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Abstract: Underwater communication applications extensively use localization services for object identification. Because of their 18 

significant impact on ocean exploration and monitoring, underwater wireless sensor networks (UWSN) are becoming increasingly 19 

popular, and acoustic communications have largely overtaken radio frequency (RF) broadcasts as the dominant means of communi- 20 

cation. The two localization methods that are most frequently employed are those that estimate the angle of arrival (AOA) and the 21 

time difference of arrival (TDoA). The military and civilian sectors rely heavily on UWSN for object identification in the underwater 22 

environment. As a result, there is a need in UWSN for an accurate localization technique that accounts for dynamic nature of the 23 

underwater environment. Time and position data are the two key parameters to accurately define the position of an object. Moreover, 24 

due to climate change there is now a need to constrain energy consumption by UWSN to limit carbon emission to meet net-zero 25 

target by 2050. To meet these challenges, we have developed an efficient localization algorithm for determining an object position 26 

based on the angle and distance of arrival of beacon signals. We have considered the factors like sensor nodes not being in time sync 27 

with each other and the fact that the speed of sound varies in water. Our simulation results show that the proposed approach can 28 

achieve great localization accuracy while accounting for temporal synchronization inaccuracies. When compared to existing locali- 29 

zation approaches, the mean estimation error (MEE) and energy consumption figures, the proposed approach outperforms them. 30 

The MEEs is shown to vary between 84.2154m and 93.8275m for four trials, 61.2256m and 92.7956m for eight trials, and 42.6584m 31 

and 119.5228m for twelve trials. Comparatively, the distance-based measurements show higher accuracy than the angle-based meas- 32 

urements. 33 

Keywords: Angle of Arrival, Underwater Wireless Sensor Network, Time Difference of Arrival, Mean Estimation Error, Localization, 34 

Time of Arrival. 35 

1. Introduction 36 

Even though it only accounts for roughly 0.05% of the total mass of the Earth's landmass, water has covered approxi- 37 

mately 70% of the planet's surface. Nevertheless, water has always been an essential component in the expansion of life 38 

on Earth, particularly in the form of creatures. If there were no water on Earth, it would be nothing more than a lifeless 39 

rock in the universe. More research or exploration needs to be done on the planet beneath the waves to benefit humanity. 40 

Underwater communication systems have swiftly acquired widespread adoption due to the many potential uses that 41 

can be implemented in the aquatic environment [1]. 42 

Due to the high level of attenuation that increases with the conditions of sea, i.e., temperature, and salt [2], electromag- 43 

netic (EM) waves propagating underwater travel over relatively small distances. Also, underwater radio frequency (RF) 44 

communications exhibit high levels of inter-symbol interference (ISI). Because of these issues, terrestrial wireless net- 45 

working standards cannot be used in underwater environments; over the past year, various routing algorithms have 46 

been proposed to address the unique characteristics of this type of environment, and the unique challenges it presents 47 

in terms of application scenarios [3].  48 
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Acoustic communications are the most popular choice for UWSN since they facilitate efficient network planning and 49 

operation. The low data rate and significant propagation latency of acoustic communications necessitate an accurate 50 

understanding of underwater sensor position information for developing network design and routing algorithms. Be- 51 

cause nodes move around while submerged, these protocols must regularly save location updates. This circumstance 52 

results in a very high data load and significant energy consumption. Similarly, to Terrestrial Wireless Sensor Networks 53 

(TWSN), the sensor nodes require batteries for operation; however, replacing or recharging such batteries in a marine 54 

setting presents several challenges. Therefore, the upkeep of sensor node availability and the extension of the network's 55 

lifetime presents a formidable challenge to any UWSN approach. Underwater localization is a problematic issue because 56 

of the harsh conditions of the ocean, such as its restricted bandwidth, long propagation delay, spreading, and so on. 57 

Figure 1 depicts the UWSN according to their system architecture. 58 

 59 

Figure 1. Underwater Wireless Sensor Network System Architecture 60 

Underwater wireless sensor networks are the foundation for various applications that manage observed data. This sen- 61 

sor node can be in various forms, including static, mobile, and hybrid nodes, all of which send data via a wireless 62 

network. While Global Positioning System (GPS) and Radio Frequency IDentification (RFID) are today the most often 63 

used technologies for terrestrial localization, Wireless Sensor Networks (WSNs) and several other technologies are pav- 64 

ing the way for the future. However, radio frequency transmissions are severely attenuated underwater, and underwa- 65 

ter sensor networks can only use RF signals ranging from 30 Hz to 300 Hz. As a result, either a powerful signal or a 66 

large antenna is necessary.  67 

Some characteristics of underwater sensor networks set them apart from their terrestrial counterparts. The physical 68 

parameters under which underwater acoustic channels operate are often considered to impose severe bandwidth con- 69 

straints. Similarly, optical signals are attenuated and dispersed significantly in aquatic environments [4-6]. As a result, 70 

neither of these techniques is appropriate for application in submerged environments. Sound waves are, in any event, 71 

the utmost auspicious means of communication for UWSN. Lower acoustic frequencies (10 Hz to 1 MHz) have a large 72 

wavelength but a narrow bandwidth. 73 

Management and network protocols are intrinsically linked to the network's overall architecture. Underwater localiza- 74 

tion is essential since it serves as the foundation for all other possible capabilities, such as monitoring data and mobility 75 

of nodes [7]. When developing localization algorithms, it is essential to consider the desired quality features. These are 76 

rapid coverage, extensive coverage, high accuracy, minimal communication costs, and scalability. These elements add 77 

complications to the algorithm, which must be circumvented if we are to achieve success. In addition to localization 78 

and temporal synchronization, the problems mentioned above need unique network and transit design methodologies 79 

for UWSN. Earlier studies, such as [8, 9], and so on, have covered some of these topics in greater detail. In the context 80 



 

 

of wireless sensor networks, pin-pointing the specific locality of each sensor node in a UWSN is referred to as "localiza- 81 

tion." Several localization techniques for TWSNs have been proposed. In contrast, UWSNs have access to a limited 82 

number of localization approaches. The distinctive qualities of UWSN distinguish it from TWSN in fundamental ways. 83 

Additionally, UWSNs have come a long way during the previous decade. Early warning systems for earthquakes and 84 

tsunamis, underwater martial surveillance, ocean research, celestial navigation, biological applications, and pollution 85 

control are just a few fields that can benefit UWSNs [10]. However, localization in an underwater environment poses a 86 

unique set of challenges due to factors such as the depth-dependent speediness of sound and the motion of sensor nodes 87 

due to activities like shipping and water current. Additional challenges are given by an underwater setting, such as the 88 

deployment of nodes, fluctuations in signal intensity, time synchronization, variations in sound speed, and acoustic 89 

wave characteristics, to name a few. Problems with energy efficiency, localization, and routing protocols are just a few 90 

examples of the many that still need to be addressed in the UWSN. Once a sensor node is localized, the observed data 91 

can be understood. Many localization mechanisms have been designed for WSNs, but they cannot be used in UWSNs 92 

without significant modification. 93 

In the field of UWSNs, there has recently been a surge in the amount of interest in using Distributed Antenna Systems 94 

