be converted to that on truth base B2 by 
 

21
21
CC BBt  . (24) 

 
where B1, B2 ≠ 0, U is the unknown point of inference, B1, B2 ≠ U, and c1, c2, B1 and B2 satisfy 
the following relation: 
 

c2 = c1 × (B1 – U) ÷ (B2 – U). (25) 
 
Using the IVC format of truth base and unknown point, given two confidences C1 = (a1, m1, 
b1) under truth base B1 = (B1, B1, B1) and C2 = (a2, m2, b2) under B2 = (B2, B2, B2), the above (23) 
can be rewritten as: 
 

C2 = (a2, m2, b2) = (a1× B1 ÷ B2, m1× B1 ÷ B2, b1× B1 ÷ B2). (26) 
 
Definition 13 (Logical operations on EF): The AND, OR and NOT operations on EF are 
defined as: 
 

AND( 1CB , 2CB ,…, CnB ) = BAND(
1c ,

2c ,…,
nc ) (27) 

OR( 1CB , 2CB ,…, CnB ) = BOR(
1c , 2c ,…,

nc ) (28) 

NOT( CB ) = BNOT( c ) (29) 
 
where B is a given common truth base, and EF values originally with different truth bases are 
converted to the selected common truth base before carrying out logical operations. 
 
B. Confidence transfer with arbitrary intelligent component 
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm 
(Figure 14) without loss of generality, where K represents a knowledge-based mapping 
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk,      >, where the data 
dk is from other intelligent component IC-k, and associated with IVC Ck = (ak, mk, bk) under a 
selected truth base Bk. When a common truth base B is selected for all the inputs in1, in2, … , 

kC
kB
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where B is a given common truth base, and EF values originally with different truth bases are 
converted to the selected common truth base before carrying out logical operations. 
 
B. Confidence transfer with arbitrary intelligent component 
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm 
(Figure 14) without loss of generality, where K represents a knowledge-based mapping 
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk,      >, where the data 
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inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will 
be considered as a special case of having an empty IC when dk is directly from problem 
domain. The inference output of A is obtained through the following algorithm. 
In a hybrid KBS constructed by KWS, the default common truth base is set as T = (1, 1, 1), the 
strong true in IVC format. This also applies to intelligent components with interpretable rule-
based type of knowledge, and so the discussion of confidence transfer in (L. Ding, 2008) can 
be rebuilt using EF with the default common truth base. 
 

 

IC-1

IC-2

IC-m

<d1,C1>

<d2,C2>

<dm,Cm>

d1

d2

dm A <r,Cr*>
<r,C out>

Cin

d1,d2, ...,dm→ rK

 
Fig. 14. Confidence transfer in an IC of hybrid KBS 

 
3.3.3. Confidence Transfer in Hybrid KBS 
Compared with a typical fuzzy inference system (J.-S.R. Jang et al, 1997; R.R. Yager, 1994), a 
hybrid KBS constructed by KWS usually does not have a universal knowledge base but 
multiple knowledge sources associated in individual intelligent components. In this sense, 
each knowledge source has only a local affection to the corresponding intelligent component 
realizing a mapping relation between its input and output. Given two arbitrary intelligent 
components A and B, having the output of A linked to the input of B means its content is 
passed on for further knowledge-based processing in B, and at the same time its confidence 
is integrated in the calculation of the confidence of output of B. Therefore, an IC is needed to 
distinguish the uncertainty associated with external input or introduced by its internal 
inference result. We represent the former as input confidence, and the latter as result 

Algorithm-1 (Confidence transfer of IC uses less interpretable knowledge representation): 
1) The input <dk,        > (1 ≤ k ≤ m) is first converted to <dk,           >, where T is the strong true (1, 

1, 1) in IVC format, and Cin-k = (ain-k, min-k, bin-k) is the confidence exponent in IVC format, 
through base changing; 

2) The combined confidence of input is then calculated by 
Cin = (ain, min, bin) = [mink(ain-k),mink(min-k),mink(bin-k)];  

3) The data d1, …, dk, …, dm are then accepted as input values with perfect confidence for the 
inference in A; 

4) Assume that a data r is obtained as the content of inference result of A with the result 
confidence       , where Cr = (ar, mr, br). The        is converted to          through base changing, 
then the output confidence of A is calculated by 

Cout = ANDIVC (Cin, Cr*)                                 
based on the Definition 4, and <r,           > is the output of A 

kC
kB kinCT 

outCT

Cr
rB

*CrTCr
rB

 

confidence. When all the intelligent components in a hybrid KBS use rule-based knowledge 
(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations, 
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based 
network that embeds internal inference structure of individual IC into the knowledge 
hierarchy (L. Ding et al, 1996; L. Ding, 2008). 
 
