104 research outputs found

    A two phase framework for visible light-based positioning in an indoor environment: performance, latency, and illumination

    Full text link
    Recently with the advancement of solid state lighting and the application thereof to Visible Light Communications (VLC), the concept of Visible Light Positioning (VLP) has been targeted as a very attractive indoor positioning system (IPS) due to its ubiquity, directionality, spatial reuse, and relatively high modulation bandwidth. IPSs, in general, have 4 major components (1) a modulation, (2) a multiple access scheme, (3) a channel measurement, and (4) a positioning algorithm. A number of VLP approaches have been proposed in the literature and primarily focus on a fixed combination of these elements and moreover evaluate the quality of the contribution often by accuracy or precision alone. In this dissertation, we provide a novel two-phase indoor positioning algorithmic framework that is able to increase robustness when subject to insufficient anchor luminaries and also incorporate any combination of the four major IPS components. The first phase provides robust and timely albeit less accurate positioning proximity estimates without requiring more than a single luminary anchor using time division access to On Off Keying (OOK) modulated signals while the second phase provides a more accurate, conventional, positioning estimate approach using a novel geometric constrained triangulation algorithm based on angle of arrival (AoA) measurements. However, this approach is still an application of a specific combination of IPS components. To achieve a broader impact, the framework is employed on a collection of IPS component combinations ranging from (1) pulsed modulations to multicarrier modulations, (2) time, frequency, and code division multiple access, (3) received signal strength (RSS), time of flight (ToF), and AoA, as well as (4) trilateration and triangulation positioning algorithms. Results illustrate full room positioning coverage ranging with median accuracies ranging from 3.09 cm to 12.07 cm at 50% duty cycle illumination levels. The framework further allows for duty cycle variation to include dimming modulations and results range from 3.62 cm to 13.15 cm at 20% duty cycle while 2.06 cm to 8.44 cm at a 78% duty cycle. Testbed results reinforce this frameworks applicability. Lastly, a novel latency constrained optimization algorithm can be overlaid on the two phase framework to decide when to simply use the coarse estimate or when to expend more computational resources on a potentially more accurate fine estimate. The creation of the two phase framework enables robust, illumination, latency sensitive positioning with the ability to be applied within a vast array of system deployment constraints

    Identification and Mitigation of NLOS based on Channel Information Rules for Indoor UWB Localization

    Get PDF
    Indoor localization is an emerging technology that can be utilized for developing products and services for commercial usage, public safety, military applications and so forth. Commercially it can be applied to track children, people with special needs, help navigate blind people, locate equipment, mobile robots, etc. The objective of this thesis is to enable an indoor mobile vehicle to determine its location and thereby making it capable of autonomous localization under Non-light of sight (NLOS) conditions. The solution developed is based on Ultra Wideband (UWB) based Indoor Positioning System (IPS) in the building. The proposed method increases robustness, scalability, and accuracy of location. The out of the box system of DecaWave TREK1000 provides tag tracking features but has no method to detect and mitigate location inaccuracies due to the multipath effect from physical obstacles found in an indoor environment. This NLOS condition causes ranges to be positively biased, hence the wrong location is reported. Our approach to deal with the NLOS problem is based on the use of Rules Classifier, which is based on channel information. Once better range readings are achieved, approximate location is calculated based on Time of Flight (TOF). Moreover, the proposed rule based IPS can be easily implemented on hardware due to the low complexity. The measurement results, which was obtained using the proposed mitigation algorithm, show considerable improvements in the accuracy of the location estimation which can be used in different IPS applications requiring centimeter level precision. The performance of the proposed algorithm is evaluated experimentally using an indoor positioning platform in a laboratory environment, and is shown to be significantly better than conventional approaches. The maximum positioning error is reduced to 15 cm for NLOS using both an offline and real time tracking algorithm extended from the proposed approach

    A survey on acoustic positioning systems for location-based services

    Get PDF
    Positioning systems have become increasingly popular in the last decade for location-based services, such as navigation, and asset tracking and management. As opposed to outdoor positioning, where the global navigation satellite system became the standard technology, there is no consensus yet for indoor environments despite the availability of different technologies, such as radio frequency, magnetic field, visual light communications, or acoustics. Within these options, acoustics emerged as a promising alternative to obtain high-accuracy low-cost systems. Nevertheless, acoustic signals have to face very demanding propagation conditions, particularly in terms of multipath and Doppler effect. Therefore, even if many acoustic positioning systems have been proposed in the last decades, it remains an active and challenging topic. This article surveys the developed prototypes and commercial systems that have been presented since they first appeared around the 1980s to 2022. We classify these systems into different groups depending on the observable that they use to calculate the user position, such as the time-of-flight, the received signal strength, or the acoustic spectrum. Furthermore, we summarize the main properties of these systems in terms of accuracy, coverage area, and update rate, among others. Finally, we evaluate the limitations of these groups based on the link budget approach, which gives an overview of the system's coverage from parameters such as source and noise level, detection threshold, attenuation, and processing gain.Agencia Estatal de InvestigaciónResearch Council of Norwa

    High-precision UWB based localisation for UAV in extremely confined environments

    Get PDF
    In this paper, a high-precision ultra-wideband (UWB) based unmanned aerial vehicle (UAV) localisation approach is proposed for applications in extremely confined environments. It is motivated by the emerging demand on autonomous inspection in such environments that are hard or impossible for humans to access. Instead of the traditional localisation techniques such as global positioning system (GPS), vision based or other localisation techniques, the UWB based localisation technique is adopted for precise UAV positioning due to its high accuracy, implementation simplicity and suitability in such environments. To avoid the requirement on strict synchronisation between sensor nodes and provide decimetre-level accuracy, the proposed algorithm combined the two-way time-of-flight (TW-TOF) localisation scheme with the maximum likelihood estimation (MLE) method. This differs from applications in other environments, the number and deployment area of anchor nodes are highly restricted in such environments. Therefore, an in-depth investigation for the anchor deployment strategies is presented to find the most suitable geometry configurations with accurate and robust performance. Finally, extensive simulations, static experiments and flight tests have been conducted to validate the localisation performance under different deployment strategies. The experiments show that average localisation error and standard deviation (STD) under 0.2 m and 0.07 m are obtainable by using our proposed approach under three different geometry configurations of anchor nodes. This is suitable for different applications in extremely confined environments

    Enhancement of precise underwater object localization

    Get PDF
    Underwater communication applications extensively use localization services for object identification. Because of their significant impact on ocean exploration and monitoring, underwater wireless sensor networks (UWSN) are becoming increasingly popular, and acoustic communications have largely overtaken radio frequency (RF) broadcasts as the dominant means of communication. The two localization methods that are most frequently employed are those that estimate the angle of arrival (AOA) and the time difference of arrival (TDoA). The military and civilian sectors rely heavily on UWSN for object identification in the underwater environment. As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature of the underwater environment. Time and position data are the two key parameters to accurately define the position of an object. Moreover, due to climate change there is now a need to constrain energy consumption by UWSN to limit carbon emission to meet net-zero target by 2050. To meet these challenges, we have developed an efficient localization algorithm for determining an object position based on the angle and distance of arrival of beacon signals. We have considered the factors like sensor nodes not being in time sync with each other and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach can achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When compared to existing localization approaches, the mean estimation error (MEE) and energy consumption figures, the proposed approach outperforms them. The MEEs is shown to vary between 84.2154m and 93.8275m for four trials, 61.2256m and 92.7956m for eight trials, and 42.6584m and 119.5228m for twelve trials. Comparatively, the distance-based measurements show higher accuracy than the angle-based measurements
    corecore