(DAS) to connect to wireless communication networks. In a WSN, individual antennas are dispersed and connected by 95 

UWANs, an external connection that connects sensor nodes via radio [11-12]. Two or more of the internal sensor com- 96 

ponents of a sub-merged or acoustically isolated by cluster and cluster head sensors followed by sink and base station, 97 

as shown in Figure 2. 98 

 99 

Figure 2. Internal Structure of UWSN System Architecture 100 

A variety of commercially available underwater navigation systems perform their own self-localization based on read- 101 

ings of direction and speed. When put through their paces in a laboratory context, some of these algorithms, on the 102 

other hand, demonstrate a navigational function that is dependable across relatively short distances. In contrast, the 103 

cumulative errors in these systems often cause a decline in their performance over time, resulting in a loss of precision. 104 

As a result, network localization algorithms must use both range approaches and submerged acoustic emissions as 105 

essential components. It is within the realm of possibility for sensor nodes to independently estimate their depth, pos- 106 

sibly through the utilization of pressure probes. In order for these methods of localization to be effective, it is necessary 107 

to acquire distance readings from a minimum of three anchor nodes or other reference nodes that are already known 108 

[13]. Because of the high attenuation of acoustic signals when traveling through water, the topology of the positioning 109 

network will probably be impeded. 110 

Information gathered by sensor nodes in a two-dimensional underwater sensor network is gathered at anchor nodes 111 

placed at various depths around the ocean. The anchored nodes and the submerged sinks can communicate via acoustic 112 

linkages. The sinks collect data from the sensor nodes and send it to the offshore base station through the surface station. 113 

As a result, we can now purchase sinks outfitted with horizontal and vertical transceivers. While the vertical transceiver 114 



 

 

communicates with the base station, the horizontal transceiver communicates with the sensor nodes to collect data and 115 

send commands. Because of the greater depth at which a vertical transceiver may operate can cover a large area [14]. 116 

The acoustic transceiver-equipped surface links can control parallel communication between many sinks at different 117 

depths. After that, long-range RF transmitters will establish a link between the surface and offshore sinks. 118 

Localization algorithms are often classified into two types: Range-based algorithms and Range-free algorithms [15]. 119 

Sensor nodes in a range-based algorithm use angle or distance information to localize themselves and anchor sensor 120 

nodes. This information can be determined using Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of 121 

Arrival (AoA), and Received Signal Strength Indicator (RSSI). Furthermore, range-free localization makes use of con- 122 

nectivity information to find sensor nodes. 123 

The primary goal of data mining in wireless sensor networks is to precisely and swiftly extract application-oriented 124 

patterns from a continuous stream of quickly changing data that originates from a sensor network. This goal can be 125 

accomplished through the use of specialized software. Because it is impossible to save all of the data under these cir- 126 

cumstances, the data must be processed as quickly as possible [16-17]. Processing high-velocity data at a higher rate is 127 

therefore required for data mining. The management of static data makes use of data mining techniques that were 128 

developed in the past. Both the multi-step and the multi-scan methods should be utilized in order to analyze static data 129 

sets. The data that WSNs produce cannot be mined efficiently using traditional data mining techniques because of its 130 

high dimensionality, massive volume, and distributed nature. 131 

Underwater communication and positioning are indeed areas of ongoing research and development due to the chal- 132 

lenges posed by the dynamic underwater environment and increasing interference. While it's important to recognize 133 

the significance of accurate and precise underwater positioning, it is also crucial to ensure that research in this field 134 

incorporates innovative approaches.  135 

 136 

We can enhance its innovativeness and contribute to the advancement of underwater communication and positioning 137 

research by considering the following aspects: 138 

1. Novel Techniques: Investigate and propose new techniques or methodologies that can overcome the existing 139 

limitations in underwater positioning. This could involve incorporating advancements in signal processing, 140 

machine learning, or sensor technologies specifically tailored for underwater environments. 141 

2. Multi-Sensor Integration: Explore the fusion of multiple sensors or data sources, such as acoustic, optical, or 142 

inertial sensors, to improve the accuracy and reliability of underwater positioning systems. Developing inno- 143 

vative algorithms that combine information from different sensors can lead to more robust positioning solutions. 144 

3. Cooperative Localization: Investigate cooperative localization techniques that leverage collaboration among un- 145 

derwater nodes or vehicles to enhance positioning accuracy. This could involve designing distributed algo- 146 

rithms or communication protocols that enable cooperative positioning using information exchanged among 147 

networked underwater devices. 148 

4. Autonomous Underwater Vehicles (AUVs): Focus on the integration of positioning capabilities into AUVs, allow- 149 

ing them to navigate autonomously and accurately in complex underwater environments. Consider exploring 150 

advanced algorithms for AUV localization and path planning, taking into account factors such as underwater 151 

terrain mapping and obstacle avoidance. 152 

5. Energy-Efficient Solutions: Address the energy constraints typically encountered in underwater communication 153 

and positioning systems. Innovative techniques for optimizing power consumption, such as low-power com- 154 

munication protocols, energy harvesting, or energy-efficient signal processing algorithms, can contribute to 155 

longer operational lifetimes and improved system performance. 156 



 

 

6. Underwater Network Architectures: Investigate novel network architectures or communication protocols that can 157 

enhance the reliability and efficiency of underwater positioning systems. For instance, exploring the use of un- 158 

derwater sensor networks, underwater acoustic networks, or hybrid communication approaches can offer new 159 

perspectives on underwater positioning. 160 

The severe physical characteristics of the undersea environment characterize UWSN and contribute to the network's 161 

limited bandwidth. Underwater environments bring a distinct set of challenges for the localization process. These dif- 162 

ficulties result from the significant delay in transmission induced by the variable speed of sound. In this article we have 163 

proposed two effective localization methods for UWSNs: measurements based on distance and angles. The sensor nodes 164 

are first determined underwater using the proposed approaches. When it comes to the localization and detection of 165 

targets in the underwater environment, the measurement of Mean Estimation Error (MEEs) is second to the localization 166 

of nodes as the most crucial step. The two fundamental aspects that make up localization are the localization of sensor 167 

nodes and the measurement of MEEs while localization is in progress. The simulation findings make it abundantly 168 

evident that proposed localization algorithms can significantly cut down on the MEEs, resulting in decreased commu- 169 

nication costs and a high level of accuracy. 170 

The contributions of this manuscript are:  171 

➢ The design and implement the optimization of precise and efficient object localization for underwater wireless 172 

sensors network. 173 

➢ Analyzes of the object localization as a function of the number of underwater wireless sensor nodes. 174 