Example 4: With the rapid development of Internet technologies, people are receiving more 
and more e-mails for commercial promotion purpose and often need spend time and effort 
for filtering and cleaning. We consider a simple hierarchical KBS for the filtering function 
based on the title of e-mail. There are three major parts of title related to promotion: action 
(of promotion), e.g., “offer”, “provide”, or “sale”; benefit (to user), e.g., “saving”, “earn”, or 
“win”; currency (or percentage, number), e.g., “$”, “%”, or “xx.xx”. 
The system consists of five intelligent components of type summarization, recognition, and 
decision (L. Ding, 2007b; L. Ding and S. Nadkarni, 2007) (Fig. 15). 

 
Fig. 15. An example of hierarchical inference with IVC flow 
 
Sum (S) - a summarization component that performs pre-processing to eliminate less 
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary. 
The cleaned-up version of email title will be passed up to three recognition components for 
further processing. 
Act (A) - a recognition component to recognize words that match the “action” category. The 
knowledge source defines the kind of words often used to positively describe promotion 
action, including the representative words and their major variants. 
Ben (B) - a recognition component to recognize words that match the “benefit” category. The 
knowledge source defines the kind of words often used to highlight the potential benefit to 
attract people’s attention, including the representative words as well as their major variants. 
Cur (C) - a recognition component to recognize characters of currency, percentage, or 
numbers. 
Dec (D) - a decision component to decide whether the text examined is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge may be 
fuzzy association rules obtained through possible knowledge discovery, such as: 
 

rule-d1: If A and B, Then P (0.8) 
rule-d2: If B or C, Then P (0.4) 

rule-d3: If A and C, Then P (0.6) 
 
When an e-mail is received with a title like: 
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inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will 
be considered as a special case of having an empty IC when dk is directly from problem 
domain. The inference output of A is obtained through the following algorithm. 
In a hybrid KBS constructed by KWS, the default common truth base is set as T = (1, 1, 1), the 
strong true in IVC format. This also applies to intelligent components with interpretable rule-
based type of knowledge, and so the discussion of confidence transfer in (L. Ding, 2008) can 
be rebuilt using EF with the default common truth base. 
 

 

IC-1

IC-2

IC-m

<d1,C1>

<d2,C2>

<dm,Cm>

d1

d2

dm A <r,Cr*>
<r,C out>

Cin

d1,d2, ...,dm→ rK

 
Fig. 14. Confidence transfer in an IC of hybrid KBS 

 
3.3.3. Confidence Transfer in Hybrid KBS 
Compared with a typical fuzzy inference system (J.-S.R. Jang et al, 1997; R.R. Yager, 1994), a 
hybrid KBS constructed by KWS usually does not have a universal knowledge base but 
multiple knowledge sources associated in individual intelligent components. In this sense, 
each knowledge source has only a local affection to the corresponding intelligent component 
realizing a mapping relation between its input and output. Given two arbitrary intelligent 
components A and B, having the output of A linked to the input of B means its content is 
passed on for further knowledge-based processing in B, and at the same time its confidence 
is integrated in the calculation of the confidence of output of B. Therefore, an IC is needed to 
distinguish the uncertainty associated with external input or introduced by its internal 
inference result. We represent the former as input confidence, and the latter as result 

Algorithm-1 (Confidence transfer of IC uses less interpretable knowledge representation): 
1) The input <dk,        > (1 ≤ k ≤ m) is first converted to <dk,           >, where T is the strong true (1, 

1, 1) in IVC format, and Cin-k = (ain-k, min-k, bin-k) is the confidence exponent in IVC format, 
through base changing; 

2) The combined confidence of input is then calculated by 
Cin = (ain, min, bin) = [mink(ain-k),mink(min-k),mink(bin-k)];  

3) The data d1, …, dk, …, dm are then accepted as input values with perfect confidence for the 
inference in A; 

4) Assume that a data r is obtained as the content of inference result of A with the result 
confidence       , where Cr = (ar, mr, br). The        is converted to          through base changing, 
then the output confidence of A is calculated by 

Cout = ANDIVC (Cin, Cr*)                                 
based on the Definition 4, and <r,           > is the output of A 
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confidence. When all the intelligent components in a hybrid KBS use rule-based knowledge 
(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations, 
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based 
network that embeds internal inference structure of individual IC into the knowledge 
hierarchy (L. Ding et al, 1996; L. Ding, 2008). 
 
