
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322390286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatic Construction of Knowledge-Based System using Knowware System 189

Automatic Construction of Knowledge-Based System using Knowware
System

Sio-Long Lo and Liya Ding

x

Automatic Construction of Knowledge-Based
System using Knowware System

Sio-Long Lo and Liya Ding

Macau University of Science and Technology
Macau SAR

China

1. Introduction

Knowledge-based system (KBS) is a problem solving approach that makes use of human
knowledge in possible ways. Usually, the knowledge used in KBS may be obtained directly
from domain expert or through some kind of machine learning based on available data. The
quality of knowledge used has an important impact on the performance of KBS. The success
of development and application of an intelligent system requires the availability of two
groups of people: AI experts who hold the techniques and tools for problem solving, and
domain experts who know well the problem to be solved and hold domain knowledge
leading to a necessity of the development of intelligent system. However, in reality, it is
often a challenge to get the both groups working together to derive the inherent synergies.
Knowware System (KWS) is a framework proposed as development tool for design and
development of KBS. KWS offers classes of knowledge-based processing unit to support
developer in modelling their KBS, and generates the target KBS based on the definition from
developer. A typical KBS generated by KWS is a hybrid intelligent system that contains a
knowledge hierarchy and an inference engine. The knowledge hierarchy consisting of
multiple components forms a static inference structure in KBS while the inference engine
controls the dynamic inference flow through managing execution of components.
The inference in a hybrid KBS constructed by KWS is a truth value flow inference, with
knowledge-based processing handled locally in each individual components and a truth
value flow throughout the entire KBS. As a uniformed format, interval-valued confidence
defined as fuzzy number has been proposed to represent the imprecision and uncertainty
during inference. The KWS inference engine realizes control of inference through three
aspects: the management of protocol between components, the control of execution order of
components, and the confidence transfer.

2. Knowware System

The Knowware System (KWS) has been proposed for the development of knowledge-based
systems. It can accept from user knowledge sources represented in varied formats and select
appropriate intelligent techniques to construct desired knowledge-based processing units of

11

www.intechopen.com

Machine Learning190

hybrid KBS, therefore allow the KBS developer more easily and conveniently model and
develop a customized intelligent system.

2.1. Hierarchical Modeling of KBS
In a typical application, the mapping relation between inputs and output of the problem
may be complex, and description of such a mapping relation using a global knowledge can
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to
multiple units, with each of the units described by a corresponding local knowledge base,
and the type of knowledge and the inference mechanism in each of the units varied upon
the specific problem solving and the availability of knowledge. Following this sprit,
hierarchical problem representation represents a domain problem with a hierarchy and uses
multiple AI techniques for problem solving.

2.2. Construction of KBS using KWS
The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L.
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not
only allows developers to easily design their system, but also realizes an automatic
construction of the target KBS based on the developers’ design.
As a typical development process, KWS receives the description of KBS from developer and
then automatically constructs the target KBS. Therefore a Knowledge Description Language
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details
of implementation.

Fig. 1. Structure of KBS constructed by KWS

2.2.1. Sub-Systems of KWS for KBS Construction
There are three subsystems of KWS supporting the automatic construction of customized
KBS.
Intelligent Editor – It provides a friendly GUI for the developer to design a KBS. Developers
use the graphic description to describe their KBS. Editor also does error checking for the

process of developing KBS. Once design is confirmed, Editor will construct the internal
inference structure of target KBS based on the graphic description, and generate the
corresponding KDL text.
KDL Processor – It receives the KDL description of a target KBS, and compiles it to a
corresponding knowledge hierarchy as the internal inference structure, using suitable
intelligent components stored in the warehouse with possible customization. The KDL text
can be either from the interactive editor or user’s input. In the latter case, it also checks the
syntax of KDL text inputted.
Installer – It saves the internal knowledge hierarchy in a suitable data format when a user’s
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy
with the KWS inference engine as well as the installer itself to a stand-alone target
application. The embedded installer will be responsible to reload the saved KBS upon user’s
calling of the application.

2.2.2. Work Flow of KWS
In order to develop a desired intelligent system, the developer can choose any of the
knowware that fits into his/her need, via two possible ways. One is to define his/her target
system in KDL text and then call the KDL processor for compilation to generate the internal
inference structure. The other alternative is to use the intelligent editor to design the target
system step-by-step and get the target knowledge hierarchy constructed after confirmation.
In the latter case, the editor also generates a corresponding KDL text so the developer can
make modification conveniently later on. For a KBS successfully constructed, the installer
will save the internal inference structure to a suitable format and reconstruct it later upon
request. Figure 2 shows the work flow of KWS.

Devloper

Intelligent
Editor

KDL Processor

Inference
Engine

Installer
Components

Knowware System

Target KBS

End-User

Knowledge
sources

Target KBS

Installer

Target KBS

Installer
Inference
Engine

ComponentsKnowledge
sources

Fig. 2. Work flow of KWS

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 191

hybrid KBS, therefore allow the KBS developer more easily and conveniently model and
develop a customized intelligent system.

2.1. Hierarchical Modeling of KBS
In a typical application, the mapping relation between inputs and output of the problem
may be complex, and description of such a mapping relation using a global knowledge can
be difficult and incapacity. A possible strategy is to divide the complex mapping relation to
multiple units, with each of the units described by a corresponding local knowledge base,
and the type of knowledge and the inference mechanism in each of the units varied upon
the specific problem solving and the availability of knowledge. Following this sprit,
hierarchical problem representation represents a domain problem with a hierarchy and uses
multiple AI techniques for problem solving.

2.2. Construction of KBS using KWS
The hierarchical representation for KBS was introduced by (L. Ding and H.C. Lui, 1999; L.
Ding, 2007a). The key idea of hierarchical representation for KBS is hybrid KBS, which
consists of multiple sub-KBS constructed in a hierarchical structure (Figure 1). The KWS not
only allows developers to easily design their system, but also realizes an automatic
construction of the target KBS based on the developers’ design.
As a typical development process, KWS receives the description of KBS from developer and
then automatically constructs the target KBS. Therefore a Knowledge Description Language
(KDL for short) is essential, which will be introduced in Section 2.2.3. Developers can use
the KDL text to describe their system, and the text is a kind of input to KWS with a KBS
constructed by KWS as the corresponding output. The KBS constructed by KWS is a stand-
alone application, so the end-user can use the KBS easily without the care about the details
of implementation.

Fig. 1. Structure of KBS constructed by KWS

2.2.1. Sub-Systems of KWS for KBS Construction
There are three subsystems of KWS supporting the automatic construction of customized
KBS.
Intelligent Editor – It provides a friendly GUI for the developer to design a KBS. Developers
use the graphic description to describe their KBS. Editor also does error checking for the

process of developing KBS. Once design is confirmed, Editor will construct the internal
inference structure of target KBS based on the graphic description, and generate the
corresponding KDL text.
KDL Processor – It receives the KDL description of a target KBS, and compiles it to a
corresponding knowledge hierarchy as the internal inference structure, using suitable
intelligent components stored in the warehouse with possible customization. The KDL text
can be either from the interactive editor or user’s input. In the latter case, it also checks the
syntax of KDL text inputted.
Installer – It saves the internal knowledge hierarchy in a suitable data format when a user’s
definition of target KBS is confirmed. At the last stage, it packs the knowledge hierarchy
with the KWS inference engine as well as the installer itself to a stand-alone target
application. The embedded installer will be responsible to reload the saved KBS upon user’s
calling of the application.

2.2.2. Work Flow of KWS
In order to develop a desired intelligent system, the developer can choose any of the
knowware that fits into his/her need, via two possible ways. One is to define his/her target
system in KDL text and then call the KDL processor for compilation to generate the internal
inference structure. The other alternative is to use the intelligent editor to design the target
system step-by-step and get the target knowledge hierarchy constructed after confirmation.
In the latter case, the editor also generates a corresponding KDL text so the developer can
make modification conveniently later on. For a KBS successfully constructed, the installer
will save the internal inference structure to a suitable format and reconstruct it later upon
request. Figure 2 shows the work flow of KWS.

Devloper

Intelligent
Editor

KDL Processor

Inference
Engine

Installer
Components

Knowware System

Target KBS

End-User

Knowledge
sources

Target KBS

Installer

Target KBS

Installer
Inference
Engine

ComponentsKnowledge
sources

Fig. 2. Work flow of KWS

www.intechopen.com

Machine Learning192

2.2.3. Knowledge Description Language
The Knowledge Description Language makes it possible for developers to describe their
target KBS in a text format. The knowledge-based processing units offered by KWS will be
used as building blocks to make up the KBS. The input/output of each intelligent
component (IC) called field must be specified, this information indicates the linking between
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts:
1) declaration of fields, each including name and data type; 2) declaration of intelligent
components, each including name, component class and type, knowledge source, fields of
input(s) and output linked with. The details of intelligent component and field will be
presented in Sections 2.3. An example of KDL text is shown in Figure 3.

Support-Field-Name = (Field1) , Support-Field-Data { Char (2) }
Result-Field-Name = (Field2) , Result-Field-Data { Char (2) }
InCom-Name = (Filter-01) , InCom-Body {
 Filter Dictionary
 NoCondition
 Standard { Program = (Standard Dictionary) ,

Knowledge-Source = (Filter01_Knowledge) }
 Input = (Field = (Field1)) , Output = (Field = (Field2))
}

Fig. 3. An example of KDL

2.2.4. Generation of Target KBS
The last process of developing KBS using KWS is the generation of target KBS. The
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with
hierarchy record, corresponding components, knowledge sources, inference engine, and
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing
and reloading of KBS is done by the Installer which also provides a GUI to the end-user
based on the input/output of target KBS.

Fig. 4. Packing the KBS using Installer

Upon call to the target KBS received the installer will be started first to reload the KBS with
all the necessary components, knowledge sources, and inference engine.

Fig. 5. Reloading the KBS using Installer

2.3. Components and Fields
The KWS warehouse stores pre-defined knowledge-based processing units that are the basic
building blocks of KBS. Intelligent components are further classified by the nature of
processing, in terms of the corresponding input and output. A KWS offers a set of k classes
of intelligent components defined as

COM = {com1, …, comk},
and

comi = < cli ti, si, ci >,

where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there
is a mapping function fCL:

fCL: ICL K OCL

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K
represents the corresponding knowledge-based processing. The features and properties of
intelligent components under different classes are determined by their mapping function fCL.
It is an important feature of the KWS that an intelligent component under certain class
always follows the same syntax for the interface with other intelligent components no
matter which specific intelligent approach is adopted for the knowledge-based processing
inside it. At the same time, intelligent components under the same class may behave
differently when different approaches of knowledge-based processing are applied in
problem solving. For instances, a decision-making may be done by applying traditional
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural
networks; a knowledge discovery may be achieved by data mining applying different
approaches; a prediction may be made by statistical methods or by using neural networks.
When an intelligent component is defined as ‘conditional component’, it chooses suitable
knowledge source to be applied among the alternatives provided according to run-time
conditions detected. We have designed ten classes of intelligent components under two
different categories: processing components and learning components, with each category
including several classes based on the nature of function.

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 193

2.2.3. Knowledge Description Language
The Knowledge Description Language makes it possible for developers to describe their
target KBS in a text format. The knowledge-based processing units offered by KWS will be
used as building blocks to make up the KBS. The input/output of each intelligent
component (IC) called field must be specified, this information indicates the linking between
ICs and a pipeline for data connection with ICs. A KDL text consists of the following parts:
1) declaration of fields, each including name and data type; 2) declaration of intelligent
components, each including name, component class and type, knowledge source, fields of
input(s) and output linked with. The details of intelligent component and field will be
presented in Sections 2.3. An example of KDL text is shown in Figure 3.

Support-Field-Name = (Field1) , Support-Field-Data { Char (2) }
Result-Field-Name = (Field2) , Result-Field-Data { Char (2) }
InCom-Name = (Filter-01) , InCom-Body {
 Filter Dictionary
 NoCondition
 Standard { Program = (Standard Dictionary) ,

Knowledge-Source = (Filter01_Knowledge) }
 Input = (Field = (Field1)) , Output = (Field = (Field2))
}

Fig. 3. An example of KDL

2.2.4. Generation of Target KBS
The last process of developing KBS using KWS is the generation of target KBS. The
knowledge hierarchy will be recorded in a data-file. By packing the target KBS with
hierarchy record, corresponding components, knowledge sources, inference engine, and
installer, the KBS for the end-user is obtained as a stand-alone system. The task for packing
and reloading of KBS is done by the Installer which also provides a GUI to the end-user
based on the input/output of target KBS.

Fig. 4. Packing the KBS using Installer

Upon call to the target KBS received the installer will be started first to reload the KBS with
all the necessary components, knowledge sources, and inference engine.