➢ Trade-off analyzes between distance-based localization and angle-based localization algorithms in the UWSN en- 175 

vironment. 176 

➢ Recommendation of an appropriate localization algorithm based on the targeted performance metric for under- 177 

water wireless sensor networks. 178 

The remainder of the manuscript is organized as follows. The related studies that are discussed in Section II include the 179 

associated work, the context, the data, the information, the UWSN communication technologies, and the underwater 180 

localization methods. In Section III, an explanation is given for each of the localization strategies that have been sug- 181 

gested. In addition, the proposed design and simulation parameters are discussed in Section IV. Simulation results are 182 

assessed in Section V. In Section VI, a conclusion is drawn on the proposed results. 183 

2. Related Studies 184 

This section explains the idea of underwater localization. Then, we will look at some more popular methods for locat- 185 

ing underwater things.   186 

Sung Hyun Park et al. [18] modified the well-known ALOHA (Medium Access Convention) model in 2019 to enhance 187 

channel utilization. The new model features enhanced ALOHA-Q (UW-ALOHA-Q). Unusual activity, a reduction in 188 

the number of openings per outline, and a unified arbitrary conspiracy are suggested as ways to improve UW-ALOHA- 189 

Q [19]. The suggested methodology comprehensively improves utilization regarding the number of openings per out- 190 

line while providing yet another arbitrary back-off mechanism to achieve impact-free planning. For subsea systems 191 

with a range of 1000 meters, UW-ALOHA-Q boosted channel usability by up to 24.6 times [20]. 192 

Erol et al. [21] described that most oceanographic applications rely on localizing sensor nodes along long or short base- 193 

lines (LBL or SBL). In both instances, sensor positions are deduced from auditory interactions between sensors and a 194 

network of receivers placed in predetermined places (Rx). The region of operations includes subsurface moorings and 195 

the seafloor, which are home to acoustic antennas for the LBL system. In contrast, short-baseline localization (SBL) 196 

involves a spacecraft passing behind sensor nodes and using a short-range emitter source. Additionally, a vessel is used 197 

as part of a commercially available SBL localization system to locate underwater machinery. Prior to deployment, both 198 

algorithms needed substantial preparation and financial expenditures. 199 



 

 

Cheng et al. [22] gave two types of underwater acoustic localization: range-based and range-free. The range-based ap- 200 

proach first uses TDOA, TOA, AOA, and RSSI to calculate distances or angles to selected anchor sensor nodes, as shown 201 

in Figure 3. They then translated the ranges into several coordinate systems using multilateration and triangulation 202 

techniques. As an alternative, the range-free method forecasts the positions of sensor nodes in the network based on the 203 

locations of neighboring anchor sensor nodes. Radar, sonar, and wireless communication devices depend on accurate 204 

distance assessment of targets. The Minimum Variance Method (MVM), conventional beam forming, the Weighted 205 

Subspace Fitting (WSF) algorithm, and the Estimation of Signal Parameters via Rotational Invariance Techniques (ES- 206 

PRIT) algorithm are just a few of the DOA estimation algorithms that have been developed in the past. 207 

Biao et al. [23] provided a DOA estimate method for underwater acoustic targets and the micro underwater localization 208 

platform. In order to do this, the authors looked into several formulations for the acoustic target localization with sensor 209 

array problem within the context of sparse signal representation. Both narrow-band and wide-band environments are 210 

compatible with the strategy. The position of a signal at a dumb node is determined by its DOA. One can determine the 211 

signal's direction by calculating the receiver's propagation delay with the reference angle, which can be worked out 212 

with the help of a direct reference [24]. Using this method, the AOA for a dumb node's location is found using at least 213 

three beacon nodes. To find the dumb node, it is necessary to know where at least three beacon nodes and the three 214 

AOA are. When directional antennas are used, it is possible to figure out the AOA. Directional antennas can be put on 215 

beacon sensor nodes if they are used. A directional antenna at the top of a rotating sensor node sends beacon signals in 216 

all directions [25]. 217 

 218 

Figure 3. Underwater Localization Algorithms 219 

Rahman et al. [26] proposed that the fundamental goal of a localization strategy is to find the location of sensor nodes 220 

in a network of sensors (nodes that already know where they are) relative to or precisely concerning a small number of 221 

anchor nodes. There are two ways to accomplish this. Furthermore, the article presents a system that uses less energy 222 

and can identify and collect data on moving objects. The localization algorithm can be classified into two groups based 223 

on the approaches used to establish the location of anything: range-based and range-free. 224 

Han et al. [27] given range-based localization methods, the position of a sensor node can be computed by measuring 225 

the angle or distance between the node and its neighbors. Range-free algorithms, on the other hand, assume that the 226 

distance or angle information gathered by neighboring sensor nodes cannot be used for positioning due to hardware 227 

limits and costs, which spreads anchor sensor nodes over all networks and uses long-range acoustic channels to com- 228 

municate with buoys on the water's surface, is widely regarded as one of the best attempts at a localization method in 229 

UWSN. 230 

Isik et al. [28] shared that Ordinary localization and anchor node localization constitute the majority of the Localization 231 

method, which can be further subdivided into its component pieces. The messages transmitted to the ordinary sensor 232 

node originate at the anchor sensor node. The anchor communicates with the surface buoys using the anchor sensor 233 

node. Following that, an ordinary node will identify its location by calculating its distance from surface buoys in the 234 

same manner as an anchor node. As a result, it is not required because a normal sensor node can establish its location. 235 

Furthermore, the researchers assume that many stationary sensor nodes underwater have the same bearing [29]. Some 236 



 

 

sensor nodes can run the range algorithm by transmitting messages only in one way and synchronizing their clocks, 237 

both challenging operations in UWSNs. 238 

Zhang et al. [30] reported that due to the underwater environment's features for signal propagation, UWSNs face a 239 

particular set of obstacles in developing wireless communication and network protocols. In a mobile sink design, a 240 

mobile sink moves across the network to disseminate non-information without first waiting for it to be sent by the 241 

sensors, hence avoiding multi-hop transmissions. Some networks use a method known as area partitioning to decrease 242 

the travel time between the sink sensor node and the sink and to create clusters that boost output. We suggest a trans- 243 

mission strategy based on superposition coding to increase the throughput of down-link command messages to sensor 244 

nodes. 245 

Emokpae et al. [31] discovered that because signals transmitted by the global positioning system cannot penetrate water, 246 

it will be necessary to find an alternative way to locate sensor nodes. Most of these techniques needed either the align- 247 

ment of two approaches or range measurements between the talking sensor nodes, such as TDoA, ToA, AoA, and RSSI. 248 

Recent years have seen a rise in the focus placed on locating sensor nodes deep within the water. The vast majority of 249 

the localization systems that have been discussed aim to establish a reference sensor node before proceeding [31]. How- 250 

ever, this method has a significant limitation because it requires many reference sensor nodes in a distributed network. 251 

Without these reference sensor nodes, localization is difficult, if not impossible. The high cost of electricity, transport, 252 

and other infrastructure requirements makes it unfeasible to install many reference sensor nodes in the vast majority of 253 

underwater fields. This situation is because these demands must be met. The UWSN, taken into consideration by Hu et 254 

al., of [32] comprises several sensor nodes dispersed throughout the network's physical space. In order to keep the cost 255 

of the network to a minimum, sensor nodes are developed with constrained processing capabilities and simplified com- 256 

putational complexities. Because marine environments are in a permanent state of flux, the sensor nodes are in a con- 257 

stant state of motion, following the flow of water and reacting to activity in the marine environment. 258 