Example 4: With the rapid development of Internet technologies, people are receiving more 
and more e-mails for commercial promotion purpose and often need spend time and effort 
for filtering and cleaning. We consider a simple hierarchical KBS for the filtering function 
based on the title of e-mail. There are three major parts of title related to promotion: action 
(of promotion), e.g., “offer”, “provide”, or “sale”; benefit (to user), e.g., “saving”, “earn”, or 
“win”; currency (or percentage, number), e.g., “$”, “%”, or “xx.xx”. 
The system consists of five intelligent components of type summarization, recognition, and 
decision (L. Ding, 2007b; L. Ding and S. Nadkarni, 2007) (Fig. 15). 

 
Fig. 15. An example of hierarchical inference with IVC flow 
 
Sum (S) - a summarization component that performs pre-processing to eliminate less 
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary. 
The cleaned-up version of email title will be passed up to three recognition components for 
further processing. 
Act (A) - a recognition component to recognize words that match the “action” category. The 
knowledge source defines the kind of words often used to positively describe promotion 
action, including the representative words and their major variants. 
Ben (B) - a recognition component to recognize words that match the “benefit” category. The 
knowledge source defines the kind of words often used to highlight the potential benefit to 
attract people’s attention, including the representative words as well as their major variants. 
Cur (C) - a recognition component to recognize characters of currency, percentage, or 
numbers. 
Dec (D) - a decision component to decide whether the text examined is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge may be 
fuzzy association rules obtained through possible knowledge discovery, such as: 
 

rule-d1: If A and B, Then P (0.8) 
rule-d2: If B or C, Then P (0.4) 

rule-d3: If A and C, Then P (0.6) 
 
When an e-mail is received with a title like: 
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“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 
(a) S filters out the less relevant words and obtained a cleaned-up version: 

“Offer Saving 99%” 
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1). 
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1). 
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as 

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as: 
If $or%-character or number then is-C. 

So we have overall confidence for C is 
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1). 

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is 
defined as and (confidence-of-premise, confidence-of-rule). We check each of the 
rules. 

d1: confidence-of-premise 
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1); 
confidence-of-conclusion 
= ANDIVC[ (0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8). 

d2: confidence-of-premise 
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1). 

d3: confidence-of-premise 
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1). 

(f) Now we aggregate the results of d1~d3 from (e): 
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)] 
= (0.6, 0.8, 1). 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied) or “very likely” as a linguistic interpretation. 
 

Example 5: We replace the component Dec (D) in Example 4 with the below: 
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge used is 
case-based reasoning technique. 
When an e-mail is received with a title like: 
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 

(a) ~  (d), the same as in Example 4; 
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section 

4.3.2, we have: 
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0, 

1, 1)>; 
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1, 

1) (0, 0.8, 1)>; 
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1, 

1)>. 
Step-2: The combined confidence of input is then calculated by 

 

Cin = (ain, min, bin)  
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1)) 
= (0, 0.8, 1) 

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input 
values with perfect confidence for the inference in D2 

Step-4: Assume that component D2 through case-based reasoning 
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have: 

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1) 
Then the output confidence of D2 is calculated by 
Cout = ANDIVC (Cin, Cr*)  
= (0, 0.8, 0.9) 

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to 
<“Promotion”, (0, 0.8, 0.9)>, it is the final result. 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied). 

 
4. KWS Inference Engine 
 

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms 
the static inference structure of target KBS. The execution on such a static inference structure 
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to 
control the execution of components in KBS by managing protocol between components, 
and sending necessary signals for the order of execution. A component in an inference 
structure constructed by KWS is a customized knowledge-based processing unit, and a field 
in the inference structure is a space that stores input data or intermediate result during 
inference. Fig. 16 gives an example of inference structure. 
 

 
Fig. 16. An example of inference structure 

 
4.1. Level of Component and Layer of Field 
Based on the position of each component in inference hierarchy, a topological sorting 
determines the execution order with which a child component should always be executed 
before its parent component. For the purpose of such topological sorting, we need to first 
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine 
the level of all the components in a given knowledge hierarchy, as well as the layer of each 
of the fields associated with the components. 
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“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 
(a) S filters out the less relevant words and obtained a cleaned-up version: 

“Offer Saving 99%” 
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1). 
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1). 
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as 

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as: 
If $or%-character or number then is-C. 

So we have overall confidence for C is 
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1). 