Fig. 5. Reloading the KBS using Installer

2.3. Components and Fields
The KWS warehouse stores pre-defined knowledge-based processing units that are the basic
building blocks of KBS. Intelligent components are further classified by the nature of
processing, in terms of the corresponding input and output. A KWS offers a set of k classes
of intelligent components defined as

COM = {com1, …, comk},
and

comi = < cli ti, si, ci >,

where i = 1, …, k, cli ∈ CL = {cl1, …, clk}, the set of class names of intelligent components; ti ∈

Tcli, the type set under the class cli; si ∈ Scli, the source and strategy set under the class cli; and ci

∈ Ccli, the connection set under the class cli. At an abstract level, for any class cl defined, there
is a mapping function fCL:

fCL: ICL K OCL

where, ICL is the input of the intelligent component of class cl, OCL is the output, and K
represents the corresponding knowledge-based processing. The features and properties of
intelligent components under different classes are determined by their mapping function fCL.
It is an important feature of the KWS that an intelligent component under certain class
always follows the same syntax for the interface with other intelligent components no
matter which specific intelligent approach is adopted for the knowledge-based processing
inside it. At the same time, intelligent components under the same class may behave
differently when different approaches of knowledge-based processing are applied in
problem solving. For instances, a decision-making may be done by applying traditional
rule-based approach, or soft computing approaches, such as fuzzy logic inference, or neural
networks; a knowledge discovery may be achieved by data mining applying different
approaches; a prediction may be made by statistical methods or by using neural networks.
When an intelligent component is defined as ‘conditional component’, it chooses suitable
knowledge source to be applied among the alternatives provided according to run-time
conditions detected. We have designed ten classes of intelligent components under two
different categories: processing components and learning components, with each category
including several classes based on the nature of function.

www.intechopen.com

Machine Learning194

KWS also provides a possibility for the developers to include their own mathematical
formulas or algorithms as user-defined procedures and make them intelligent components.
Once such a procedure is defined, it becomes a special knowledge-based processing unit for
possible use in other intelligent components in the same KBS under development.
Each of the input(s) and output of component is linked with a Field; fields are the basic data
units indicated for input and output of processing intelligent components. They provide a
pipeline for the data flow between components. An intelligent component can have multiple
inputs, but only one output.
There are seven classes of processing component and three classes of learning component
supported by KWS, as listed in Table 1.

Processing Component
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad”
members.

Filtering
K

FilteringFiltering OIf :

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering 
OFiltering;

2. The input and output share the same type of data structure;
3. The length of output should not be longer than that of input;

Recognition class applies its knowledge to “read out” the meaning of a single input pattern.
Lpf K

cognition :Re

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each
of li(1 ≤ i ≤ k) may be associated with a confidence value;

2. The input and output usually have different types of data structure;
3. The processing establishes one-to-one relation between an input pattern and an output label.

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly
summarized meaning.

Ppf K
ionSummarizat :

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value;

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or
explanation;

3. The degree or the level of abstraction of the output is determined by the knowledge applied and
the inference mechanism adopted.

Confirmation checks the input, and gives “Yes/No” to each of the candidates.
YNDf K

conConfirmati :

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii
(1 ≤ i ≤ k) {Yes, No};

2. It can be used as a conditional checker to support other intelligent components;
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided.

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic
terms or values, such as high, expensive, going-up, or so.

JPDf K
JPJudgement :

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined
linguistic terms;

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply
represented as Yes/No;

3. Changing the LT may change the behaviour of intelligent component.
Projection projects an input data set with k features to an output data set with j ≤ k features.

j
K

kojection DDf :Pr

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >} is an n-entry data set with j (j ≤ k) features, and
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk
under the projection defined;

2. The process does not remove any data entry, but “remove” some of its features;
3. After projection, the data set will remain the entries but each of them appears in a space of

probably lower dimension.
Decision checks the input as a situation and recommends a possible decision.

ADsf K
Decision :

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision
with possible confidence value associated;

2. This class of intelligent components is usually used at a late or final stage of intelligent systems,
but not at the beginning;

3. For a complicated problem, multiple techniques and approaches may be required to form the
inference strategy used in the component.

Learning Component
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for
input and gives output as the knowledge discovered.

D
K

DeryDis KDf :cov

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected
form, such as rules, relations, or other types;

2. Its output result can be applied as knowledge source to support other intelligent components;
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing.

Training can train some rule on it based on the user input’s data.
Post-Processing support Learning Component for post-processing.

Table 1. Intelligent component

2.4. KWS Inference Engine
The inference structure of a KBS constructed by KWS is represented as a knowledge
hierarchy with multiple intelligent components connected. The task of construction can be
done either by the intelligent editor or the KDL processor.
The knowledge hierarchy forms a static inference structure of the target KBS. A single
intelligent component realizes the mapping from its input to its output with the support of
its local knowledge base. The entire mapping of the KBS is achieved through the integration
of intelligent components. There is no direct mapping relation from the input to the output
of the KBS, but each intelligent component contributes to part of the mapping.
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in
individual intelligent components, and also to connect the inference of individual
components to the inference flow of the entire KBS.
One of the main challenges facing KWS for the construction of intelligent system is the
complexity associated to inference mechanism having multi-level, and multi-modal
knowledge integration. Each single intelligent component is actually a smaller KBS for a
sub-problem of the target application, and its input and output can be directly linked to
problem domain or the result from different stages of processing. How to assemble
intelligent components to get a meaningful and unified data/information flow in the entire
intelligent system constitutes a key task. Inference engine is necessary to control the
execution which is realized through three aspects: 1) The management of protocol between

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 195

KWS also provides a possibility for the developers to include their own mathematical
formulas or algorithms as user-defined procedures and make them intelligent components.
Once such a procedure is defined, it becomes a special knowledge-based processing unit for
possible use in other intelligent components in the same KBS under development.
Each of the input(s) and output of component is linked with a Field; fields are the basic data
units indicated for input and output of processing intelligent components. They provide a
pipeline for the data flow between components. An intelligent component can have multiple
inputs, but only one output.
There are seven classes of processing component and three classes of learning component
supported by KWS, as listed in Table 1.

Processing Component
Filter class applies its knowledge to check the input candidate list and filter out those “illegal” or “bad”
members.

Filtering
K

FilteringFiltering OIf :

1. Where IFiltering and OFiltering are the input date set and output data set respectively, and IFiltering 
OFiltering;

2. The input and output share the same type of data structure;
3. The length of output should not be longer than that of input;

Recognition class applies its knowledge to “read out” the meaning of a single input pattern.
Lpf K

cognition :Re

1. Where p is a single pattern, and L = {l1, … , lk} is a set of labels as possible recognition result, each
of li(1 ≤ i ≤ k) may be associated with a confidence value;

2. The input and output usually have different types of data structure;
3. The processing establishes one-to-one relation between an input pattern and an output label.

Summarization class contains the Recognition class as a special case, where the summary is a label or a highly
summarized meaning.

Ppf K
ionSummarizat :

1. Where p is a single input pattern, P = {p’1, … , p’k} is a set of patterns as possible summarization
for the p, and each of p’i (1 ≤ i ≤ k) may be associated with a confidence value;

2. The input and output is equivalent or approximate in some degree, in terms of their meaning or
explanation;

3. The degree or the level of abstraction of the output is determined by the knowledge applied and
the inference mechanism adopted.

Confirmation checks the input, and gives “Yes/No” to each of the candidates.
YNDf K

conConfirmati :

1. Where Dc = {d1, … , dk} is a data set and 1 ≤ k, YN = {t1, … , tk} is the corresponding truth list and ii
(1 ≤ i ≤ k) {Yes, No};

2. It can be used as a conditional checker to support other intelligent components;
3. Fuzzy logic approaches may be introduced when a clear Yes/No cannot be simply decided.

Judgement is a more general class than Confirmation in the sense that the output can be defined as linguistic
terms or values, such as high, expensive, going-up, or so.

JPDf K
JPJudgement :

1. Where DJP = {d1, … , dk} is a data set and 1 ≤ k; JP = {term1, … , termk} is a corresponding term list
with possible confidence value associated, and termi(1 ≤ i ≤ k)  LT, the set of pre-defined
linguistic terms;

2. Conceptually, it contains the Confirmation class as a special case where the judgement is simply
represented as Yes/No;

3. Changing the LT may change the behaviour of intelligent component.
Projection projects an input data set with k features to an output data set with j ≤ k features.

j
K

kojection DDf :Pr

1. Where Dk = {<d(1)1, d(1)2, …, d(1)k >,…, <d(n)1, d(n)2, …, d(n)k >} is an n-entry data set with k features, Dj
= { <d(1)’1, d(1)’2, …, d(1)’j >,…, <d(n)’1, d(n)’2, …, d(n)’j >} is an n-entry data set with j (j ≤ k) features, and
for any 1 ≤ i ≤ n, the entry <d(i)’1, d(i)’2, …, d(i)’j > Dj is an image of the entry <d(i)1, d(i)2, …, d(i)k >Dk
under the projection defined;

2. The process does not remove any data entry, but “remove” some of its features;
3. After projection, the data set will remain the entries but each of them appears in a space of

probably lower dimension.
Decision checks the input as a situation and recommends a possible decision.

ADsf K
Decision :

1. Where s is a single situation, and AD = {ad1, … , adk} is a list of recommended action or decision
with possible confidence value associated;

2. This class of intelligent components is usually used at a late or final stage of intelligent systems,
but not at the beginning;

3. For a complicated problem, multiple techniques and approaches may be required to form the
inference strategy used in the component.

Learning Component
Discovery not only makes use of knowledge but also produces knowledge. It has relevant domain data for
input and gives output as the knowledge discovered.

D
K

DeryDis KDf :cov

1. Where DD= {d1, … , dk} is a data set and 1 ≤ k; and KD is a set of discovered knowledge of selected
form, such as rules, relations, or other types;

2. Its output result can be applied as knowledge source to support other intelligent components;
3. It may use Filtering (a post-processing component’s type) for its pre-processing or post-processing.

Training can train some rule on it based on the user input’s data.
Post-Processing support Learning Component for post-processing.

Table 1. Intelligent component

2.4. KWS Inference Engine
The inference structure of a KBS constructed by KWS is represented as a knowledge
hierarchy with multiple intelligent components connected. The task of construction can be
done either by the intelligent editor or the KDL processor.
The knowledge hierarchy forms a static inference structure of the target KBS. A single
intelligent component realizes the mapping from its input to its output with the support of
its local knowledge base. The entire mapping of the KBS is achieved through the integration
of intelligent components. There is no direct mapping relation from the input to the output
of the KBS, but each intelligent component contributes to part of the mapping.
Truth/confidence value is used to indicate uncertainty or imprecision that may occur in
individual intelligent components, and also to connect the inference of individual
components to the inference flow of the entire KBS.
One of the main challenges facing KWS for the construction of intelligent system is the
complexity associated to inference mechanism having multi-level, and multi-modal
knowledge integration. Each single intelligent component is actually a smaller KBS for a
sub-problem of the target application, and its input and output can be directly linked to
problem domain or the result from different stages of processing. How to assemble
intelligent components to get a meaningful and unified data/information flow in the entire
intelligent system constitutes a key task. Inference engine is necessary to control the
execution which is realized through three aspects: 1) The management of protocol between

www.intechopen.com

Machine Learning196

components; 2) The control of execution order of components; and 3) The confidence
transfer.

3. Truth Value Flow Inference

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z.
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a
network structure (L. Ding et al, 1996) and finds rationality in connection to the description
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with
TVFI, where CP and CQ are the confidence of P and Q respectively; w is the weight of rule (L.
Ding and Z. Shen, 1994) controlling the channel of transferring the truth of P to the truth of
Q.

Fig. 6. Truth value flow inference

Based on the concepts of truth value flow inference and symbolical-numerical duality, we
can construct a fuzzy inference with a static structure of nodes representing the relationship
between propositions symbolically, and with a dynamic flow implementing the truth (or
confidence) transfer among the individual nodes. This idea can be extended to KBS
represented in network structure, with each intelligent component be treated as an extended
node realizing a mapping relation between its input and output, and the entire KBS be an
inference network (L. Ding and H.C. Lui, 1999).

3.1. Data Flow and Truth Value Flow in a Component
In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the
inference into a content level as well as a truth (confidence) level and handle them
simultaneously. In this way, the content level of inference relies only on the knowledge
sources stored “locally” in individual intelligent components whereas the truth (confidence)
level of inference contributes to the flow of truth (confidence) throughout the entire system.
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the
knowledge hierarchy.
In each intelligent component, two kinds of processing will be executed when receiving data
in its inputs: content (or data) processing, and truth value (or confidence value) processing.
These two types of processing are handled in intelligent component simultaneously to
obtain the final result of the component that is the content of processing result associated
with its corresponding confidence value. This concept can be shown as in Figure 7.

Fig. 7. An example of separated inputs in two levels

3.2. Interval-Valued Confidence
We adopted interval-valued confidence to represent the truth of fact and knowledge, and
the confidence of inference. Here, the term “interval” is used in some different way from its
usual meaning. Our motivation comes from several points.
1) A given truth value t  [0, 1] with some possible uncertainty or imprecision can

always be understood as a fuzzy number defined on the closed interval [0, 1]. In an
extreme case, t can be represented as a special fuzzy number with left, middle and
right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum.

2) With more accurate information available, the range between the left and right
parameters of such a fuzzy truth can be reduced. In another extreme case, we may
have all the three parameters be t, if no uncertainty is considered, and it then comes
back to usual case of single point of truth.