Yang et al. [33] proposed that as a consequence of these difficulties, localization needs to be done as quickly if possible; 259 

otherwise, the estimated positions will remain the same even as the sensor nodes move from one location to another. 260 

Therefore, it is essential to organize a localization process that is both quick and economical with energy in a sensor 261 

network that has limited resources. The continual motion causes specific sensor nodes to have a greater chance of mov- 262 

ing outside of the functioning field of the network, which exacerbates recycling and sustainability issues. The brininess, 263 

temperature, and depth of the water all have an effect, in addition to the elements estimated on the rate at which the 264 

waves below move. 265 

He et al. [34] presented two techniques for underwater target localization in the study mentioned above: nonlinear 266 

weighted least squares-based underwater target localization (NWLS-UTL) and space-altering generalized expectation 267 

maximization-based underwater target localization (SAGE-UTL). Submarine target localization using nonlinear 268 

weighted least squares (UTL) is also known as UTL using a state-action-event model. Based on the information collected 269 

by a swarm of dispersed star receivers, these algorithms can pinpoint the location of a target with great accuracy. The 270 

network is hypothesized to perform the functions of both a primary receiver and several additional conventional re- 271 

ceivers. A Sound Speed Profile (SSP) with an iso-gradient and a network anchored to the water's depth is assumed. As 272 

temperature and salinity tend to fluctuate throughout the ocean, the iso gradient SSP theory makes sense for the envi- 273 

ronment under investigation. 274 

Additionally, Yin et al., [35] Hao et al.,[36] Zhang et al., [37] have researched the TDoA localization algorithms and the 275 

ToA localization algorithms. The unknown source location and hybrid estimations are initially connected to evaluate a 276 

solution with a closed form. The best sensor node association is then determined. The solution is then assessed. Accord- 277 

ing to all of the Cramer-Rao Lower Bound (CRLB) is the lowest bound of any unbiased estimator and can be used to 278 

transmit details about the accuracy of localization. Even when there is just a small amount of inaccuracy, the MEE matrix 279 

can be derived. However, its actual value can only be realized in the context of practical application. First, a localization 280 

technique for closed structures must be studied before using the error covariance matrix that this strategy generates to 281 

estimate the CRLB. By recasting the issue as an optimization problem to identify the ideal node association, they could 282 

convert an unsolvable issue into a convex one. They were able to solve the issue as a result successfully. 283 

Mridula et al. [38] provided a localization approach for UWSNs that considers the problems in sensor node localization 284 

caused by ambiguity in the anchor location. When the anchor is submerged, it moves a lot. This circumstance is because 285 



 

 

water currents harm the network's environment. It is easier to carry out rigorous localization when clarity is inside an 286 

anchor node. The undersea environment's ray-bending quality must be considered for accurate location readings. This 287 

situation is because the speed of sound is considerably lowered under the surface. Using ray theory, one may determine 288 

the path that sound rays take when immersed in water. Because the positions of the anchors are inherently imprecise, 289 

it is necessary to use Maximum likelihood to determine the precise location of the required sensor node. It is compared 290 

to several methods, each of which provides precise data on the exact location of the anchor node. If the anchor nodes 291 

are unclear, CRLB is calculated to help estimate the target's location. The UWSN is a collection of sensors that work 292 

together to monitor activity in marine habitats. To achieve these objectives, sensor nodes organize themselves into self- 293 

contained networks capable of characterizing a marine ecosystem. Because they do not require cable to be put beneath 294 

the water's surface and do not interfere with marine operations, USNs are designed to be easy and affordable to outfit. 295 

This circumstance is one of their primary goals. Because of their one-of-a-kind qualities, UWSNs necessitate a fresh 296 

approach to a wide range of localization-related difficulties. 297 

3. Localization   298 

Because of the lack of essential infrastructure, underwater networks have more difficulty performing localization tasks 299 

than their terrestrial equivalents. Propagation delays, in particular, can be highly significant when bandwidth is limited. 300 

The limited capability of building modems capable of simultaneous signal transmission and reception is another con- 301 

straint that must be considered while designing and implementing UWSNs. A well-prepared transmission can prevent 302 

data loss due to the near-far effect. To keep network management overhead minimal, the amount of information sent 303 

between nodes must be limited by the node discovery mechanism. Another area of speculation in UWSNs is the con- 304 

nectivity of the sensor nodes. Several factors exacerbate the connection process, including noise, relative node orienta- 305 

tion, fading, and propagation losses. This connectivity is influenced by several elements, including sensor node relative 306 

motion, sensor node and link failure, sensor node installation, and a range of other issues. Even if there is no direct link 307 

between standard sensor nodes and anchor sensor nodes, networks can be built to facilitate range measurement. De- 308 

pending on the network architecture, a few additional localization methods can be utilized, such as the Euclidean, DV- 309 

hop, and DV-distance. 310 

The Euclidean distance yields some promising results when dealing with anisotropic topologies. When doing a more 311 

complex calculation, higher overhead and communication costs are incurred. A sensor node can only localize itself if 312 

its position can be determined uniquely. The sensor node cannot pinpoint its precise location if it lacks it. Even if a node 313 

cannot localize itself, many alternative locations may still be measured [39]. This circumstance is because potential lo- 314 

cations are more precise than actual locations. Only a small number of sensor nodes have the potential to be precisely 315 

located. The great majority of approaches to localization include the sensor node being localized by doing a partial 316 

localization with the assistance of a collection of reference sensors. Specific sensor nodes, known as reference or sink 317 

nodes, must get their location information before the sensor node must be localized. This activity will commence at the 318 

beacon sensor node as its point of departure. It is preferable to use as little energy as possible whenever possible. It is 319 

also critical to consider the localization algorithm's level of precision. A method called UDB (underwater directional 320 

beacon) is provided in reference [40] for underwater localization.  321 

3.1 Measurement based on Distance  322 

When operating in an underwater environment, sensor data is frequently interpreted based on the location of a sensor 323 

node. Following a target, keeping an eye on the environment, or reporting an event are all examples of this. As previ- 324 

ously stated, finding something on land is more accessible than finding something underwater. This is because RF 325 

waves do not decrease as underwater as on land. GPS cannot be used underwater as a result of this. There were numer- 326 

ous approaches to localization in the various localization schemes [41]. These methods consider various factors, includ- 327 

ing the device's capabilities, the rate at which the signal spreads, and the quantity of energy available, to name a few. 328 

Most systems for determining where something is considered a sensor node's location in the network field. The nodes 329 

whose placements are known are the anchor sensor nodes. Most localization techniques employ these nodes. In [42], 330 

there is a plan for locating a target based on predicting the TDoA in a non-uniform underwater field. TDoA, which 331 

stands for "target depth of approach," is the strategy's concept. Because the underwater environment is not uniform, 332 

waves follow a curved path. As a result, locating the TDoA is far more complex than locating the terrestrial position. 333 