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is 
defined as and (confidence-of-premise, confidence-of-rule). We check each of the 
rules. 

d1: confidence-of-premise 
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1); 
confidence-of-conclusion 
= ANDIVC[ (0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8). 

d2: confidence-of-premise 
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1). 

d3: confidence-of-premise 
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1); 
confidence-of-conclusion 
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1). 

(f) Now we aggregate the results of d1~d3 from (e): 
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)] 
= (0.6, 0.8, 1). 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied) or “very likely” as a linguistic interpretation. 
 

Example 5: We replace the component Dec (D) in Example 4 with the below: 
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a 
promotion with the combined results from A, B, and C. The decision knowledge used is 
case-based reasoning technique. 
When an e-mail is received with a title like: 
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be: 

(a) ~  (d), the same as in Example 4; 
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section 

4.3.2, we have: 
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0, 

1, 1)>; 
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1, 

1) (0, 0.8, 1)>; 
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1, 

1)>. 
Step-2: The combined confidence of input is then calculated by 

 

Cin = (ain, min, bin)  
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1)) 
= (0, 0.8, 1) 

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input 
values with perfect confidence for the inference in D2 

Step-4: Assume that component D2 through case-based reasoning 
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have: 

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1) 
Then the output confidence of D2 is calculated by 
Cout = ANDIVC (Cin, Cr*)  
= (0, 0.8, 0.9) 

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to 
<“Promotion”, (0, 0.8, 0.9)>, it is the final result. 

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if 
defuzzification is applied). 

 
4. KWS Inference Engine 
 

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms 
the static inference structure of target KBS. The execution on such a static inference structure 
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to 
control the execution of components in KBS by managing protocol between components, 
and sending necessary signals for the order of execution. A component in an inference 
structure constructed by KWS is a customized knowledge-based processing unit, and a field 
in the inference structure is a space that stores input data or intermediate result during 
inference. Fig. 16 gives an example of inference structure. 
 

 
Fig. 16. An example of inference structure 

 
4.1. Level of Component and Layer of Field 
Based on the position of each component in inference hierarchy, a topological sorting 
determines the execution order with which a child component should always be executed 
before its parent component. For the purpose of such topological sorting, we need to first 
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine 
the level of all the components in a given knowledge hierarchy, as well as the layer of each 
of the fields associated with the components. 
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The level of components and the layer of fields in the example given in Figure 16 are shown 
in Table 3-a and Table 3-b, respectively.  
Except usual tree structure, in inference structure there are some special graph structures 
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For 
example, in Figure 16 component D and E are the parents of component C, component B of 
level-1 passes its result to component E of level-4. The order of execution is determined by a 
topological sorting according to level of components. The key issue here is the data 
consistency. 
 

Component Level 
A, B 1 

C 2 
D 3 
E 4 

 

Field Layer 
F1, F2 1 
F3, F4 2 

F5 3 
F6 4 
F7 5 

 

(a) The level of components (b) The layer of fields 
Table 3. The level of components and the layer of fields for Figure 16 

 
4.2. Protocol between Components 
The protocol between components is described from three aspects: syntax, semantics and 
data type. With the general classes of intelligent components defined, we have syntactical 
rules indicating the possible connections between different classes. For instance, a 
component of Confirmation class is allowed to send its output to the input of a component of 
Decision class, but not allowed to do the same to the input of a component of Filtering class. 
For each allowable connection between classes, we further set semantic rules with more 
details to specify legal connections. A Filtering component may connect to another Filtering 
component syntactically. However, there may be semantic constraints based on the detailed 
types of knowledge used in each Filtering component. For instance, a Dictionary component 
can be the support (child component) for a List component, but the reverse case does not 
hold true. 
At the component-to-component level, there are four kinds of protocol for the data type of 
implementation. 
1) single-to-single: a singleton data is connected to an input field of singleton. 
2) single-to-multiple: a singleton data is connected to an input field of vector. 
3) multiple-to-single: a vector data is connected to an input field of singleton. 
4) multiple-to-multiple: a vector data is connected to an input field of vector. 

 
 

Algorithm-2 (Determine level of component and layer of field): 
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is 

the layer of f; 
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where 

level(C) is the level of C; 
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer 

(fc2), ..., layer (fch)].