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to
allow more tolerance of imprecision in inference in terms of truth (confidence)
calculation.

Three-parametric triangular truth value has some good features of easy representation and
processing, intuitive interpretation consistent with common sense, convenient conversion
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets.

Definition 1 (general definition): A confidence value C of inference result is represented in
the following general format:

C = (a, m, b), (1)

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0,
1] (Figure 8-a).

Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t,
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be
understood as a special case (t, t, t) of Definition 1.

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 197

components; 2) The control of execution order of components; and 3) The confidence
transfer.

3. Truth Value Flow Inference

The concept of truth value flow inference (TVFI) was first put forward by Wang et al (P.Z.
Wang and H.M. Zhang, 1993). It offers a conceptual mechanism of fuzzy inference in a
network structure (L. Ding et al, 1996) and finds rationality in connection to the description
of fuzzy propositions. Figure 6 shows a conceptual illustration of implication P→Q with
TVFI, where CP and CQ are the confidence of P and Q respectively; w is the weight of rule (L.
Ding and Z. Shen, 1994) controlling the channel of transferring the truth of P to the truth of
Q.

Fig. 6. Truth value flow inference

Based on the concepts of truth value flow inference and symbolical-numerical duality, we
can construct a fuzzy inference with a static structure of nodes representing the relationship
between propositions symbolically, and with a dynamic flow implementing the truth (or
confidence) transfer among the individual nodes. This idea can be extended to KBS
represented in network structure, with each intelligent component be treated as an extended
node realizing a mapping relation between its input and output, and the entire KBS be an
inference network (L. Ding and H.C. Lui, 1999).

3.1. Data Flow and Truth Value Flow in a Component
In order to have a unified inference flow in hybrid KBS, a possible solution is to separate the
inference into a content level as well as a truth (confidence) level and handle them
simultaneously. In this way, the content level of inference relies only on the knowledge
sources stored “locally” in individual intelligent components whereas the truth (confidence)
level of inference contributes to the flow of truth (confidence) throughout the entire system.
So the inference in a hybrid KBS constructed by KWS is a truth value flow inference on the
knowledge hierarchy.
In each intelligent component, two kinds of processing will be executed when receiving data
in its inputs: content (or data) processing, and truth value (or confidence value) processing.
These two types of processing are handled in intelligent component simultaneously to
obtain the final result of the component that is the content of processing result associated
with its corresponding confidence value. This concept can be shown as in Figure 7.

Fig. 7. An example of separated inputs in two levels

3.2. Interval-Valued Confidence
We adopted interval-valued confidence to represent the truth of fact and knowledge, and
the confidence of inference. Here, the term “interval” is used in some different way from its
usual meaning. Our motivation comes from several points.
1) A given truth value t  [0, 1] with some possible uncertainty or imprecision can

always be understood as a fuzzy number defined on the closed interval [0, 1]. In an
extreme case, t can be represented as a special fuzzy number with left, middle and
right parameters at 0, t and 1 respectively, when its uncertainty reaches the maximum.

2) With more accurate information available, the range between the left and right
parameters of such a fuzzy truth can be reduced. In another extreme case, we may
have all the three parameters be t, if no uncertainty is considered, and it then comes
back to usual case of single point of truth.

3) The acceptance of possible uncertainty associated with fuzzy truth is expected to
allow more tolerance of imprecision in inference in terms of truth (confidence)
calculation.

Three-parametric triangular truth value has some good features of easy representation and
processing, intuitive interpretation consistent with common sense, convenient conversion
from/to single-valued fuzzy truth, linguistic fuzzy truth, fuzzy numbers and fuzzy sets.

Definition 1 (general definition): A confidence value C of inference result is represented in
the following general format:

C = (a, m, b), (1)

where 0  a  m  b  1, a is called the left point, b the right point, and m the middle point. It is a
fuzzy subset defined on the universal set U which is the closed interval [0, 1], i.e., C  U = [0,
1] (Figure 8-a).

Definition 2 (conversion of single-valued truth): A single-valued truth t  [0, 1] of a fact
inputted from user is represented as: T = (a, m, b) with the left point a = t, the right point b = t,
and the middle point m = t (Figure 8-b). It looks like a fuzzy singleton, but should be
understood as a special case (t, t, t) of Definition 1.

www.intechopen.com

Machine Learning198

Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b 
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c):

m = (a + b) / 2, (2)

(a)

(b)

(c)

Fig. 8. Interval-Valued Confidence

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A.
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and
false = (0, 0, 1).

Fig. 9. Linguistic truth value true and false

Definition 4 (AND operation): The operation of AND on two interval-valued confidences
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as

ANDIVC (C1, C2) = (Ca, Cm, Cb)
= [min(a1, a2), min(m1, m2), max(m1, m2)].

(3)

Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 =
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as

ORIVC (C1, C2) = (Ca, Cm, Cb)
= [min(m1, m2), max (m1, m2), max(b1, b2)].

(4)

Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C =
(a, m, b), represented as in (1) is defined as

NOTIVC (C) = (Ca, Cm, Cb)
= (1  b, 1  m, 1  a).

(5)

Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and
false, we have:

ORIVC(true, false)
= [min(1, 0), max(1, 0), max(1, 1)] = true,

(6)

ANDIVC(true, false)
 = [min(0, 0), min(1, 0), max(1, 0)] = false,

(7)

NOTIVC(true)
 = (1  1, 1  1, 1  0) = (0, 0, 1) = false,

(8)

NOTIVC(false)
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.

(9)

The results of (6) ~ (9) are consistent with conventional definitions. However, we can also
find that our operations provide interesting results when applying OR to both true, or AND
to both false:

ORIVC(true, true)
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1),

(10)

ANDIVC(false, false)
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0).

(11)

We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible
room for “not-false”. These two represent the extreme cases of IVC.
In order to have a further clear view of the properties of IVC with the corresponding
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false,
strong-true and strong-false, represented in IVC format. The highlighted parts show that the
results well meet commonsense interpretation.

Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12)

with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …,
mk, and Cb the second smallest value among the m1, …, mk.

(a) AND

ANDIVC F T s-F s-T
F F F s-F F
T F T F T

s-F s-F F s-F F
s-T F T F s-T

ORIVC F T s-F s-T
F F T F T
T T T T s-T

s-F F T s-F T
s-T T s-T T s-T

(b) OR

NOTIVC
F T
T F

s-F s-T
s-T s-F
(C) NOT

Table 2. Logical operations on true, false, strong-true, string-false

Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13)

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 199

Definition 3 (conversion of interval-valued truth): An interval-valued truth [a, b], 0  a  b 
1, of a fact inputted from user is represented as: T = (a, m, b) with the middle point (Figure 8-
c):

m = (a + b) / 2, (2)

(a)

(b)

(c)

Fig. 8. Interval-Valued Confidence

Figure 9 shows the linguistic truth value true and false first given by L.A. Zadeh (L.A.
Zadeh, 1975). Using the IVC defined in (1), we can represent them as: true = (0, 1, 1), and
false = (0, 0, 1).

Fig. 9. Linguistic truth value true and false

Definition 4 (AND operation): The operation of AND on two interval-valued confidences
C1 = (a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as

ANDIVC (C1, C2) = (Ca, Cm, Cb)
= [min(a1, a2), min(m1, m2), max(m1, m2)].

(3)

Definition 5 (OR operation): The operation of OR on two interval-valued confidences C1 =
(a1, m1, b1) and C2 = (a2, m2, b2), represented as in (1) is defined as

ORIVC (C1, C2) = (Ca, Cm, Cb)
= [min(m1, m2), max (m1, m2), max(b1, b2)].

(4)

Definition 6 (NOT operation): The operation of NOT on an interval-valued confidence C =
(a, m, b), represented as in (1) is defined as

NOTIVC (C) = (Ca, Cm, Cb)
= (1  b, 1  m, 1  a).

(5)

Applying the operations defined in Definitions 4, 5, and 6 on linguistic truth values true and
false, we have:

ORIVC(true, false)
= [min(1, 0), max(1, 0), max(1, 1)] = true,

(6)

ANDIVC(true, false)
 = [min(0, 0), min(1, 0), max(1, 0)] = false,

(7)

NOTIVC(true)
 = (1  1, 1  1, 1  0) = (0, 0, 1) = false,

(8)

NOTIVC(false)
= (1  1, 1  1, 1  0) = (0, 1, 1) = true.

(9)

The results of (6) ~ (9) are consistent with conventional definitions. However, we can also
find that our operations provide interesting results when applying OR to both true, or AND
to both false:

ORIVC(true, true)
= [min(1, 1), max(1, 1), max(1, 1)] = (1, 1, 1),

(10)

ANDIVC(false, false)
= [min(0, 0), min(0, 0), max(0, 0)] = (0, 0, 0).

(11)

We shall call the result (1, 1, 1) of (10) “strong-true”, because it does not have any belief for
“not-true”, and the result (0, 0, 0) of (11) “strong-false” as it does not provide any possible
room for “not-false”. These two represent the extreme cases of IVC.
In order to have a further clear view of the properties of IVC with the corresponding
operations, we list in Table 2 the typical results of ANDIVC, ORIVC, and NOTIVC on true, false,
strong-true and strong-false, represented in IVC format. The highlighted parts show that the
results well meet commonsense interpretation.

Definition 7 (generalized AND): The operation of AND on k (k > 2) interval-valued
confidences C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as

AND(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (12)

with Ca being the smallest value among the a1, …, ak, Cm the smallest value among the m1, …,
mk, and Cb the second smallest value among the m1, …, mk.

(a) AND

ANDIVC F T s-F s-T
F F F s-F F
T F T F T

s-F s-F F s-F F
s-T F T F s-T

ORIVC F T s-F s-T
F F T F T
T T T T s-T

s-F F T s-F T
s-T T s-T T s-T

(b) OR

NOTIVC
F T
T F

s-F s-T
s-T s-F
(C) NOT

Table 2. Logical operations on true, false, strong-true, string-false

Definition 8 (generalized OR): The operation of OR on k (k > 2) interval-valued confidences
C1 = (a1, m1, b1), …, Ck = (ak, mk, bk), represented as in (1) is defined as

OR(g)IVC(C1, …, Ck) = (Ca, Cm, Cb), (13)

www.intechopen.com

Machine Learning200

with Ca being the second largest value among the m1, …, mk, Cm the largest value among the
m1, …, mk, and Cb the largest value among the b1, …, bk.
It is necessary to notice that in general the OR(g)IVC and AND(g)IVC operations do not satisfy
connective laws as usual logic OR and AND. This can be seen from the following examples.

Example 1: Generalized OR(g)IVC and generalized AND(g)IVC operations do not satisfy
connective laws.
Suppose C1 = (0.7, 0.9, 0.9), C2 = (0.6, 0.6, 1), and C3 = (0.4, 0.4, 1), with Definition 7 we have:

AND(g)IVC (C1, C2, C3) = (0.4, 0.4, 0.6). (14)

However, we also have

ANDIVC [ANDIVC (C1, C2), C3]
= ANDIVC [(0.6, 0.6, 0.9), (0.4, 0.4, 1)] = (0.4, 0.4, 0.6),

(15)

ANDIVC [C1, ANDIVC (C2, C3)]
=ANDIVC [(0.7, 0.9, 0.9), (0.4, 0.4, 0.6)]= (0.4, 0.4, 0.9).

(16)

Similarly with Definition 8, we have

OR(g)IVC (C1, C2, C3) = (0.6, 0.9, 1). (17)
ORIVC [ORIVC (C1, C2), C3]

= ORIVC [(0.6, 0.9, 1), (0.4, 0.4, 1)] = (0.4, 0.9, 1),
(18)

ORIVC [C1, ORIVC (C2, C3)]
= ORIVC [(0.7, 0.9, 0.9), (0.4, 0.6, 1)] = (0.6, 0.9, 1).

(19)

The highlighted parts show the difference between (15) and (16), and between (18) and (19).
This feature can be interpreted by the truth value flow inference adopted in KWS. It is
understood that the corresponding structures of TVFI for (14), (15) and (16) are different
(Figure 10), and the same applies to (17), (18) and (19). Figure 10 gives three structures of
TVFI. The nodes of the structures are representing intelligent components for knowledge-
based processing, and handling truth value flow from the input side to the output side. So
the (a), (b), and (c) actually represent different internal inference flows, though they have the
same input interface A1, A2 and A3, and output interface B for the entire structure.

A1

A2

A3

B

A1, A2, A3→B

(a) AND(g)IVC (A1, A2, A3) (b) ANDIVC [ANDIVC (A1, A2), A3] (c) ANDIVC [A1, ANDIVC (A2, A3)]
Fig. 10. TVFI structures

When a single-valued confidence of conclusion is desired, we need to consider
defuzzification in the last stage of inference in hybrid KBS. As defuzzification is considered
a matter of application-specific, we here propose two simplified calculations based on the

idea of conventional center of gravity approach (J.-S.R. Jang et al, 1997; R.R. Yager and D.P.
Filev, 1994) with the reference to the left, middle and right points of IVC.