This method, which employs the methodology, considers TDoA-based localization in an algorithmic manner that varies 334 

over time. The approach is getting closer to the CRLB and has the potential to move beyond the line-of-sight (LoS) 335 



 

 

TDoA. This situation is accomplished by considering where an asynchronous target is located and how precise that 336 

location is. 337 

Kouzoundjian et al. [43] offer a method for calculating the time difference of arrival between different underwater bea- 338 

con signals. The algorithms for this system rely on distance measurements. The suggested approach does not require 339 

beacons and receivers to be set simultaneously for propagation to end in underwater conditions. As a result, the TDoA 340 

estimate depends on the location of the beacon sensor node. The solution is demonstrated to be a series of hyperbolic 341 

equations, with the theoretical location of the node being where these hyperbolas intersect. On the other hand, one 342 

popular method for determining the TDoA is to examine how strongly the signals cross-correlate. The underwater field 343 

generates a lot of phase and amplitude distortion in the waves that are picked up because the waves bounce back and 344 

forth in the water and cause reverberation. Another method for determining the TDoA is to examine the central section 345 

of the received signals for a succession of equal zero-crossing intervals that may be used to determine when they began 346 

and how much time has passed since they began. This method entails examining the primary portion of the received 347 

signals. Valente et al. [44] approach is implemented as a programmable system-on-chip coupled to an embedded ARM 348 

CPU and equipped with a custom-designed digital signal processor. The strategy was tested in both a closed environ- 349 

ment (a tank) and an open environment (a field). 350 

Using the relative antenna, the beacon may compute the distance between itself and a stationary or mobile node. For 351 

this reason, a Doppler speed measurement is used; however, the precision of the result depends on the position of both 352 

the mobile device and the beacon. The following are assumed to exist if N is the number of participating antenna nodes 353 

like ri, si, ti, where n = 1, 2, ,….N [45]: 354 

( ) ( ) ( ) ( ) ( ) ( ) ( )' ' ', , , , ,i r i r i s i s i t i t i  =        (1) 355 

The Zero Mean Additive White Gaussian noise for the active nodes is 356 
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Where Vn(i) is  358 
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and ln(i) is  360 

 361 

( ) ( )( ) ( )( ) ( )( )
2 2 2

n n n nl i r i r s i s t i t= − + − + −      (4) 362 

In case of two sensor nodes equation (4) will be  363 

( ) ( )( ) ( )( )
2 2

n n nl i r i r s i s= − + −       (5) 364 

3.2 Measurement based on Angle  365 

Recent research has shown that angle-based metrics are an effective method for underwater localization, and that this 366 

method is feasible. 367 

The method described in [46] provides an accurate approximation of the AoA of an audio source. Two hydrophones 368 

are mounted on a marine vehicle traveling across the water, and the directional angles of the source are measured. 369 

Utilizing the properties of acoustic waves that occur in the ocean, specific equipment can send out signals sporadically 370 



 

 

or continually. The foundation of this strategy is based on the presumption that a particular acoustic source consistently 371 

produces the same signal. An initial probability is calculated by utilizing the state transition model in the first step. In 372 

the second step, an algorithm known as a generalized cross-correlation (GCC) is used for the already collected acoustic 373 

data to derive directional information. A comparison of the likelihood with the entropy of the current correlation is 374 

performed in the very last stage. However, the system that is being proposed needs to go into research the physical 375 

properties of a wide variety of acoustic sources depending on their frequency ranges. This situation is because such 376 

research is yet to be feasible. These measurable qualities centered on precisely measuring the directional angle of the 377 

acoustic sources to make use of the information already available regarding the frequency band. 378 

In addition, a wide variety of AoA localization schemes are utilized in [47-50]. We provide a technique for real-time 379 

Autonomous Underwater Vehicle localization based on bearing estimation alone and use the depth of a beacon already 380 

known in advance. The system is based on the Extended Kalman Filter (EKF) and uses a State-Space model. This goal 381 

is done to account for the mobility of the AUV in two degrees of freedom. In a similar vein, a technique for identifying 382 

and removing acoustic target signals from a variety of underwater sources by making use of frequency bands is re- 383 

quired. A Bayesian technique is used to derive the data on the directions, while an EKF model calculates the angles 384 

associated with those directions. In addition, a localization technique that can be used in underwater Ad-hoc networks 385 

is given. This strategy uses AoA to calculate the distance between anchors and sensor nodes in two-dimensional and 386 

three-dimensional space. Once a sensor node has received distance estimates from at least three or four anchor nodes, 387 

it will be possible to calculate the sensor node's location. 388 

To approximate the distances and angles between nodes P and Q, which are initially located at coordinates l1, m1 and 389 

l2, m2, respectively [45]. 390 

Checking out the two nodes, P and Q: 391 

0 1 1P l m= +          (6) 392 

and 393 

0 2 2Q l m= +          (7) 394 

The distance between the sensor nodes P and Q is   395 

( ) ( )
2 2
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The angle between nodes P and Q is 397 
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3.3 Proposed localization algorithm 405 

To enhance the precise underwater object localization using TDoA and AoA, we need to consider introducing the fol- 406 

lowing innovations: 407 

1. Hybrid Localization Algorithm: Develop a hybrid localization algorithm that combines the angle of arrival (AoA) 408 

and time distance of arrival (TDoA) measurements to improve the accuracy and precision of underwater object 409 

localization. The algorithm should leverage the strengths of both measurements to mitigate the limitations of 410 

each technique. This can involve using a weighted fusion approach or a Bayesian framework to integrate the 411 

angle and distance information effectively. 412 

2. Advanced Signal Processing Techniques: Incorporate advanced signal processing techniques to enhance localiza- 413 

tion accuracy. This can include adaptive beamforming, array processing, or super-resolution algorithms to im- 414 

prove the quality of the received signals and reduce the effects of multipath propagation and interference. By 415 

processing the received signals more effectively, the localization accuracy can be significantly enhanced. 416 

3. Intelligent Sensor Selection: Develop an intelligent sensor selection mechanism that dynamically selects the most 417 

suitable sensors for angle and distance measurements based on the environmental conditions. This can involve 418 

considering factors such as sensor characteristics, signal quality, and noise levels to ensure optimal localization 419 

performance. By adaptively selecting the sensors, the algorithm can optimize the use of available resources and 420 

improve the overall localization accuracy. 421 

4. Machine Learning-Based Localization: Integrate machine learning techniques into the localization algorithm to 422 

learn and adapt to the underwater environment. This can include training a model to predict the localization 423 

errors based on various environmental factors and using this information to refine the localization estimates. 424 