 

4.3. Forward Inference with Partial Feedback 
It is always desired to get a “better” solution when knowledge-based processing involved in 
an intelligent component can provide multiple candidates of solution for output. In order to 
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with 
partial feedback. When a component receives inputs, it executes and generates the result as 
output. As a typical scenario, a component generates inference result and passes the result 
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result 
when the previously submitted result is found unsatisfactory. The rerun mechanism 
provides a possible way to extend the forward inference mechanism in KBS. Final result will 
only be generated when the inference is successful.  
The inference in KBS constructed by KWS is basically a forward inference. As the simple 
case when there is no feedback considered, the inference flow starts from layer-1 receiving 
input data directly from application, goes up for the level-1 components to execute and 
provide result as layer-2, and then further goes up for the level-2 components to execute, …, 
finally has the last level components execute to provide result as the last layer, which 
represents the inference result. 
For a more general case when there is partial feedback introduced, if a component of level-k 
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a 
Rerun signal to the corresponding child component, and the current execution will be pulled 
back down to the level of the child component accordingly. When there are several 
components send Rerun signal to their child components, the current execution will be set as 
the level that is the lowest among the levels of components that received Rerun signal. 
Considering again the example given in Fig. 16, if component C sent a Rerun signal to 
component B, then the current execution will be pulled back to level-1 for B to execute its 
function again to generate next possible results. With a similar spirit, if component E sent a 
Rerun signal to component B, then the current execution will also be pulled back to level-1. 
It is important to notice that there are other two components C and D at a higher level than 
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen 
temporarily to ensure the data consistency. 

 
4.3.1 States of Component 
In order to indicate the execution status of a component, we introduce state of component. The 
transition between states is shown in Fig.  17 and the explanation is listed in Table 4. 
 

 
Fig. 17. The states of a component 
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The level of components and the layer of fields in the example given in Figure 16 are shown 
in Table 3-a and Table 3-b, respectively.  
Except usual tree structure, in inference structure there are some special graph structures 
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For 
example, in Figure 16 component D and E are the parents of component C, component B of 
level-1 passes its result to component E of level-4. The order of execution is determined by a 
topological sorting according to level of components. The key issue here is the data 
consistency. 
 

Component Level 
A, B 1 

C 2 
D 3 
E 4 

 

Field Layer 
F1, F2 1 
F3, F4 2 

F5 3 
F6 4 
F7 5 

 

(a) The level of components (b) The layer of fields 
Table 3. The level of components and the layer of fields for Figure 16 

 
4.2. Protocol between Components 
The protocol between components is described from three aspects: syntax, semantics and 
data type. With the general classes of intelligent components defined, we have syntactical 
rules indicating the possible connections between different classes. For instance, a 
component of Confirmation class is allowed to send its output to the input of a component of 
Decision class, but not allowed to do the same to the input of a component of Filtering class. 
For each allowable connection between classes, we further set semantic rules with more 
details to specify legal connections. A Filtering component may connect to another Filtering 
component syntactically. However, there may be semantic constraints based on the detailed 
types of knowledge used in each Filtering component. For instance, a Dictionary component 
can be the support (child component) for a List component, but the reverse case does not 
hold true. 
At the component-to-component level, there are four kinds of protocol for the data type of 
implementation. 
1) single-to-single: a singleton data is connected to an input field of singleton. 
2) single-to-multiple: a singleton data is connected to an input field of vector. 
3) multiple-to-single: a vector data is connected to an input field of singleton. 
4) multiple-to-multiple: a vector data is connected to an input field of vector. 

 
 

Algorithm-2 (Determine level of component and layer of field): 
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is 

the layer of f; 
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where 

level(C) is the level of C; 
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer 

(fc2), ..., layer (fch)].

 

4.3. Forward Inference with Partial Feedback 
It is always desired to get a “better” solution when knowledge-based processing involved in 
an intelligent component can provide multiple candidates of solution for output. In order to 
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with 
partial feedback. When a component receives inputs, it executes and generates the result as 
output. As a typical scenario, a component generates inference result and passes the result 
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result 
when the previously submitted result is found unsatisfactory. The rerun mechanism 
provides a possible way to extend the forward inference mechanism in KBS. Final result will 
only be generated when the inference is successful.  
The inference in KBS constructed by KWS is basically a forward inference. As the simple 
case when there is no feedback considered, the inference flow starts from layer-1 receiving 
input data directly from application, goes up for the level-1 components to execute and 
provide result as layer-2, and then further goes up for the level-2 components to execute, …, 
finally has the last level components execute to provide result as the last layer, which 
represents the inference result. 
For a more general case when there is partial feedback introduced, if a component of level-k 
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a 
Rerun signal to the corresponding child component, and the current execution will be pulled 
back down to the level of the child component accordingly. When there are several 
components send Rerun signal to their child components, the current execution will be set as 
the level that is the lowest among the levels of components that received Rerun signal. 
Considering again the example given in Fig. 16, if component C sent a Rerun signal to 
component B, then the current execution will be pulled back to level-1 for B to execute its 
function again to generate next possible results. With a similar spirit, if component E sent a 
Rerun signal to component B, then the current execution will also be pulled back to level-1. 
It is important to notice that there are other two components C and D at a higher level than 
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen 
temporarily to ensure the data consistency. 