Definition 9 (compromised defuzzification): The compromised defuzzification Defcom(C) of
IVC C = (a, m, b), 0  a  m  b  1, is defined as the center of gravity of α-cut with α= 0.5
(Figure 11-a).
Since the IVC is a fuzzy number defined as a piece-wise linear function with the
corresponding left, middle, and right points, we have the following calculation:

Defcom(C) = [(a + m)/2 + (m + b)/2] / 2. (20)

Definition 10 (simple defuzzification): The simple defuzzification Defsim(C) of IVC C = (a, m,
b), 0  a  m  b  1, is defined as the middle point m (Figure 11-b):

Defsim (C) = m. (21)

(a) Compromised defuzzification with IVC

(b) Simple defuzzification with IVC

Fig. 11. Defuzzification with IVC

Example 2: Single-valued confidence and interval-valued confidence with corresponding
AND/OR operators.

A. Single-Valued Confidence using Min/Max for AND/OR operation
Consider the following rule and facts given:

rule 1: if the topic is interesting,
and the weather is good,
then I will attend the seminar;

fact 1: the topic is interesting;
fact 2: the weather is good.

The most common way of handling and is to use min as t-norm to calculate the overall truth
of the premise from the two subpremises, and when both facts are 0.5 true, for instance, we
get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic:

fact 1’: the topic is interesting (0.9 true).

With min, we will still get the same truth 0.5 for the premise, i.e., the influence of interesting
topic has been buried by the fact of weather as long as its truth is not lower than the other
fact. However, we tend to agree that a more interesting topic (0.9) makes a person more
willing to go to the seminar than a moderately interesting topic (0.5) given the same weather
condition (0.5). The following example shows a similar problem with or operation.

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 201

with Ca being the second largest value among the m1, …, mk, Cm the largest value among the
m1, …, mk, and Cb the largest value among the b1, …, bk.
It is necessary to notice that in general the OR(g)IVC and AND(g)IVC operations do not satisfy
connective laws as usual logic OR and AND. This can be seen from the following examples.

Example 1: Generalized OR(g)IVC and generalized AND(g)IVC operations do not satisfy
connective laws.
Suppose C1 = (0.7, 0.9, 0.9), C2 = (0.6, 0.6, 1), and C3 = (0.4, 0.4, 1), with Definition 7 we have:

AND(g)IVC (C1, C2, C3) = (0.4, 0.4, 0.6). (14)

However, we also have

ANDIVC [ANDIVC (C1, C2), C3]
= ANDIVC [(0.6, 0.6, 0.9), (0.4, 0.4, 1)] = (0.4, 0.4, 0.6),

(15)

ANDIVC [C1, ANDIVC (C2, C3)]
=ANDIVC [(0.7, 0.9, 0.9), (0.4, 0.4, 0.6)]= (0.4, 0.4, 0.9).

(16)

Similarly with Definition 8, we have

OR(g)IVC (C1, C2, C3) = (0.6, 0.9, 1). (17)
ORIVC [ORIVC (C1, C2), C3]

= ORIVC [(0.6, 0.9, 1), (0.4, 0.4, 1)] = (0.4, 0.9, 1),
(18)

ORIVC [C1, ORIVC (C2, C3)]
= ORIVC [(0.7, 0.9, 0.9), (0.4, 0.6, 1)] = (0.6, 0.9, 1).

(19)

The highlighted parts show the difference between (15) and (16), and between (18) and (19).
This feature can be interpreted by the truth value flow inference adopted in KWS. It is
understood that the corresponding structures of TVFI for (14), (15) and (16) are different
(Figure 10), and the same applies to (17), (18) and (19). Figure 10 gives three structures of
TVFI. The nodes of the structures are representing intelligent components for knowledge-
based processing, and handling truth value flow from the input side to the output side. So
the (a), (b), and (c) actually represent different internal inference flows, though they have the
same input interface A1, A2 and A3, and output interface B for the entire structure.

A1

A2

A3

B

A1, A2, A3→B

(a) AND(g)IVC (A1, A2, A3) (b) ANDIVC [ANDIVC (A1, A2), A3] (c) ANDIVC [A1, ANDIVC (A2, A3)]
Fig. 10. TVFI structures

When a single-valued confidence of conclusion is desired, we need to consider
defuzzification in the last stage of inference in hybrid KBS. As defuzzification is considered
a matter of application-specific, we here propose two simplified calculations based on the

idea of conventional center of gravity approach (J.-S.R. Jang et al, 1997; R.R. Yager and D.P.
Filev, 1994) with the reference to the left, middle and right points of IVC.

Definition 9 (compromised defuzzification): The compromised defuzzification Defcom(C) of
IVC C = (a, m, b), 0  a  m  b  1, is defined as the center of gravity of α-cut with α= 0.5
(Figure 11-a).
Since the IVC is a fuzzy number defined as a piece-wise linear function with the
corresponding left, middle, and right points, we have the following calculation:

Defcom(C) = [(a + m)/2 + (m + b)/2] / 2. (20)

Definition 10 (simple defuzzification): The simple defuzzification Defsim(C) of IVC C = (a, m,
b), 0  a  m  b  1, is defined as the middle point m (Figure 11-b):

Defsim (C) = m. (21)

(a) Compromised defuzzification with IVC

(b) Simple defuzzification with IVC

Fig. 11. Defuzzification with IVC

Example 2: Single-valued confidence and interval-valued confidence with corresponding
AND/OR operators.

A. Single-Valued Confidence using Min/Max for AND/OR operation
Consider the following rule and facts given:

rule 1: if the topic is interesting,
and the weather is good,
then I will attend the seminar;

fact 1: the topic is interesting;
fact 2: the weather is good.

The most common way of handling and is to use min as t-norm to calculate the overall truth
of the premise from the two subpremises, and when both facts are 0.5 true, for instance, we
get min(0.5, 0.5) = 0.5. Now let’s consider the fact about interesting topic:

fact 1’: the topic is interesting (0.9 true).

With min, we will still get the same truth 0.5 for the premise, i.e., the influence of interesting
topic has been buried by the fact of weather as long as its truth is not lower than the other
fact. However, we tend to agree that a more interesting topic (0.9) makes a person more
willing to go to the seminar than a moderately interesting topic (0.5) given the same weather
condition (0.5). The following example shows a similar problem with or operation.

www.intechopen.com

Machine Learning202

rule 2: if Mr. A and Mr. B are first cousin,
or second cousin,
then they have a close relationship;

fact 3: Mr. A and Mr. B are first cousin;
fact 4: Mr. A and Mr. B are second cousin.

With max, the most common way of calculating t-conorm, when either fact 3 or fact 4 is 0.5
true and the other is 0 true, we can obtain the overall truth of premise to be max(0.5, 0) = 0.5.
However, it is also possible that Mr. A and Mr. B have both first cousin and second cousin
relationship when one’s parents being first cousin. Assume both subpremises with 0.5
confidence, we will still have the same 0.5 for the truth of premise using max calculation.
Conventionally, two persons that are in both first cousin and second cousin relation should
more likely to have a close relationship than only being one kind of cousin having their
double connections of relative. Obviously, max does not well reflect this situation.
From the above examples, we can see that a single-valued truth (confidence) does not
provide sufficient room for the description of imprecise knowledge, especially in decision
making applications, where subjective knowledge and experience play an important role
and the truth of subjective knowledge is hardly to be measurable in absolute sense. It is also
very often that in real applications, a single-valued truth (confidence) does not necessarily
mean in the explicit way as it seems. For instance, when a user inputs 0.8 as the truth of
good weather, it should not be simply treated as a precise value 0.8 but some thing around
0.8.

B. Interval-Valued Confidence using ANDIVC/ORIVC
We apply the IVC and corresponding operations to the previous examples. For fact 1 and
fact 2, we have

ANDIVC [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]
= [min(0.5, 0.5), min(0.5, 0.5), max(0.5, 0.5)]
= (0.5, 0.5, 0.5),

and for fact 1’ and fact 2, we have

ANDIVC[(0.9, 0.9, 0.9), (0.5, 0.5, 0.5)] (13)
= [min(0.9, 0.5), min(0.9, 0.5), max(0.9, 0.5)]
= (0.5, 0.5, 0.9).

It shows that fact 1’ together with fact 2 gives more potential to have a truth higher than 0.5
(Figure 12).
For fact 3 (0.5 true) or fact 4 (0 true), we have

ORIVC[(0.5, 0.5, 0.5), (0, 0, 0)]
= [min(0.5, 0), max(0.5, 0), max(0.5, 0)]
= (0, 0.5, 0.5),

and for fact 3 (0.5 true) or fact 4’ (0.5 true), we have

ORIVC[(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]
= [min(0.5, 0.5), max(0.5, 0.5), max(0.5, 0.5)]
= (0.5, 0.5, 0.5).

It shows that fact 3 together with fact 4’ has a stronger belief for truth 0.5 (Figure 13).

Fig. 12. An example of ANDIVC

Fig. 13. An example of ORIVC

From above discussion, we can see that using IVC and the corresponding operations defined
for confidence calculation, partial conclusion with a relatively stronger confidence about
true or false will not easily make the influence of other parts be totally ignored in inference.

3.3. Confidence Transfer and Interpretability
The processing in intelligent component can be further classified in several categories
according to the description of mapping relation.

3.3.1. Component with Interpretable Mapping Relation
When mapping relation between input and output of intelligent components can be
interpreted by a mathematic formula or an algorithm described by procedure. The mapping
relation is considered interpretable, and precise in the sense that the processing does not
affect uncertainty and imprecision. In this type of intelligent components, the confidence of
output remains the same as that of input.

Example 3: A component performs some simple data processing, such as sorting. The
output of component is the sorted result based on certain condition specified with
knowledge source. In this case, the mapping relation between input and output can be
determined by algorithm, and the corresponding output truth value remains the same as the
input truth value.

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 203

rule 2: if Mr. A and Mr. B are first cousin,
or second cousin,
then they have a close relationship;

fact 3: Mr. A and Mr. B are first cousin;
fact 4: Mr. A and Mr. B are second cousin.

With max, the most common way of calculating t-conorm, when either fact 3 or fact 4 is 0.5
true and the other is 0 true, we can obtain the overall truth of premise to be max(0.5, 0) = 0.5.
However, it is also possible that Mr. A and Mr. B have both first cousin and second cousin
relationship when one’s parents being first cousin. Assume both subpremises with 0.5
confidence, we will still have the same 0.5 for the truth of premise using max calculation.
Conventionally, two persons that are in both first cousin and second cousin relation should
more likely to have a close relationship than only being one kind of cousin having their
double connections of relative. Obviously, max does not well reflect this situation.
From the above examples, we can see that a single-valued truth (confidence) does not
provide sufficient room for the description of imprecise knowledge, especially in decision
making applications, where subjective knowledge and experience play an important role
and the truth of subjective knowledge is hardly to be measurable in absolute sense. It is also
very often that in real applications, a single-valued truth (confidence) does not necessarily
mean in the explicit way as it seems. For instance, when a user inputs 0.8 as the truth of
good weather, it should not be simply treated as a precise value 0.8 but some thing around
0.8.

B. Interval-Valued Confidence using ANDIVC/ORIVC
We apply the IVC and corresponding operations to the previous examples. For fact 1 and
fact 2, we have

ANDIVC [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]
= [min(0.5, 0.5), min(0.5, 0.5), max(0.5, 0.5)]
= (0.5, 0.5, 0.5),

and for fact 1’ and fact 2, we have

ANDIVC[(0.9, 0.9, 0.9), (0.5, 0.5, 0.5)] (13)
= [min(0.9, 0.5), min(0.9, 0.5), max(0.9, 0.5)]
= (0.5, 0.5, 0.9).

It shows that fact 1’ together with fact 2 gives more potential to have a truth higher than 0.5
(Figure 12).
For fact 3 (0.5 true) or fact 4 (0 true), we have

ORIVC[(0.5, 0.5, 0.5), (0, 0, 0)]
= [min(0.5, 0), max(0.5, 0), max(0.5, 0)]
= (0, 0.5, 0.5),

and for fact 3 (0.5 true) or fact 4’ (0.5 true), we have

ORIVC[(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]
= [min(0.5, 0.5), max(0.5, 0.5), max(0.5, 0.5)]
= (0.5, 0.5, 0.5).

It shows that fact 3 together with fact 4’ has a stronger belief for truth 0.5 (Figure 13).

Fig. 12. An example of ANDIVC

Fig. 13. An example of ORIVC

From above discussion, we can see that using IVC and the corresponding operations defined
for confidence calculation, partial conclusion with a relatively stronger confidence about
true or false will not easily make the influence of other parts be totally ignored in inference.

3.3. Confidence Transfer and Interpretability
The processing in intelligent component can be further classified in several categories
according to the description of mapping relation.

3.3.1. Component with Interpretable Mapping Relation
When mapping relation between input and output of intelligent components can be
interpreted by a mathematic formula or an algorithm described by procedure. The mapping
relation is considered interpretable, and precise in the sense that the processing does not
affect uncertainty and imprecision. In this type of intelligent components, the confidence of
output remains the same as that of input.