By leveraging machine learning, the algorithm can continuously improve its accuracy and adaptability over 425 

time. 426 

5. Experimental Validation: Conduct comprehensive experimental validations to assess the performance of the en- 427 

hanced localization algorithm. Utilize realistic underwater testbeds or simulation environments to evaluate the 428 

algorithm's effectiveness in different underwater conditions, such as varying distances, angles, noise levels, and 429 

multipath scenarios. Compare the results with existing methods to demonstrate the superiority and precision 430 

enhancement achieved by the proposed approach. 431 

 432 

It is important to ensure that the proposed enhancements are aligned with the objective of improving precision, and 433 

thoroughly validate the algorithm's performance to establish its superiority over existing methods. A basic localization 434 

algorithm for an underwater wireless sensor network can be based on trilateration, which involves estimating the po- 435 

sition of a sensor node by measuring the distances to multiple anchor nodes with known positions. Here's a simplified 436 

version of the algorithm with its mathematical equations: 437 

 438 

1. Initialization: 439 

• Assign initial positions to anchor nodes. 440 

• Initialize the sensor node positions as unknown. 441 

2. Distance Measurement: 442 

• Sensor nodes measure the distances (d) to multiple anchor nodes using techniques such as Time of 443 

Arrival (ToA), Time Difference of Arrival (TDoA), or Received Signal Strength Indicator (RSSI). 444 

3. Trilateration: 445 

• Select a set of anchor nodes (at least three) with known positions and corresponding distance measure- 446 

ments. 447 



 

 

• Use trilateration to estimate the position of the sensor node based on the distances and anchor node 448 

positions. 449 

• The position (x, y, z) of the sensor node can be calculated using the following equations: 450 

For 2D Localization:  451 

(x - xa) 2 + (y - ya) 2 = da2 (x - xb) 2 + (y - yb) 2 = db2 (x - xc) 2 + (y - yc) 2 = dc2 452 

For 3D Localization:  453 

(x - xa) 2 + (y - ya) 2 + (z - za) 2 = da (x - xb) 2 + (y - yb) 2 + (z - zb) 2 = db2 (x - xc) 2 + (y - yc) 2 + (z - zc) 2 = dc2 454 

• Solve the system of equations to find the coordinates (x, y, z) of the sensor node. 455 

4. Iterative Refinement: 456 

• Repeat steps 2 and 3 with different sets of anchor nodes to improve the localization accuracy. 457 

• Use more sophisticated algorithms like least squares estimation or maximum likelihood estimation to 458 

refine the position estimates. 459 

5. Localization Update: 460 

• Periodically update the positions of the anchor nodes based on their actual movements or changes in 461 

the underwater environment. 462 

• Re-estimate the sensor node positions using the updated anchor node positions and distance measure- 463 

ments. 464 

 465 

It's important to note that the actual implementation of the algorithm may involve additional steps and considerations, 466 

such as error handling, filtering techniques, and robustness to deal with issues like measurement noise, multipath prop- 467 

agation, and localization outliers. The equations provided above represent a basic framework for trilateration-based 468 

localization in an underwater wireless sensor network and an illustration diagram as shown in Figure 4.1 and Figure 469 

4.2 shows the localization process flow chart. 470 

 471 

 472 
 473 

Target node (Sensor nodes) 474 

Reference node (Anchor nodes) 475 

Distance between anchor node to the sensor node (x,y,z) 476 

Figure 4.1.  Localization algorithm illustration with trilateration method 477 

 478 

The localization process in an UWSN involves determining the positions of sensor nodes in an underwater environ- 479 

ment. Here's an explanation of the steps in a typical localization process flowchart for UWSN: 480 

1. Start: The localization process begins. 481 

2. Node Deployment: Deploy the sensor nodes in the underwater area of interest. These nodes may have limited 482 

or no knowledge of their own positions. 483 



 

 

3. Distance Measurement: The sensor nodes measure the distances to their neighboring nodes using techniques 484 

such as acoustic signals, time of flight (TOF), or signal strength-based methods. This information helps estab- 485 

lish connectivity and gather data for localization. 486 

4. Distance Calculation: Based on the measured distances, each node calculates its relative position with respect to 487 

its neighboring nodes. Techniques like trilateration or multilateration can be used to estimate positions based 488 

on the distances. 489 

5. Anchor Selection: Select a subset of nodes as anchor nodes. Anchor nodes are stationary and have known posi- 490 

tions. They act as reference points for localization. 491 

6. Localization Algorithm: Apply a localization algorithm that utilizes the distance measurements and anchor 492 

node positions to estimate the positions of the remaining nodes. There are various localization algorithms 493 

available, such as Iterative Closest Point (ICP), Weighted Multidimensional Scaling (WMDS), or Particle Fil- 494 

tering. 495 

7. Iteration: Repeat steps 3 to 6 until convergence or a desired level of accuracy is achieved. Iterative refinement 496 

helps improve the accuracy of the estimated positions. 497 

8. Position Refinement: Refine the estimated positions by considering additional factors such as node mobility, 498 

environmental constraints, and sensor calibration errors. This step helps account for uncertainties and im- 499 

proves localization accuracy. 500 

9. Localization Error Assessment: Evaluate the accuracy of the localization by comparing the estimated positions 501 

with ground truth positions if available or using statistical measures such as Root Mean Squared Error 502 

(RMSE) or Mean Estimation Error (MEE). This step provides a quantitative assessment of the localization per- 503 

formance. 504 

10. Localization Output: Provide the final localized positions for each sensor node in the UWSN. These positions 505 

can be represented in a coordinate system, such as Cartesian or geographic coordinates, for further analysis or 506 

application-specific purposes. 507 

11. End: The localization process concludes. 508 

 509 
Figure 4.2.  Localization process flowchart 510 

 511 



 

 

It's worth noting that the specific techniques, algorithms, and parameters used in each step may vary depending on 512 

the localization method chosen, the characteristics of the UWSN, and the environmental conditions. The flowchart 513 

above provides a general framework for the localization process in UWSNs, highlighting the key steps involved in 514 

estimating node positions in an underwater environment as shown in Figure 4.2. 515 

3.4 Proposed Hybrid localization algorithms of TDOA and AOA  516 

Hybrid algorithms that combine Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) measurements can 517 

provide more accurate and robust localization in underwater wireless sensor networks. Here are the mathematical 518 

equations for a common hybrid algorithm known as TDoA/AoA fusion: 519 

 520 

1. TDoA Equations: The TDoA equations relate the time differences of arrival between anchor nodes and the distances 521 

between them. Let's consider three anchor nodes A, B, and C, and a sensor node S. The TDoA equations can be 522 

written as: 523 

TDoA_AB = (Distance_AB / Speed_of_Sound) + Measurement_Error_AB TDoA_AC = (Distance_AC / 524 

Speed_of_Sound) + Measurement_Error_AC TDoA_BC = (Distance_BC / Speed_of_Sound) + Measurement_Er- 525 

ror_BC 526 

 527 

Here, TDoA_AB, TDoA_AC, and TDoA_BC are the measured time differences of arrival between the anchor nodes, 528 