 
4.3.1 States of Component 
In order to indicate the execution status of a component, we introduce state of component. The 
transition between states is shown in Fig.  17 and the explanation is listed in Table 4. 
 

 
Fig. 17. The states of a component 
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State Explanation 
Run The component will execute its function, if successful; the results will be sent to its 

parent, if unsuccessful, the component will send a rerun signal to its child components. 
Rerun The component will execute its rerun function, trying to generate next possible results. If 

successful, the results will be sent to its parent, if unsuccessful, the component will send 
a rerun signal to its child components. 

Finish The run or rerun of component is successful. 
Table 4. The explanation of component states 
 
The state of an output field as same as the corresponding component which sends result to 
the field, the explanation of field states is listed in Table 5. 
 

State Explanation 
Run Representing a field “waiting for obtaining result”. 

Rerun Representing an output field “waiting for obtaining new result of rerun”. 
Finish Representing a field “finished obtaining result”. 

Table 5. The explanation of field states 
 
Example 6: Consider a scenario of execution on the inference structure given in Fig. .  

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from 
layer-1, and component A and B executed and provided result as layer-2, finally, component 
A and B updated their state to be “Finish”, and the current execution is updated to be at 
level-2. 

 
Time-2: The current execution is at level-2. Assume that the result from component B is 

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B 
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is 
pulled back down to level-1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R – Run; RR – Rerun; F – Finish 
Table 7. An example of inference flow 

 
Time-3: Component B executed and provided next possible results as layer-2. 

 
Time 

Level Component 
A B C D E 

1 1 R R R R R 
2 2 F F R R R 
2 Assume that, C sent rerun signal to B 
3 1 F RR R R R 
3 Assume that, B generate next possible result 
4 2 F F R R R 
5 3 F F F R R 
6 4  F F F F R 
6 Assume that, E sent rerun signal to B, C, D 
7 1 F RR RR RR R 
7 Assume that, B generate next possible result 
8 2 F F R RR R 
9 3 F F F R R 
10 4  F F F F R 
11 5 F F F F F 
11 The final result is in F7 

 

Time-4, Time-5: Continued the inference in the same manner. 
Time-6, Time-7: The situation is similar as Time-3. 
Time-8, Time-9, Time-10, Time-11: Continued the inference. 
Finally, the final result is in F7 at layer-5. 
Table 7  lists out the state change of components.  

 
4.3.2 Feedback Handling 
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The 
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based 
processing. When the inference engine calling execution(Cr), it passes the control to the 
component Cr and waits for the return of execution result. When a feedback of reasoning is 
considered, necessary interruption should be introduced to adjust the execution sequence. 
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to 
monitor feedback handling. 
Considering an inference carried out in a KBS constructed by KWS, when an intelligent 
component failed to work out a solution as its output with its local knowledge source, an 
effort is expected to “bring back” the process to those field(s) or component(s) that provided 
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge 
hierarchy. This is achieved by the Rerun control of the KWS inference engine. 
A component under Rerun state means it is not successful in the previous run of inference 
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by 
asking new input from child component(s), according to the type of protocol between an 
input field of component Cr currently under Rerun and the output field of its corresponding 
child component Cc. The main algorithm is given in Algorithm-3 with further 
implementation details omitted. 

Algorithm-3 (Control of execution, with k ≥ 2 components): 
1)    Get input data for all the layer-1 fields, and 

set them as of Finish; 
Set all other components and fields as of Run; 

2)    While (not all the components are of Finish) 
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun 

Then set currentFrozen : = minjlevel(Cj) 
Else 

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)]; 
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list 

following nondecreasing order of level: 
2-2-1) If Cr is of Run and  

level(Cr) < currentFrozen and 
all of its input field(s) are of Finish 

Then If execution (Cr) /* successful */ 
Then set Cr and its output field as of Finish; 
Else set Cr and its output field as of Rerun; 

2-2-2) Else If Cr is of Rerun and  
level(Cr) ≤ currentFrozen and 
all of its input field(s) are of Finish 

Then call PartialRerun(Cr). 
/* else next component */ 

/* end of while */ 
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State Explanation 
Run The component will execute its function, if successful; the results will be sent to its 

parent, if unsuccessful, the component will send a rerun signal to its child components. 
Rerun The component will execute its rerun function, trying to generate next possible results. If 

successful, the results will be sent to its parent, if unsuccessful, the component will send 
a rerun signal to its child components. 