Example 3: A component performs some simple data processing, such as sorting. The
output of component is the sorted result based on certain condition specified with
knowledge source. In this case, the mapping relation between input and output can be
determined by algorithm, and the corresponding output truth value remains the same as the
input truth value.

www.intechopen.com

Machine Learning204

If a component uses rule-based knowledge (fuzzy or precise) that can be approximately
interpreted by AND, OR, and NOT relations, the mapping relation is also a kind of
interpretable, but the truth of output may be affected by the knowledge-based processing.
The corresponding truth value of output can be determined by the logic relations used in
the rules.

3.3.2. Component with Less Interpretable Mapping Relation
When an IC uses less interpretable knowledge representation, e.g., neural networks, or case-
based reasoning, the mapping relationship realized by the IC may not be interpreted in
composition of logic operations and therefore the input confidence of the IC cannot be
simply transferred to its output side to obtain the output confidence through its internal
inference structure (L. Ding and S.L. Lo, 2008). A further extension of the framework of truth
value flow inference using IVC (L. Ding, 2008) is needed to cope with this problem. It is
achieved by two steps:
1) First carry out the internal inference of such an IC by assuming that the input is

completely true (i.e. with full confidence);
2) Combine the input confidence with the result confidence as one unified output

confidence at the output side of an IC after its processing.
We adopt the concept of truth base introduced with the exponential form of fuzzy logic (Z.
Shen and L. Ding, 1994) for the interpretation of confidence transfer.

A. Truth base and confidence representation
The exponential form of fuzzy logic (EF) was proposed for confidence comparison and high
order fuzziness simplification (Z. Shen and L. Ding, 1994). It provides a possible way for
confidence transfer in intelligent components that use less interpretable representation of
knowledge. An important concept introduced with EF is the truth base. For instance, saying
“P is 0.8 true” may be understood in two ways: “P has complete truth (1) with 0.8 confidence”,
or “P has 0.8 truth with full confidence (1)”. The difference is from the use of different truth
bases: in the former, we put our truth base at 1, whereas in the latter, we put our truth base
at 0.8. Obviously, it is reasonable to make these two ways of understanding be exchangeable
from one to the other equivalently.
Usually by default we take completely true as the basis of our discussion about confidence,
e.g.: 1 in fuzzy valued logic, or true in fuzzy linguistic valued logic, but it is also useful to
have a different truth base for the convenience of discussion and have confidences of
different truth bases be convertible from one to other.
The EF is originally defined with both truth-I and truth-II of fuzzy valued logic and fuzzy
linguistic valued logic (Z. Shen and L. Ding, 1994). In KWS truth-I of fuzzy valued logic is
adopted.

Definition 11 (EF on fuzzy valued logic): Let t ∈ [0, 1] be a truth value in fuzzy valued logic,
then t can be represented in its exponential form Bc when

t = (B – U) × c + U, (22)

where B ∈ [0, 1] is called the fuzzy truth base, c ∈ (-∞, ∞) is called confidence exponent, U is the

unknown point for inference. In truth-I, we further specify U = 0, and B∈(0, 1].
It is important to be aware of that a super confidence c > 1 may cause a loss of information
in inference (Z. Shen and L. Ding, 1994), so a truth base B ≥ t is usually recommended.
When applying the EF originally defined with single truth value to IVC, we have the IVC
format of unknown UIVC = (0, 0, 0), the IVC format of truth base BIVC = (B, B, B) with B ∈ (0, 1],
and the IVC format of confidence exponent C = (ac, mc, bc). So the above (22) can be rewritten
as:

tIVC = (at, mt, bt) = (B × ac, B × mc, B × bc). (23)

Definition 12 (Base changing in EF): The exponential form of a fuzzy truth t on truth base B1
can be converted to that on truth base B2 by

21
21
CC BBt  . (24)

where B1, B2 ≠ 0, U is the unknown point of inference, B1, B2 ≠ U, and c1, c2, B1 and B2 satisfy
the following relation:

c2 = c1 × (B1 – U) ÷ (B2 – U). (25)

Using the IVC format of truth base and unknown point, given two confidences C1 = (a1, m1,
b1) under truth base B1 = (B1, B1, B1) and C2 = (a2, m2, b2) under B2 = (B2, B2, B2), the above (23)
can be rewritten as:

C2 = (a2, m2, b2) = (a1× B1 ÷ B2, m1× B1 ÷ B2, b1× B1 ÷ B2). (26)

Definition 13 (Logical operations on EF): The AND, OR and NOT operations on EF are
defined as:

AND(1CB , 2CB ,…, CnB) = BAND(
1c ,

2c ,…,
nc) (27)

OR(1CB , 2CB ,…, CnB) = BOR(
1c , 2c ,…,

nc) (28)

NOT(CB) = BNOT(c) (29)

where B is a given common truth base, and EF values originally with different truth bases are
converted to the selected common truth base before carrying out logical operations.

B. Confidence transfer with arbitrary intelligent component
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm
(Figure 14) without loss of generality, where K represents a knowledge-based mapping
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk, >, where the data
dk is from other intelligent component IC-k, and associated with IVC Ck = (ak, mk, bk) under a
selected truth base Bk. When a common truth base B is selected for all the inputs in1, in2, … ,

kC
kB

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 205

If a component uses rule-based knowledge (fuzzy or precise) that can be approximately
interpreted by AND, OR, and NOT relations, the mapping relation is also a kind of
interpretable, but the truth of output may be affected by the knowledge-based processing.
The corresponding truth value of output can be determined by the logic relations used in
the rules.

3.3.2. Component with Less Interpretable Mapping Relation
When an IC uses less interpretable knowledge representation, e.g., neural networks, or case-
based reasoning, the mapping relationship realized by the IC may not be interpreted in
composition of logic operations and therefore the input confidence of the IC cannot be
simply transferred to its output side to obtain the output confidence through its internal
inference structure (L. Ding and S.L. Lo, 2008). A further extension of the framework of truth
value flow inference using IVC (L. Ding, 2008) is needed to cope with this problem. It is
achieved by two steps:
1) First carry out the internal inference of such an IC by assuming that the input is

completely true (i.e. with full confidence);
2) Combine the input confidence with the result confidence as one unified output

confidence at the output side of an IC after its processing.
We adopt the concept of truth base introduced with the exponential form of fuzzy logic (Z.
Shen and L. Ding, 1994) for the interpretation of confidence transfer.

A. Truth base and confidence representation
The exponential form of fuzzy logic (EF) was proposed for confidence comparison and high
order fuzziness simplification (Z. Shen and L. Ding, 1994). It provides a possible way for
confidence transfer in intelligent components that use less interpretable representation of
knowledge. An important concept introduced with EF is the truth base. For instance, saying
“P is 0.8 true” may be understood in two ways: “P has complete truth (1) with 0.8 confidence”,
or “P has 0.8 truth with full confidence (1)”. The difference is from the use of different truth
bases: in the former, we put our truth base at 1, whereas in the latter, we put our truth base
at 0.8. Obviously, it is reasonable to make these two ways of understanding be exchangeable
from one to the other equivalently.
Usually by default we take completely true as the basis of our discussion about confidence,
e.g.: 1 in fuzzy valued logic, or true in fuzzy linguistic valued logic, but it is also useful to
have a different truth base for the convenience of discussion and have confidences of
different truth bases be convertible from one to other.
The EF is originally defined with both truth-I and truth-II of fuzzy valued logic and fuzzy
linguistic valued logic (Z. Shen and L. Ding, 1994). In KWS truth-I of fuzzy valued logic is
adopted.

Definition 11 (EF on fuzzy valued logic): Let t ∈ [0, 1] be a truth value in fuzzy valued logic,
then t can be represented in its exponential form Bc when

t = (B – U) × c + U, (22)

where B ∈ [0, 1] is called the fuzzy truth base, c ∈ (-∞, ∞) is called confidence exponent, U is the

unknown point for inference. In truth-I, we further specify U = 0, and B∈(0, 1].
It is important to be aware of that a super confidence c > 1 may cause a loss of information
in inference (Z. Shen and L. Ding, 1994), so a truth base B ≥ t is usually recommended.
When applying the EF originally defined with single truth value to IVC, we have the IVC
format of unknown UIVC = (0, 0, 0), the IVC format of truth base BIVC = (B, B, B) with B ∈ (0, 1],
and the IVC format of confidence exponent C = (ac, mc, bc). So the above (22) can be rewritten
as:

tIVC = (at, mt, bt) = (B × ac, B × mc, B × bc). (23)

Definition 12 (Base changing in EF): The exponential form of a fuzzy truth t on truth base B1
can be converted to that on truth base B2 by

21
21
CC BBt  . (24)

where B1, B2 ≠ 0, U is the unknown point of inference, B1, B2 ≠ U, and c1, c2, B1 and B2 satisfy
the following relation:

c2 = c1 × (B1 – U) ÷ (B2 – U). (25)

Using the IVC format of truth base and unknown point, given two confidences C1 = (a1, m1,
b1) under truth base B1 = (B1, B1, B1) and C2 = (a2, m2, b2) under B2 = (B2, B2, B2), the above (23)
can be rewritten as:

C2 = (a2, m2, b2) = (a1× B1 ÷ B2, m1× B1 ÷ B2, b1× B1 ÷ B2). (26)

Definition 13 (Logical operations on EF): The AND, OR and NOT operations on EF are
defined as:

AND(1CB , 2CB ,…, CnB) = BAND(
1c ,

2c ,…,
nc) (27)

OR(1CB , 2CB ,…, CnB) = BOR(
1c , 2c ,…,

nc) (28)

NOT(CB) = BNOT(c) (29)

where B is a given common truth base, and EF values originally with different truth bases are
converted to the selected common truth base before carrying out logical operations.

B. Confidence transfer with arbitrary intelligent component
Assume an arbitrary intelligent component A with m ≥ 1 input variables in1, in2, … , inm
(Figure 14) without loss of generality, where K represents a knowledge-based mapping
realized in this component. The input ink (1 ≤ k ≤ m) is denoted by <dk, >, where the data
dk is from other intelligent component IC-k, and associated with IVC Ck = (ak, mk, bk) under a
selected truth base Bk. When a common truth base B is selected for all the inputs in1, in2, … ,

kC
kB

www.intechopen.com

Machine Learning206

inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will
be considered as a special case of having an empty IC when dk is directly from problem
domain. The inference output of A is obtained through the following algorithm.
In a hybrid KBS constructed by KWS, the default common truth base is set as T = (1, 1, 1), the
strong true in IVC format. This also applies to intelligent components with interpretable rule-
based type of knowledge, and so the discussion of confidence transfer in (L. Ding, 2008) can
be rebuilt using EF with the default common truth base.

IC-1

IC-2

IC-m

<d1,C1>

<d2,C2>

<dm,Cm>

d1

d2

dm A <r,Cr*>
<r,C out>

Cin

d1,d2, ...,dm→ rK

Fig. 14. Confidence transfer in an IC of hybrid KBS

3.3.3. Confidence Transfer in Hybrid KBS
Compared with a typical fuzzy inference system (J.-S.R. Jang et al, 1997; R.R. Yager, 1994), a
hybrid KBS constructed by KWS usually does not have a universal knowledge base but
multiple knowledge sources associated in individual intelligent components. In this sense,
each knowledge source has only a local affection to the corresponding intelligent component
realizing a mapping relation between its input and output. Given two arbitrary intelligent
components A and B, having the output of A linked to the input of B means its content is
passed on for further knowledge-based processing in B, and at the same time its confidence
is integrated in the calculation of the confidence of output of B. Therefore, an IC is needed to
distinguish the uncertainty associated with external input or introduced by its internal
inference result. We represent the former as input confidence, and the latter as result

Algorithm-1 (Confidence transfer of IC uses less interpretable knowledge representation):
1) The input <dk, > (1 ≤ k ≤ m) is first converted to <dk, >, where T is the strong true (1,

1, 1) in IVC format, and Cin-k = (ain-k, min-k, bin-k) is the confidence exponent in IVC format,
through base changing;

2) The combined confidence of input is then calculated by
Cin = (ain, min, bin) = [mink(ain-k),mink(min-k),mink(bin-k)];

3) The data d1, …, dk, …, dm are then accepted as input values with perfect confidence for the
inference in A;

4) Assume that a data r is obtained as the content of inference result of A with the result
confidence , where Cr = (ar, mr, br). The is converted to through base changing,
then the output confidence of A is calculated by

Cout = ANDIVC (Cin, Cr*)
based on the Definition 4, and <r, > is the output of A

kC
kB kinCT 

outCT

Cr
rB

*CrTCr
rB

confidence. When all the intelligent components in a hybrid KBS use rule-based knowledge
(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations,
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based
network that embeds internal inference structure of individual IC into the knowledge
hierarchy (L. Ding et al, 1996; L. Ding, 2008).

Example 4: With the rapid development of Internet technologies, people are receiving more
and more e-mails for commercial promotion purpose and often need spend time and effort
for filtering and cleaning. We consider a simple hierarchical KBS for the filtering function
based on the title of e-mail. There are three major parts of title related to promotion: action
(of promotion), e.g., “offer”, “provide”, or “sale”; benefit (to user), e.g., “saving”, “earn”, or
“win”; currency (or percentage, number), e.g., “$”, “%”, or “xx.xx”.
The system consists of five intelligent components of type summarization, recognition, and
decision (L. Ding, 2007b; L. Ding and S. Nadkarni, 2007) (Fig. 15).