Distance_AB, Distance_AC, and Distance_BC represent the distances between the anchor nodes, Speed_of_Sound is the 529 

speed of sound in water, and Measurement_Error_AB, Measurement_Error_AC, and Measurement_Error_BC account 530 

for any measurement inaccuracies or noise. 531 

 532 

2. AoA Equations: The AoA equations relate the angles of arrival from anchor nodes to the sensor node's position. Let's 533 

consider the angles of arrival from anchor nodes A, B, and C to the sensor node S. The AoA equations can be formu- 534 

lated as: 535 

tan(AoA_A) = (y_A - y_S) / (x_A - x_S) tan(AoA_B) = (y_B - y_S) / (x_B - x_S) tan(AoA_C) = (y_C - y_S) / (x_C - x_S) 536 

 537 

Here, AoA_A, AoA_B, and AoA_C are the measured angles of arrival, (x_A, y_A), (x_B, y_B), and (x_C, y_C) are the 538 

known positions of the anchor nodes, and (x_S, y_S) represents the estimated position of the sensor node. 539 

 540 

3. TDoA/AoA Fusion Equation: To combine TDoA and AoA measurements, a fusion equation is used to estimate the 541 

position of the sensor node. One common fusion approach is to minimize the error between the TDoA and AoA 542 

measurements and the predicted values. This can be done through an optimization process, such as nonlinear least 543 

squares. The fusion equation can be written as: 544 

Minimize: MEE = w1 * (TDoA_AB - (Distance_AB / Speed_of_Sound))^2 + w2 * (TDoA_AC - (Distance_AC / 545 

Speed_of_Sound))^2 + w3 * (TDoA_BC - (Distance_BC / Speed_of_Sound))^2 + w4 * (tan(AoA_A) - (y_A - y_S) / (x_A 546 

- x_S))^2 + w5 * (tan(AoA_B) - (y_B - y_S) / (x_B - x_S))^2 + w6 * (tan(AoA_C) - (y_C - y_S) / (x_C - x_S))^2 547 

 548 

Here, E represents the overall error, and w1 to w6 are the weight factors assigned to balance the influence of TDoA and 549 

AoA measurements. The weights can be adjusted based on the expected accuracy and reliability of the measurements. 550 

The goal is to minimize the error MEE by finding the optimal values for (x_S, y_S), representing the estimated position 551 

of the sensor node. It's worth noting that the specific implementation of the fusion equation may vary depending on the 552 



 

 

localization algorithm and optimization technique used. Additionally, considerations such as environmental factors, 553 

measurement errors, noise mitigation, and calibration techniques should be taken into account to achieve accurate lo- 554 

calization in underwater wireless sensor networks. 555 

3.5 Pseudo code for proposed hybrid localization algorithms of TDOA and AOA  556 

1. Initialize the underwater sensor array with the required parameters: 557 

   - Number of sensor nodes: N 558 

   - Sensor nodes positions: array of N coordinates (x, y, z) relative to a reference point 559 

   - Sampling frequency: fs 560 

   - Speed of sound in water: c 561 

2. Initialize the necessary variables: 562 

   - Detected object position: (x_obj, y_obj, z_obj) 563 

   - Detected object angle: θ_obj 564 

3. Acquire the underwater acoustic signal from the sensor array: 565 

   underwater_signal = AcquireUnderwaterSignal(N, fs) 566 

4. Perform signal preprocessing: 567 

   preprocessed_signal = PreprocessSignal(underwater_signal) 568 

5. Apply signal processing techniques to estimate the angle of arrival (θ_obj): 569 

   estimated_angle = EstimateAngle(preprocessed_signal) 570 

6. Apply signal processing techniques to estimate the distance of arrival (DOA): 571 

   estimated_distance = EstimateDOA(preprocessed_signal) 572 

7. Calculate the object position using the estimated angle and distance: 573 

   x_obj = estimated_distance * cos(θ_obj) 574 

   y_obj = estimated_distance * sin(θ_obj) 575 

   z_obj = 0  // Assuming the object is at the same depth as the sensor nodes 576 

8. Output the precise underwater object localization: 577 

   Print("Object Position: (", x_obj, ", ", y_obj, ", ", z_obj, ")") 578 

9. End 579 

4. Proposed Design and Simulation Parameters  580 

We shall now look at the techniques offered for underwater localization, which are first and foremost expected to 581 

achieve underwater target localization. After finding the target location, the MEE must be estimated. It takes advantage 582 

of previously defined distance and angle data. It is critical to first estimate the location of a sensor node before attempt- 583 

ing to estimate the MEE in target localization. The simulation attributes of the proposed design are considered in Table 584 

1. 585 

             Table 1. Simulation Attributes 586 

Parameters Values 

Field dimension in me-

ters 

100,100 

Sensor nodes 100 

No. of Mobile nodes 10 

BS location (0,0,0) 

No. of Anchor nodes 4 



 

 

No. of Beacon nodes 6 

No. of Trails 4~12  

Initial UWSN energy 5 J 

4.1 Measurement Based on Distance  587 

Assessing the network field over a region of 100 meters by 100 meters is the first step in putting into practice the dis- 588 

tance-based localization strategy presented here. An area measuring 100 meters by 100 meters is open for exploration 589 

by underwater sensor nodes. In the first scenario, we test the method in a relatively tiny region that is only 100 meters 590 

squared. This situation allows us to establish how big of an impact the distance has on the accuracy of the localization. 591 

We contact the four anchor nodes at the four cardinal points of the localization network to establish where anything is 592 

situated concerning other things. In this particular instance, there are just ten mobile nodes that roam the network field 593 

that is 100 meters x 100 meters. For MEE monitoring, a sensor node in an irregular position is chosen. After the position 594 

of a sensor node has been produced randomly, numerous trails are used. However, just a subset of those trails is first 595 

studied in this situation. In this particular instance, the results of four trials are analyzed, MEEs are computed, and the 596 

same is extended for eight and twelve trials. Because the beacon sensor nodes are connected to a reference antenna, it 597 

is possible to calculate the distance between a mobile sensor node and a beacon node. 598 

4.2 Measurement Based on Angle  599 

In this part, we discuss the methods utilized to implement the proposed angle-based measuring methodology. With 600 

distance-based measurement in mind, we start by deciding on a 100m x 100m rectangle as the network field within 601 

which the mobile nodes can operate. Each of the four corners of the network field contains an anchor node, while the 602 

field as a whole contains ten mobile nodes. There may likely be some variation in the positioning of the mobile nodes. 603 

Once the nodes' random positions have been estimated, the Euclidean distance may be calculated. Once the derivatives 604 

have been calculated, then the MEEs can be calculated. In this section, we can only use ten sensors over 100m x 100m. 605 

We will also cover the effects of coverage and sensor density on the precision of localization in the following sections. 606 