Finish The run or rerun of component is successful. 
Table 4. The explanation of component states 
 
The state of an output field as same as the corresponding component which sends result to 
the field, the explanation of field states is listed in Table 5. 
 

State Explanation 
Run Representing a field “waiting for obtaining result”. 

Rerun Representing an output field “waiting for obtaining new result of rerun”. 
Finish Representing a field “finished obtaining result”. 

Table 5. The explanation of field states 
 
Example 6: Consider a scenario of execution on the inference structure given in Fig. .  

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from 
layer-1, and component A and B executed and provided result as layer-2, finally, component 
A and B updated their state to be “Finish”, and the current execution is updated to be at 
level-2. 

 
Time-2: The current execution is at level-2. Assume that the result from component B is 

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B 
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is 
pulled back down to level-1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

R – Run; RR – Rerun; F – Finish 
Table 7. An example of inference flow 

 
Time-3: Component B executed and provided next possible results as layer-2. 

 
Time 

Level Component 
A B C D E 

1 1 R R R R R 
2 2 F F R R R 
2 Assume that, C sent rerun signal to B 
3 1 F RR R R R 
3 Assume that, B generate next possible result 
4 2 F F R R R 
5 3 F F F R R 
6 4  F F F F R 
6 Assume that, E sent rerun signal to B, C, D 
7 1 F RR RR RR R 
7 Assume that, B generate next possible result 
8 2 F F R RR R 
9 3 F F F R R 
10 4  F F F F R 
11 5 F F F F F 
11 The final result is in F7 

 

Time-4, Time-5: Continued the inference in the same manner. 
Time-6, Time-7: The situation is similar as Time-3. 
Time-8, Time-9, Time-10, Time-11: Continued the inference. 
Finally, the final result is in F7 at layer-5. 
Table 7  lists out the state change of components.  

 
4.3.2 Feedback Handling 
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The 
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based 
processing. When the inference engine calling execution(Cr), it passes the control to the 
component Cr and waits for the return of execution result. When a feedback of reasoning is 
considered, necessary interruption should be introduced to adjust the execution sequence. 
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to 
monitor feedback handling. 
Considering an inference carried out in a KBS constructed by KWS, when an intelligent 
component failed to work out a solution as its output with its local knowledge source, an 
effort is expected to “bring back” the process to those field(s) or component(s) that provided 
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge 
hierarchy. This is achieved by the Rerun control of the KWS inference engine. 
A component under Rerun state means it is not successful in the previous run of inference 
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by 
asking new input from child component(s), according to the type of protocol between an 
input field of component Cr currently under Rerun and the output field of its corresponding 
child component Cc. The main algorithm is given in Algorithm-3 with further 
implementation details omitted. 

Algorithm-3 (Control of execution, with k ≥ 2 components): 
1)    Get input data for all the layer-1 fields, and 

set them as of Finish; 
Set all other components and fields as of Run; 

2)    While (not all the components are of Finish) 
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun 

Then set currentFrozen : = minjlevel(Cj) 
Else 

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)]; 
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list 

following nondecreasing order of level: 
2-2-1) If Cr is of Run and  

level(Cr) < currentFrozen and 
all of its input field(s) are of Finish 

Then If execution (Cr) /* successful */ 
Then set Cr and its output field as of Finish; 
Else set Cr and its output field as of Rerun; 

2-2-2) Else If Cr is of Rerun and  
level(Cr) ≤ currentFrozen and 
all of its input field(s) are of Finish 

Then call PartialRerun(Cr). 
/* else next component */ 

/* end of while */ 
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When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible 
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the 
component to provide next new result (if any) with the same previous input data. The KWS 
inference engine tries to get new input data for the component Cr currently under Rerun, 
through either getNext() or reExecution(). When the effort of getting new input data from its 
child component Cc is successful either through getNext() or reExecution(), all the ancestor 
component(s) of Cc as well as their output fields will be updated to Run state by calling 
setRunAncestor() to clean up the result of previous run. As long as one of the child 
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it 
will remain as of Rerun and all its child components as well as their output fields will be set 
as of Rerun. 
In case that a single child component is supporting multiple parent components, a data 
inconsistency should be avoided when partial feedback and rerun are considered. This 
consistency is guaranteed by indicating the current frozen area. A component Cc being 
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’ 
execution to other related components. A ‘frozen’ execution affects two groups of 
components: (a) all components of Run state at a level equal to or higher than currentFrozen; 
(b) all components of Rerun state at a level higher than currentFrozen. 
 