Fig. 15. An example of hierarchical inference with IVC flow

Sum (S) - a summarization component that performs pre-processing to eliminate less
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary.
The cleaned-up version of email title will be passed up to three recognition components for
further processing.
Act (A) - a recognition component to recognize words that match the “action” category. The
knowledge source defines the kind of words often used to positively describe promotion
action, including the representative words and their major variants.
Ben (B) - a recognition component to recognize words that match the “benefit” category. The
knowledge source defines the kind of words often used to highlight the potential benefit to
attract people’s attention, including the representative words as well as their major variants.
Cur (C) - a recognition component to recognize characters of currency, percentage, or
numbers.
Dec (D) - a decision component to decide whether the text examined is suspicious for a
promotion with the combined results from A, B, and C. The decision knowledge may be
fuzzy association rules obtained through possible knowledge discovery, such as:

rule-d1: If A and B, Then P (0.8)
rule-d2: If B or C, Then P (0.4)

rule-d3: If A and C, Then P (0.6)

When an e-mail is received with a title like:

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 207

inm, can be represented in its simplified form by <dk, Ck > without confusion caused. It will
be considered as a special case of having an empty IC when dk is directly from problem
domain. The inference output of A is obtained through the following algorithm.
In a hybrid KBS constructed by KWS, the default common truth base is set as T = (1, 1, 1), the
strong true in IVC format. This also applies to intelligent components with interpretable rule-
based type of knowledge, and so the discussion of confidence transfer in (L. Ding, 2008) can
be rebuilt using EF with the default common truth base.

IC-1

IC-2

IC-m

<d1,C1>

<d2,C2>

<dm,Cm>

d1

d2

dm A <r,Cr*>
<r,C out>

Cin

d1,d2, ...,dm→ rK

Fig. 14. Confidence transfer in an IC of hybrid KBS

3.3.3. Confidence Transfer in Hybrid KBS
Compared with a typical fuzzy inference system (J.-S.R. Jang et al, 1997; R.R. Yager, 1994), a
hybrid KBS constructed by KWS usually does not have a universal knowledge base but
multiple knowledge sources associated in individual intelligent components. In this sense,
each knowledge source has only a local affection to the corresponding intelligent component
realizing a mapping relation between its input and output. Given two arbitrary intelligent
components A and B, having the output of A linked to the input of B means its content is
passed on for further knowledge-based processing in B, and at the same time its confidence
is integrated in the calculation of the confidence of output of B. Therefore, an IC is needed to
distinguish the uncertainty associated with external input or introduced by its internal
inference result. We represent the former as input confidence, and the latter as result

Algorithm-1 (Confidence transfer of IC uses less interpretable knowledge representation):
1) The input <dk, > (1 ≤ k ≤ m) is first converted to <dk, >, where T is the strong true (1,

1, 1) in IVC format, and Cin-k = (ain-k, min-k, bin-k) is the confidence exponent in IVC format,
through base changing;

2) The combined confidence of input is then calculated by
Cin = (ain, min, bin) = [mink(ain-k),mink(min-k),mink(bin-k)];

3) The data d1, …, dk, …, dm are then accepted as input values with perfect confidence for the
inference in A;

4) Assume that a data r is obtained as the content of inference result of A with the result
confidence , where Cr = (ar, mr, br). The is converted to through base changing,
then the output confidence of A is calculated by

Cout = ANDIVC (Cin, Cr*)
based on the Definition 4, and <r, > is the output of A

kC
kB kinCT 

outCT

Cr
rB

*CrTCr
rB

confidence. When all the intelligent components in a hybrid KBS use rule-based knowledge
(fuzzy or precise) that can be approximately interpreted using AND, OR, and NOT relations,
the inference of the KBS can be interpreted as a confidence flow on an extended logic-based
network that embeds internal inference structure of individual IC into the knowledge
hierarchy (L. Ding et al, 1996; L. Ding, 2008).

Example 4: With the rapid development of Internet technologies, people are receiving more
and more e-mails for commercial promotion purpose and often need spend time and effort
for filtering and cleaning. We consider a simple hierarchical KBS for the filtering function
based on the title of e-mail. There are three major parts of title related to promotion: action
(of promotion), e.g., “offer”, “provide”, or “sale”; benefit (to user), e.g., “saving”, “earn”, or
“win”; currency (or percentage, number), e.g., “$”, “%”, or “xx.xx”.
The system consists of five intelligent components of type summarization, recognition, and
decision (L. Ding, 2007b; L. Ding and S. Nadkarni, 2007) (Fig. 15).

Fig. 15. An example of hierarchical inference with IVC flow

Sum (S) - a summarization component that performs pre-processing to eliminate less
relevant words, such as “a”,“and”, and so on, indicated in a knowledge source of dictionary.
The cleaned-up version of email title will be passed up to three recognition components for
further processing.
Act (A) - a recognition component to recognize words that match the “action” category. The
knowledge source defines the kind of words often used to positively describe promotion
action, including the representative words and their major variants.
Ben (B) - a recognition component to recognize words that match the “benefit” category. The
knowledge source defines the kind of words often used to highlight the potential benefit to
attract people’s attention, including the representative words as well as their major variants.
Cur (C) - a recognition component to recognize characters of currency, percentage, or
numbers.
Dec (D) - a decision component to decide whether the text examined is suspicious for a
promotion with the combined results from A, B, and C. The decision knowledge may be
fuzzy association rules obtained through possible knowledge discovery, such as:

rule-d1: If A and B, Then P (0.8)
rule-d2: If B or C, Then P (0.4)

rule-d3: If A and C, Then P (0.6)

When an e-mail is received with a title like:

www.intechopen.com

Machine Learning208

“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be:
(a) S filters out the less relevant words and obtained a cleaned-up version:

“Offer Saving 99%”
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1).
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1).
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as:
If $or%-character or number then is-C.

So we have overall confidence for C is
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1).

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is
defined as and (confidence-of-premise, confidence-of-rule). We check each of the
rules.

d1: confidence-of-premise
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1);
confidence-of-conclusion
= ANDIVC[(0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8).

d2: confidence-of-premise
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1);
confidence-of-conclusion
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1).

d3: confidence-of-premise
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1);
confidence-of-conclusion
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1).

(f) Now we aggregate the results of d1~d3 from (e):
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)]
= (0.6, 0.8, 1).

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if
defuzzification is applied) or “very likely” as a linguistic interpretation.

Example 5: We replace the component Dec (D) in Example 4 with the below:
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a
promotion with the combined results from A, B, and C. The decision knowledge used is
case-based reasoning technique.
When an e-mail is received with a title like:
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be:

(a) ~ (d), the same as in Example 4;
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section

4.3.2, we have:
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0,

1, 1)>;
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1,

1) (0, 0.8, 1)>;
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1,

1)>.
Step-2: The combined confidence of input is then calculated by

Cin = (ain, min, bin)
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1))
= (0, 0.8, 1)

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input
values with perfect confidence for the inference in D2

Step-4: Assume that component D2 through case-based reasoning
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have:

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1)
Then the output confidence of D2 is calculated by
Cout = ANDIVC (Cin, Cr*)
= (0, 0.8, 0.9)

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to
<“Promotion”, (0, 0.8, 0.9)>, it is the final result.

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if
defuzzification is applied).

4. KWS Inference Engine

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms
the static inference structure of target KBS. The execution on such a static inference structure
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to
control the execution of components in KBS by managing protocol between components,
and sending necessary signals for the order of execution. A component in an inference
structure constructed by KWS is a customized knowledge-based processing unit, and a field
in the inference structure is a space that stores input data or intermediate result during
inference. Fig. 16 gives an example of inference structure.

Fig. 16. An example of inference structure

4.1. Level of Component and Layer of Field
Based on the position of each component in inference hierarchy, a topological sorting
determines the execution order with which a child component should always be executed
before its parent component. For the purpose of such topological sorting, we need to first
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine
the level of all the components in a given knowledge hierarchy, as well as the layer of each
of the fields associated with the components.

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 209

“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be:
(a) S filters out the less relevant words and obtained a cleaned-up version:

“Offer Saving 99%”
(b) A recognizes “Offer” as an action word with a match in IVC (0, 1, 1).
(c) B recognizes “Saving” as a variant of benefit word“save” with IVC (0, 0.8, 1).
(d) C recognizes “%” as a percentage character with confidence (0, 1, 1) as well as

number “99” with confidence (0, 1, 1). Assume the knowledge of C is defined as:
If $or%-character or number then is-C.

So we have overall confidence for C is
ORIVC[(0, 1, 1), (0, 1, 1)] = (1, 1, 1).

(e) D combines the results from A, B, and C. Here, the confidence of conclusion is
defined as and (confidence-of-premise, confidence-of-rule). We check each of the
rules.

d1: confidence-of-premise
= ANDIVC[(0, 1, 1), (0, 0.8, 1)] = (0, 0.8, 1);
confidence-of-conclusion
= ANDIVC[(0, 0.8, 1), (0.8, 0.8, 0.8)] = (0, 0.8, 0.8).

d2: confidence-of-premise
= ORIVC[(0, 0.8, 1), (1, 1, 1)] = (0.8, 1, 1);
confidence-of-conclusion
= ANDIVC[(0.8, 1, 1), (0.4, 0.4, 0.4)] = (0.4, 0.4, 1).

d3: confidence-of-premise
= ANDIVC[(0, 1, 1), (1, 1, 1))] = (0, 1, 1);
confidence-of-conclusion
= ANDIVC[(0, 1, 1), (0.6, 0.6, 0.6)] = (0, 0.6, 1).

(f) Now we aggregate the results of d1~d3 from (e):
OR(g)IVC[(0, 0.8, 0.8), (0.4, 0.4, 1), (0, 0.6, 1)]
= (0.6, 0.8, 1).

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if
defuzzification is applied) or “very likely” as a linguistic interpretation.

Example 5: We replace the component Dec (D) in Example 4 with the below:
Dec2 (D2) - a decision component to decide whether the text under check is suspicious for a
promotion with the combined results from A, B, and C. The decision knowledge used is
case-based reasoning technique.
When an e-mail is received with a title like:
“Special Offer for … Saving up to 99% …”, the corresponding processing steps will be:

(a) ~ (d), the same as in Example 4;
(e) D2 combines the results from A, B, and C. Using Algorithm-1 given in Section

4.3.2, we have:
Step-1: Result from A <“Offer”, (0, 1, 1)> converted to <“Offer”, (1, 1, 1) (0,

1, 1)>;
 Result from B <“Saving”, (0, 0.8, 1)> converted to <“Saving”, (1, 1,

1) (0, 0.8, 1)>;
 Result from C <“99%”, (0, 1, 1)> converted to <“99%”, (1, 1, 1) (0, 1,

1)>.
Step-2: The combined confidence of input is then calculated by

Cin = (ain, min, bin)
= (min(0, 0, 0), min(1, 0.8, 1), min(1, 1, 1))
= (0, 0.8, 1)

Step-3: The data <“Offer”, “Saving”, “99%”> are then accepted as input
values with perfect confidence for the inference in D2

Step-4: Assume that component D2 through case-based reasoning
technique to get the result <“Promotion”, (0, 0.9, 1)>, we have:

Cr = (0, 0.9, 1) and Cin = (0, 0.8, 1)
Then the output confidence of D2 is calculated by
Cout = ANDIVC (Cin, Cr*)
= (0, 0.8, 0.9)

(f) Finally, we have the result <“Promotion”, (1, 1, 1)(0, 0.8, 0.9)> and converted to
<“Promotion”, (0, 0.8, 0.9)>, it is the final result.

Therefore, this e-mail is a commercial promotion with a high possibility 0.8 (if
defuzzification is applied).

4. KWS Inference Engine

As mentioned previously, KDL processor is to construct the knowledge hierarchy that forms
the static inference structure of target KBS. The execution on such a static inference structure
of KBS is carried out layer by layer in bottom-up manner. An inference engine is needed to
control the execution of components in KBS by managing protocol between components,
and sending necessary signals for the order of execution. A component in an inference
structure constructed by KWS is a customized knowledge-based processing unit, and a field
in the inference structure is a space that stores input data or intermediate result during
inference. Fig. 16 gives an example of inference structure.

Fig. 16. An example of inference structure

4.1. Level of Component and Layer of Field
Based on the position of each component in inference hierarchy, a topological sorting
determines the execution order with which a child component should always be executed
before its parent component. For the purpose of such topological sorting, we need to first
introduce two concepts: level of component, and layer of field. Algorithm-2 is to determine
the level of all the components in a given knowledge hierarchy, as well as the layer of each
of the fields associated with the components.

www.intechopen.com

Machine Learning210

The level of components and the layer of fields in the example given in Figure 16 are shown
in Table 3-a and Table 3-b, respectively.
Except usual tree structure, in inference structure there are some special graph structures
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For
example, in Figure 16 component D and E are the parents of component C, component B of
level-1 passes its result to component E of level-4. The order of execution is determined by a
topological sorting according to level of components. The key issue here is the data
consistency.