 

Algorithm-4 (Partial Rerun from Cr): 
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 

If it is the output field of some child component Cc 
Then Check the protocol connection from Cc to Cr: 

Case: multiple-to-single 
If getNext(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

Else If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 
/* end of case multiple-to-single */ 

Case: single-to-single: 
Case: single-to-multiple: 
Case: multiple-to-multiple: 

If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

/* check next input field of Cr */ 
/* end of 1st for */ 

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 
If it is a direct input from application 
Then stop processing and report failure 
Else /* it is the output field of some child component Cc */ 

set Cc and its output field as of Rerun; 
/* end of 2nd for */ 

 

5. Conclusions 
 
We have introduced the KWS as a framework of development tool for developers to model 
and develop their customized KBS, provided the processing flow of KWS in constructing a 
KBS, and discussed the major sub-systems of KWS, including KWS inference engine, 
intelligent editor, KDL processor, and installer. 
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at 
two levels simultaneously: the content level of inference that relies only on the knowledge 
sources stored “locally” in individual intelligent components, and the truth (confidence) 
level of inference that contributes to the confidence flow throughout the entire KBS. We 
have discussed the mechanism of TVFI as well as its implementation. The interval-valued 
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in 
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy 
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties 
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types 
of intelligent component and corresponding interpretability has also been discussed. KWS 
inference engine has been explained in detail with the control algorithms of execution order 
of components for a forward inference with partial feedback, the management of protocols, 
and the handling of imprecision with TVFI and IVC.  
Further effort will be put in handling knowledge imprecision with different types of 
intelligent processing and their integration in hybrid intelligent systems. 
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When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible 
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the 
component to provide next new result (if any) with the same previous input data. The KWS 
inference engine tries to get new input data for the component Cr currently under Rerun, 
through either getNext() or reExecution(). When the effort of getting new input data from its 
child component Cc is successful either through getNext() or reExecution(), all the ancestor 
component(s) of Cc as well as their output fields will be updated to Run state by calling 
setRunAncestor() to clean up the result of previous run. As long as one of the child 
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it 
will remain as of Rerun and all its child components as well as their output fields will be set 
as of Rerun. 
In case that a single child component is supporting multiple parent components, a data 
inconsistency should be avoided when partial feedback and rerun are considered. This 
consistency is guaranteed by indicating the current frozen area. A component Cc being 
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’ 
execution to other related components. A ‘frozen’ execution affects two groups of 
components: (a) all components of Run state at a level equal to or higher than currentFrozen; 
(b) all components of Rerun state at a level higher than currentFrozen. 
 

 

Algorithm-4 (Partial Rerun from Cr): 
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 

If it is the output field of some child component Cc 
Then Check the protocol connection from Cc to Cr: 

Case: multiple-to-single 
If getNext(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 

Else If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 

setRunAncestor(Cc); 
Return; 
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Case: single-to-single: 
Case: single-to-multiple: 
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If reExecution(Cc) /* successful */ 
Then set Cc and its output field as of Finish; 
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Return; 

/* check next input field of Cr */ 
/* end of 1st for */ 

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh, 
If it is a direct input from application 
Then stop processing and report failure 
Else /* it is the output field of some child component Cc */ 

set Cc and its output field as of Rerun; 
/* end of 2nd for */ 

 

5. Conclusions 
 
We have introduced the KWS as a framework of development tool for developers to model 
and develop their customized KBS, provided the processing flow of KWS in constructing a 
KBS, and discussed the major sub-systems of KWS, including KWS inference engine, 
intelligent editor, KDL processor, and installer. 
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at 
two levels simultaneously: the content level of inference that relies only on the knowledge 
sources stored “locally” in individual intelligent components, and the truth (confidence) 
level of inference that contributes to the confidence flow throughout the entire KBS. We 
have discussed the mechanism of TVFI as well as its implementation. The interval-valued 
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in 
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy 
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties 
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types 
of intelligent component and corresponding interpretability has also been discussed. KWS 
inference engine has been explained in detail with the control algorithms of execution order 
of components for a forward inference with partial feedback, the management of protocols, 
and the handling of imprecision with TVFI and IVC.  
Further effort will be put in handling knowledge imprecision with different types of 
intelligent processing and their integration in hybrid intelligent systems. 
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