Component Level
A, B 1

C 2
D 3
E 4

Field Layer
F1, F2 1
F3, F4 2

F5 3
F6 4
F7 5

(a) The level of components (b) The layer of fields
Table 3. The level of components and the layer of fields for Figure 16

4.2. Protocol between Components
The protocol between components is described from three aspects: syntax, semantics and
data type. With the general classes of intelligent components defined, we have syntactical
rules indicating the possible connections between different classes. For instance, a
component of Confirmation class is allowed to send its output to the input of a component of
Decision class, but not allowed to do the same to the input of a component of Filtering class.
For each allowable connection between classes, we further set semantic rules with more
details to specify legal connections. A Filtering component may connect to another Filtering
component syntactically. However, there may be semantic constraints based on the detailed
types of knowledge used in each Filtering component. For instance, a Dictionary component
can be the support (child component) for a List component, but the reverse case does not
hold true.
At the component-to-component level, there are four kinds of protocol for the data type of
implementation.
1) single-to-single: a singleton data is connected to an input field of singleton.
2) single-to-multiple: a singleton data is connected to an input field of vector.
3) multiple-to-single: a vector data is connected to an input field of singleton.
4) multiple-to-multiple: a vector data is connected to an input field of vector.

Algorithm-2 (Determine level of component and layer of field):
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is

the layer of f;
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where

level(C) is the level of C;
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer

(fc2), ..., layer (fch)].

4.3. Forward Inference with Partial Feedback
It is always desired to get a “better” solution when knowledge-based processing involved in
an intelligent component can provide multiple candidates of solution for output. In order to
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with
partial feedback. When a component receives inputs, it executes and generates the result as
output. As a typical scenario, a component generates inference result and passes the result
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result
when the previously submitted result is found unsatisfactory. The rerun mechanism
provides a possible way to extend the forward inference mechanism in KBS. Final result will
only be generated when the inference is successful.
The inference in KBS constructed by KWS is basically a forward inference. As the simple
case when there is no feedback considered, the inference flow starts from layer-1 receiving
input data directly from application, goes up for the level-1 components to execute and
provide result as layer-2, and then further goes up for the level-2 components to execute, …,
finally has the last level components execute to provide result as the last layer, which
represents the inference result.
For a more general case when there is partial feedback introduced, if a component of level-k
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a
Rerun signal to the corresponding child component, and the current execution will be pulled
back down to the level of the child component accordingly. When there are several
components send Rerun signal to their child components, the current execution will be set as
the level that is the lowest among the levels of components that received Rerun signal.
Considering again the example given in Fig. 16, if component C sent a Rerun signal to
component B, then the current execution will be pulled back to level-1 for B to execute its
function again to generate next possible results. With a similar spirit, if component E sent a
Rerun signal to component B, then the current execution will also be pulled back to level-1.
It is important to notice that there are other two components C and D at a higher level than
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen
temporarily to ensure the data consistency.

4.3.1 States of Component
In order to indicate the execution status of a component, we introduce state of component. The
transition between states is shown in Fig. 17 and the explanation is listed in Table 4.

Fig. 17. The states of a component

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 211

The level of components and the layer of fields in the example given in Figure 16 are shown
in Table 3-a and Table 3-b, respectively.
Except usual tree structure, in inference structure there are some special graph structures
which need special handling by inference engine: 1) multiple parents, and 2) cross layer. For
example, in Figure 16 component D and E are the parents of component C, component B of
level-1 passes its result to component E of level-4. The order of execution is determined by a
topological sorting according to level of components. The key issue here is the data
consistency.

Component Level
A, B 1

C 2
D 3
E 4

Field Layer
F1, F2 1
F3, F4 2

F5 3
F6 4
F7 5

(a) The level of components (b) The layer of fields
Table 3. The level of components and the layer of fields for Figure 16

4.2. Protocol between Components
The protocol between components is described from three aspects: syntax, semantics and
data type. With the general classes of intelligent components defined, we have syntactical
rules indicating the possible connections between different classes. For instance, a
component of Confirmation class is allowed to send its output to the input of a component of
Decision class, but not allowed to do the same to the input of a component of Filtering class.
For each allowable connection between classes, we further set semantic rules with more
details to specify legal connections. A Filtering component may connect to another Filtering
component syntactically. However, there may be semantic constraints based on the detailed
types of knowledge used in each Filtering component. For instance, a Dictionary component
can be the support (child component) for a List component, but the reverse case does not
hold true.
At the component-to-component level, there are four kinds of protocol for the data type of
implementation.
1) single-to-single: a singleton data is connected to an input field of singleton.
2) single-to-multiple: a singleton data is connected to an input field of vector.
3) multiple-to-single: a vector data is connected to an input field of singleton.
4) multiple-to-multiple: a vector data is connected to an input field of vector.

Algorithm-2 (Determine level of component and layer of field):
1) For a field f that receives input data directly from application, set layer(f) = 1, where layer(f) is

the layer of f;
2) For a field f that serves as the output field of component C, set layer(f) = level(C) + 1, where

level(C) is the level of C;
3) For a component C with h (h ≥ 1) input fields fc1, fc2, ..., fch, set level(C) = max[layer(fc1), layer

(fc2), ..., layer (fch)].

4.3. Forward Inference with Partial Feedback
It is always desired to get a “better” solution when knowledge-based processing involved in
an intelligent component can provide multiple candidates of solution for output. In order to
fulfil this purpose, the inference in KBS constructed by KWS is a forward inference with
partial feedback. When a component receives inputs, it executes and generates the result as
output. As a typical scenario, a component generates inference result and passes the result
to its parent(s), and receives Rerun signal from parent(s) to provide next possible result
when the previously submitted result is found unsatisfactory. The rerun mechanism
provides a possible way to extend the forward inference mechanism in KBS. Final result will
only be generated when the inference is successful.
The inference in KBS constructed by KWS is basically a forward inference. As the simple
case when there is no feedback considered, the inference flow starts from layer-1 receiving
input data directly from application, goes up for the level-1 components to execute and
provide result as layer-2, and then further goes up for the level-2 components to execute, …,
finally has the last level components execute to provide result as the last layer, which
represents the inference result.
For a more general case when there is partial feedback introduced, if a component of level-k
(k = 2, 3, …) finds some of the input from its child component unsatisfactory, it will send a
Rerun signal to the corresponding child component, and the current execution will be pulled
back down to the level of the child component accordingly. When there are several
components send Rerun signal to their child components, the current execution will be set as
the level that is the lowest among the levels of components that received Rerun signal.
Considering again the example given in Fig. 16, if component C sent a Rerun signal to
component B, then the current execution will be pulled back to level-1 for B to execute its
function again to generate next possible results. With a similar spirit, if component E sent a
Rerun signal to component B, then the current execution will also be pulled back to level-1.
It is important to notice that there are other two components C and D at a higher level than
B, and with the Rerun signal sent to B, any execution starting from C and D will be frozen
temporarily to ensure the data consistency.

4.3.1 States of Component
In order to indicate the execution status of a component, we introduce state of component. The
transition between states is shown in Fig. 17 and the explanation is listed in Table 4.

Fig. 17. The states of a component

www.intechopen.com

Machine Learning212

State Explanation
Run The component will execute its function, if successful; the results will be sent to its

parent, if unsuccessful, the component will send a rerun signal to its child components.
Rerun The component will execute its rerun function, trying to generate next possible results. If

successful, the results will be sent to its parent, if unsuccessful, the component will send
a rerun signal to its child components.

Finish The run or rerun of component is successful.
Table 4. The explanation of component states

The state of an output field as same as the corresponding component which sends result to
the field, the explanation of field states is listed in Table 5.

State Explanation
Run Representing a field “waiting for obtaining result”.

Rerun Representing an output field “waiting for obtaining new result of rerun”.
Finish Representing a field “finished obtaining result”.

Table 5. The explanation of field states

Example 6: Consider a scenario of execution on the inference structure given in Fig. .

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from
layer-1, and component A and B executed and provided result as layer-2, finally, component
A and B updated their state to be “Finish”, and the current execution is updated to be at
level-2.

Time-2: The current execution is at level-2. Assume that the result from component B is

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is
pulled back down to level-1.

R – Run; RR – Rerun; F – Finish
Table 7. An example of inference flow

Time-3: Component B executed and provided next possible results as layer-2.

Time

Level Component
A B C D E

1 1 R R R R R
2 2 F F R R R
2 Assume that, C sent rerun signal to B
3 1 F RR R R R
3 Assume that, B generate next possible result
4 2 F F R R R
5 3 F F F R R
6 4 F F F F R
6 Assume that, E sent rerun signal to B, C, D
7 1 F RR RR RR R
7 Assume that, B generate next possible result
8 2 F F R RR R
9 3 F F F R R
10 4 F F F F R
11 5 F F F F F
11 The final result is in F7

Time-4, Time-5: Continued the inference in the same manner.
Time-6, Time-7: The situation is similar as Time-3.
Time-8, Time-9, Time-10, Time-11: Continued the inference.
Finally, the final result is in F7 at layer-5.
Table 7 lists out the state change of components.

4.3.2 Feedback Handling
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based
processing. When the inference engine calling execution(Cr), it passes the control to the
component Cr and waits for the return of execution result. When a feedback of reasoning is
considered, necessary interruption should be introduced to adjust the execution sequence.
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to
monitor feedback handling.
Considering an inference carried out in a KBS constructed by KWS, when an intelligent
component failed to work out a solution as its output with its local knowledge source, an
effort is expected to “bring back” the process to those field(s) or component(s) that provided
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge
hierarchy. This is achieved by the Rerun control of the KWS inference engine.
A component under Rerun state means it is not successful in the previous run of inference
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by
asking new input from child component(s), according to the type of protocol between an
input field of component Cr currently under Rerun and the output field of its corresponding
child component Cc. The main algorithm is given in Algorithm-3 with further
implementation details omitted.

Algorithm-3 (Control of execution, with k ≥ 2 components):
1) Get input data for all the layer-1 fields, and

set them as of Finish;
Set all other components and fields as of Run;

2) While (not all the components are of Finish)
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun

Then set currentFrozen : = minjlevel(Cj)
Else

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)];
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list

following nondecreasing order of level:
2-2-1) If Cr is of Run and

level(Cr) < currentFrozen and
all of its input field(s) are of Finish

Then If execution (Cr) /* successful */
Then set Cr and its output field as of Finish;
Else set Cr and its output field as of Rerun;

2-2-2) Else If Cr is of Rerun and
level(Cr) ≤ currentFrozen and
all of its input field(s) are of Finish

Then call PartialRerun(Cr).
/* else next component */

/* end of while */

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 213

State Explanation
Run The component will execute its function, if successful; the results will be sent to its

parent, if unsuccessful, the component will send a rerun signal to its child components.
Rerun The component will execute its rerun function, trying to generate next possible results. If

successful, the results will be sent to its parent, if unsuccessful, the component will send
a rerun signal to its child components.

Finish The run or rerun of component is successful.
Table 4. The explanation of component states

The state of an output field as same as the corresponding component which sends result to
the field, the explanation of field states is listed in Table 5.

State Explanation
Run Representing a field “waiting for obtaining result”.

Rerun Representing an output field “waiting for obtaining new result of rerun”.
Finish Representing a field “finished obtaining result”.

Table 5. The explanation of field states

Example 6: Consider a scenario of execution on the inference structure given in Fig. .

Time-1: The current execution is at level-1, and Field F1 and F2 received inputs from
layer-1, and component A and B executed and provided result as layer-2, finally, component
A and B updated their state to be “Finish”, and the current execution is updated to be at
level-2.

Time-2: The current execution is at level-2. Assume that the result from component B is

unsatisfactory for component C. C sent the Rerun signal to B to get next possible inputs, B
received the Rerun signal, and its state is updated to “Rerun”, and the current execution is
pulled back down to level-1.

R – Run; RR – Rerun; F – Finish
Table 7. An example of inference flow

Time-3: Component B executed and provided next possible results as layer-2.

Time

Level Component
A B C D E

1 1 R R R R R
2 2 F F R R R
2 Assume that, C sent rerun signal to B
3 1 F RR R R R
3 Assume that, B generate next possible result
4 2 F F R R R
5 3 F F F R R
6 4 F F F F R
6 Assume that, E sent rerun signal to B, C, D
7 1 F RR RR RR R
7 Assume that, B generate next possible result
8 2 F F R RR R
9 3 F F F R R
10 4 F F F F R
11 5 F F F F F
11 The final result is in F7

Time-4, Time-5: Continued the inference in the same manner.
Time-6, Time-7: The situation is similar as Time-3.
Time-8, Time-9, Time-10, Time-11: Continued the inference.
Finally, the final result is in F7 at layer-5.
Table 7 lists out the state change of components.

4.3.2 Feedback Handling
Algorithm-3 and Algorithm-4 provide forward inference with partial feedback. The
procedure execution() in Algorithm-3 is to call the specific component for knowledge-based
processing. When the inference engine calling execution(Cr), it passes the control to the
component Cr and waits for the return of execution result. When a feedback of reasoning is
considered, necessary interruption should be introduced to adjust the execution sequence.
Algorithm-3 does the main job of execution control but calls Algorithm-4 (PartialRerun) to
monitor feedback handling.
Considering an inference carried out in a KBS constructed by KWS, when an intelligent
component failed to work out a solution as its output with its local knowledge source, an
effort is expected to “bring back” the process to those field(s) or component(s) that provided
the input(s) to it. It introduces a need of bidirectional inference within part of the knowledge
hierarchy. This is achieved by the Rerun control of the KWS inference engine.
A component under Rerun state means it is not successful in the previous run of inference
and needs ‘redo’ the task to provide new (better) result. The handling of rerun starts by
asking new input from child component(s), according to the type of protocol between an
input field of component Cr currently under Rerun and the output field of its corresponding
child component Cc. The main algorithm is given in Algorithm-3 with further
implementation details omitted.

Algorithm-3 (Control of execution, with k ≥ 2 components):
1) Get input data for all the layer-1 fields, and

set them as of Finish;
Set all other components and fields as of Run;

2) While (not all the components are of Finish)
2-1) If there are any components Cj, 2 ≤ j ≤ k, currently under Rerun

Then set currentFrozen : = minjlevel(Cj)
Else

set currentFrozen := 1 + max[level (C1), level(C2), ..., level(Ck)];
2-2) Check component Cr (2 ≤ r ≤ k) in the execution list

following nondecreasing order of level:
2-2-1) If Cr is of Run and

level(Cr) < currentFrozen and
all of its input field(s) are of Finish

Then If execution (Cr) /* successful */
Then set Cr and its output field as of Finish;
Else set Cr and its output field as of Rerun;

2-2-2) Else If Cr is of Rerun and
level(Cr) ≤ currentFrozen and
all of its input field(s) are of Finish

Then call PartialRerun(Cr).
/* else next component */

/* end of while */

www.intechopen.com

Machine Learning214

When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the
component to provide next new result (if any) with the same previous input data. The KWS
inference engine tries to get new input data for the component Cr currently under Rerun,
through either getNext() or reExecution(). When the effort of getting new input data from its
child component Cc is successful either through getNext() or reExecution(), all the ancestor
component(s) of Cc as well as their output fields will be updated to Run state by calling
setRunAncestor() to clean up the result of previous run. As long as one of the child
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it
will remain as of Rerun and all its child components as well as their output fields will be set
as of Rerun.
In case that a single child component is supporting multiple parent components, a data
inconsistency should be avoided when partial feedback and rerun are considered. This
consistency is guaranteed by indicating the current frozen area. A component Cc being
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’
execution to other related components. A ‘frozen’ execution affects two groups of
components: (a) all components of Run state at a level equal to or higher than currentFrozen;
(b) all components of Rerun state at a level higher than currentFrozen.

Algorithm-4 (Partial Rerun from Cr):
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh,

If it is the output field of some child component Cc
Then Check the protocol connection from Cc to Cr:

Case: multiple-to-single
If getNext(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;

Else If reExecution(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;
/* end of case multiple-to-single */

Case: single-to-single:
Case: single-to-multiple:
Case: multiple-to-multiple:

If reExecution(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;

/* check next input field of Cr */
/* end of 1st for */

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh,
If it is a direct input from application
Then stop processing and report failure
Else /* it is the output field of some child component Cc */

set Cc and its output field as of Rerun;
/* end of 2nd for */

5. Conclusions

We have introduced the KWS as a framework of development tool for developers to model
and develop their customized KBS, provided the processing flow of KWS in constructing a
KBS, and discussed the major sub-systems of KWS, including KWS inference engine,
intelligent editor, KDL processor, and installer.
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at
two levels simultaneously: the content level of inference that relies only on the knowledge
sources stored “locally” in individual intelligent components, and the truth (confidence)
level of inference that contributes to the confidence flow throughout the entire KBS. We
have discussed the mechanism of TVFI as well as its implementation. The interval-valued
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types
of intelligent component and corresponding interpretability has also been discussed. KWS
inference engine has been explained in detail with the control algorithms of execution order
of components for a forward inference with partial feedback, the management of protocols,
and the handling of imprecision with TVFI and IVC.
Further effort will be put in handling knowledge imprecision with different types of
intelligent processing and their integration in hybrid intelligent systems.

6. Acknowledgement

This work was supported in part by the Macao Science and Technology Development Fund
under grant 048/2006/A.

7. References

L. Ding and Z. Shen (1994). Neural Network Implementation of Fuzzy Inference for

Approximate Case-based Reasoning, In: Neural and Fuzzy Systems: The Emerging
Science of Intelligence and Computing, Mitra, Sunanda.; Gupta, Madan M.; and
Kraske, Wolfgang, 28-56, SPIE Press

L. Ding, H.H. Teh, P.Z. Wang. and H.C. Lui (1996). A Prolog-like inference system based
on neural logic, Fuzzy Sets and Systems, Vol. 82, No. 2, 235-251

L. Ding and H.C. Lui (1999), A Knowledge-based Approach Applied in Intelligent Hand
Written Form Processing, Journal of Advanced Computational Intelligence, Vol. 3,
No. 3, 193-199

L. Ding (2007a). A Model of Hierarchical Knowledge Representation – Toward
Knowware for Intelligent System. Journal of Advanced Computational
Intelligence & Intelligent Informatics, Vol. 11, No. 10, pp. 1232-1240

L. Ding (2007b). Design and development of knowware system. Proceedings of 2nd
International Conference on Innovative Computing, Information and Control
(ICICIC’2007), pp. 17-17, Kumamoto, Japan.

L. Ding and S. Nadkarni (2007). Automatic Construction of Knowledge-Based System
Using Knowware System. Proceedings of 6th International Conference on Machine
Learning and Cybernetics, , pp. 789-794, Hong Kong, China

www.intechopen.com

Automatic Construction of Knowledge-Based System using Knowware System 215

When the inference engine calling getNext(Cc), it gives a signal to ask for the next possible
output from Cc. The procedure reExecution() does a similar job as execution(), but calls the
component to provide next new result (if any) with the same previous input data. The KWS
inference engine tries to get new input data for the component Cr currently under Rerun,
through either getNext() or reExecution(). When the effort of getting new input data from its
child component Cc is successful either through getNext() or reExecution(), all the ancestor
component(s) of Cc as well as their output fields will be updated to Run state by calling
setRunAncestor() to clean up the result of previous run. As long as one of the child
component of Cr could provide new input successfully, Cr will be of Run again, otherwise it
will remain as of Rerun and all its child components as well as their output fields will be set
as of Rerun.
In case that a single child component is supporting multiple parent components, a data
inconsistency should be avoided when partial feedback and rerun are considered. This
consistency is guaranteed by indicating the current frozen area. A component Cc being
required for a ‘rerun’ by one of its parent components Cr will cause a temporary ‘frozen’
execution to other related components. A ‘frozen’ execution affects two groups of
components: (a) all components of Run state at a level equal to or higher than currentFrozen;
(b) all components of Rerun state at a level higher than currentFrozen.

Algorithm-4 (Partial Rerun from Cr):
For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh,

If it is the output field of some child component Cc
Then Check the protocol connection from Cc to Cr:

Case: multiple-to-single
If getNext(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;

Else If reExecution(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;
/* end of case multiple-to-single */

Case: single-to-single:
Case: single-to-multiple:
Case: multiple-to-multiple:

If reExecution(Cc) /* successful */
Then set Cc and its output field as of Finish;

setRunAncestor(Cc);
Return;

/* check next input field of Cr */
/* end of 1st for */

For each of the h (h ≥ 1) input fields of Cr: fcr1, fcr2, ..., fcrh,
If it is a direct input from application
Then stop processing and report failure
Else /* it is the output field of some child component Cc */

set Cc and its output field as of Rerun;
/* end of 2nd for */

5. Conclusions

We have introduced the KWS as a framework of development tool for developers to model
and develop their customized KBS, provided the processing flow of KWS in constructing a
KBS, and discussed the major sub-systems of KWS, including KWS inference engine,
intelligent editor, KDL processor, and installer.
The inference in KBS constructed by KWS is a truth value flow inference (TVFI) realized at
two levels simultaneously: the content level of inference that relies only on the knowledge
sources stored “locally” in individual intelligent components, and the truth (confidence)
level of inference that contributes to the confidence flow throughout the entire KBS. We
have discussed the mechanism of TVFI as well as its implementation. The interval-valued
confidence (IVC) has been adopted for the representation of imprecision and uncertainty in
KBS constructed by KWS. An IVC is represented by a fuzzy number defined as a fuzzy
subset of [0, 1]. Basic logic operations with IVC have been defined and their properties
discussed. Based on the concepts of TVFI and IVC, confidence transfer with different types
of intelligent component and corresponding interpretability has also been discussed. KWS
inference engine has been explained in detail with the control algorithms of execution order
of components for a forward inference with partial feedback, the management of protocols,
and the handling of imprecision with TVFI and IVC.
Further effort will be put in handling knowledge imprecision with different types of
intelligent processing and their integration in hybrid intelligent systems.

6. Acknowledgement

This work was supported in part by the Macao Science and Technology Development Fund
under grant 048/2006/A.

7. References

L. Ding and Z. Shen (1994). Neural Network Implementation of Fuzzy Inference for

Approximate Case-based Reasoning, In: Neural and Fuzzy Systems: The Emerging
Science of Intelligence and Computing, Mitra, Sunanda.; Gupta, Madan M.; and
Kraske, Wolfgang, 28-56, SPIE Press

L. Ding, H.H. Teh, P.Z. Wang. and H.C. Lui (1996). A Prolog-like inference system based
on neural logic, Fuzzy Sets and Systems, Vol. 82, No. 2, 235-251

L. Ding and H.C. Lui (1999), A Knowledge-based Approach Applied in Intelligent Hand
Written Form Processing, Journal of Advanced Computational Intelligence, Vol. 3,
No. 3, 193-199

L. Ding (2007a). A Model of Hierarchical Knowledge Representation – Toward
Knowware for Intelligent System. Journal of Advanced Computational
Intelligence & Intelligent Informatics, Vol. 11, No. 10, pp. 1232-1240

L. Ding (2007b). Design and development of knowware system. Proceedings of 2nd
International Conference on Innovative Computing, Information and Control
(ICICIC’2007), pp. 17-17, Kumamoto, Japan.

L. Ding and S. Nadkarni (2007). Automatic Construction of Knowledge-Based System
Using Knowware System. Proceedings of 6th International Conference on Machine
Learning and Cybernetics, , pp. 789-794, Hong Kong, China

www.intechopen.com

Machine Learning216

L. Ding (2008). Inference in Hybrid KBS with Interval-Valued Confidence. Proceedings of
2008 IEEE World Congress on Computational Intelligence / 2008 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp.1350-1357, Hong Kong,
China.

L. Ding and S.L. Lo (2008). Truth Value Flow Inference in Hybrid KBS Constructed by
KWS. Proceedings of 3rd International Conference on Innovative Computing
Information and Control (ICICIC’2008), pp. 311-314, Dalian, China

J.-S.R. Jang, C.-T. Sun and E. Mizutani (1997). Neural-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice Hall,
NJ.

Z. Shen and L. Ding (1994). A Representation of Exponential Form on Fuzzy Logic. Fuzzy
Sets and Systems, Vol. 68, pp.267-280

P.Z. Wang and H.M. Zhang (1993). Truth value flow inference and its mathematical
theory, In: Between Mind and Computer, Eds. P.Z. Wang, K.F. Loe, 325-358, World
Scientific, Singapore.

R.R. Yager and D.P. Filev (1994), Essentials of Fuzzy Modeling and Control, John and
Wiley and Sons, Inc., NJ

L.A. Zadeh (1975), The concept of a linguistic variable ans its applicatin to approximate
reasoning: Parts 1, 2 and 3, Informtion Sciences, 8, pp.199-249; 8, pp.301-357; 9,
pp.43-80.

www.intechopen.com

Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-033-9

Hard cover, 438 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Machine learning techniques have the potential of alleviating the complexity of knowledge acquisition. This

book presents today’s state and development tendencies of machine learning. It is a multi-author book. Taking

into account the large amount of knowledge about machine learning and practice presented in the book, it is

divided into three major parts: Introduction, Machine Learning Theory and Applications. Part I focuses on the

introduction to machine learning. The author also attempts to promote a new design of thinking machines and

development philosophy. Considering the growing complexity and serious difficulties of information processing

in machine learning, in Part II of the book, the theoretical foundations of machine learning are considered, and

they mainly include self-organizing maps (SOMs), clustering, artificial neural networks, nonlinear control, fuzzy

system and knowledge-based system (KBS). Part III contains selected applications of various machine

learning approaches, from flight delays, network intrusion, immune system, ship design to CT and RNA target

prediction. The book will be of interest to industrial engineers and scientists as well as academics who wish to

pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as

computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a

reference for software professionals and practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sio-Long Lo and Liya Ding (2010). Automatic Construction of Knowledge-Based System Using Knowware

System, Machine Learning, Yagang Zhang (Ed.), ISBN: 978-953-307-033-9, InTech, Available from:

http://www.intechopen.com/books/machine-learning/automatic-construction-of-knowledge-based-system-

using-knowware-system

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