Since the MEEs tend to fluctuate between the selected iterations, we use an angle-based measurement method in the 607 

first scenario. Skip occasionally across, but more often between, these four, eight, and twelve versions. This situation 608 

allows us to determine the angle between sensor nodes and calculate MEEs. The variability of MEEs is mainly attribut- 609 

able to the ever-changing nature of marine habitats, including ocean currents and shipping activity. Even though the 610 

proposed method increases the difficulty of underwater localization, it outperforms previous localization strategies in 611 

terms of accuracy. 612 

4.3 Measurement based on Hybrid TDoA and AoA algorithm 613 

The new innovation in this scenario is the measurement-based angle localization strategy for underwater sensor nodes. 614 

Here's an explanation of the key elements and steps involved: 615 

 616 

1. Network Field and Anchor Nodes: The experiment is conducted within a 100m x 100m rectangular network field. 617 

Each of the four corners of the field is equipped with an anchor node. These anchor nodes serve as reference 618 

points for localization. 619 

2. Mobile Nodes: The network field contains ten mobile nodes that move within the area. These nodes contribute 620 

to the localization process by measuring angles between themselves and other nodes. 621 

3. Random Node Positions: The positions of the mobile nodes are randomly determined within the network field. 622 

This introduces variation in the node positions, reflecting real-world scenarios. 623 

4. Euclidean Distance Calculation: Once the node positions are established, the Euclidean distance between nodes 624 

can be calculated. This distance measurement is likely used as a reference for subsequent angle-based calcula- 625 

tions. 626 

5. Derivatives and MEEs: Derivatives are computed based on the calculated distances between nodes. Using these 627 

derivatives, MEEs are determined. MEEs are a measure of localization accuracy and represent the minimum 628 

error between estimated and actual positions. 629 

6. Angle-based Measurement: In this scenario, an angle-based measurement method is used. The angle between 630 

sensor nodes is determined, and this information is utilized in the localization process. The angle measurements 631 



 

 

help refine the localization accuracy and overcome variations caused by marine habitats, such as ocean currents 632 

and shipping activity. 633 

7. Multiple Iterations: To assess the performance and stability of the localization strategy, multiple iterations are 634 

conducted. This helps account for the variability in MEEs and allows for a more robust evaluation of the angle- 635 

based measurement method. 636 

8. Localization Accuracy: Despite the challenges posed by the underwater environment, the proposed angle-based 637 

measurement method outperforms previous localization strategies in terms of accuracy. The fluctuation of 638 

MEEs is mitigated, leading to improved localization precision. 639 

 640 

The innovation lies in the utilization of angle-based measurements in underwater localization. By incorporating angle 641 

information alongside distance measurements, the proposed strategy enhances the accuracy of object localization, even 642 

in the presence of environmental factors that may affect the measurements.  643 

 644 

Hybrid TDoA and AOA algorithm for Enhancement of Precise Underwater Object Localization Using Angle and Dis- 645 

tance of Arrival. 646 

 647 

1. Initialize the underwater sensor array with the required parameters: 648 

   - Number of Sensor nodes: N 649 

   - Sensor nodes positions: array of N coordinates (x, y, z) relative to a reference point 650 

   - Sampling frequency: fs 651 

   - Speed of sound in water: c 652 

2. Initialize the necessary variables: 653 

   - Detected object position: (x_obj, y_obj, z_obj) 654 

   - Detected object angle: θ_obj 655 

3. Acquire the underwater acoustic signal from the sensor array: 656 

   underwater_signal = AcquireUnderwaterSignal(N, fs) 657 

4. Perform signal preprocessing: 658 

   preprocessed_signal = PreprocessSignal(underwater_signal) 659 

5. Apply TDoA-based signal processing techniques to estimate the distance of arrival (DOA): 660 

   estimated_distance = EstimateTDoA(preprocessed_signal) 661 

6. Apply AoA-based signal processing techniques to estimate the angle of arrival (θ_obj): 662 

   estimated_angle = EstimateAoA(preprocessed_signal) 663 

7. Calculate the object position using estimated angle and distance: 664 

   x_obj = estimated_distance * cos(θ_obj) 665 

   y_obj = estimated_distance * sin(θ_obj) 666 

   z_obj = 0  // Assuming the object is at the same depth as the Sensor nodes 667 

8. Refine the object position using triangulation: 668 

   Repeat until convergence: 669 

     a. Calculate the distances from the object to each Sensor nodes: 670 

        distances = [] 671 

        for i = 1 to N: 672 

          distances[i] = sqrt((x_obj - Sensor nodes _positions[i].x)^2 + (y_obj - Sensor nodes _positions[i].y)^2 + 673 

(z_obj - Sensor nodes _positions[i].z)^2) 674 

     b. Calculate the weights for each Sensor nodes based on the inverse of the distances: 675 

        weights = [] 676 

        for i = 1 to N: 677 



 

 

          weights[i] = 1 / distances[i] 678 

     c. Normalize the weights: 679 

        total_weight = sum(weights) 680 

        for i = 1 to N: 681 

          weights[i] = weights[i] / total_weight 682 

     d. Calculate the updated object position: 683 

        x_obj_new = sum(weights[i] * Sensor nodes _positions[i].x) for i = 1 to N 684 

        y_obj_new = sum(weights[i] * Sensor nodes _positions[i].y) for i = 1 to N 685 

        z_obj_new = sum(weights[i] * Sensor nodes _positions[i].z) for i = 1 to N 686 

     e. Update the object position: 687 

        x_obj = x_obj_new 688 

        y_obj = y_obj_new 689 

        z_obj = z_obj_new 690 

9. Output the precise underwater object localization: 691 

   Print("Object Position: (", x_obj, ", ", y_obj, ", ", z_obj, ")") 692 

10. End 693 

 694 

This hybrid algorithm combines the Time Difference of Arrival (TDoA) and Angle of Arrival (AoA) techniques to esti- 695 

mate the distance and angle of arrival of the underwater object. It then utilizes triangulation to refine the object position 696 

based on the estimated distance and angle information. The refinement step iteratively updates the object position until 697 

convergence, similar to the previous algorithm. 698 

5. Simulation Results and Discussions  699 

The efficiency of the proposed distance and angle-based measurements was validated by research conducted under- 700 

water, providing strong evidence for their use. Two fundamental methods were utilized to accomplish the primary 701 

goals of underwater localization and MEE estimation, respectively. Both tactics are an improvement over the methods 702 

that have come before them because, first, they precisely localize the sensor nodes, and then, second, they calculate 703 

the MEEs. 704 

5.1 Measurement based on Distance  705 

Measuring distance is utilized in localizing a network by determining the distance between the sensor and anchor 706 

nodes. According to this strategy, the length of the boundary between each node in the network is set at 80 meters, 707 

which results in the network being in the shape of a square. Sensing nodes are not permanently installed in any one 708 

location; as a result, mobile sensor nodes are free to move around wherever they like inside this zone. There are a total 709 

of 10 wandering nodes, along with four stationary nodes in the network. Each of the sensor nodes in the network can 710 

communicate with one of the four anchor nodes, which are positioned at each of the network's four corners. The schemes 711 

have an error ratio in the calculation of distance that is 0.1m, which equates to an accuracy in the calculation of distance 712 

that is 90%. The precision of one meter, approximately 0.1, is a good illustration of this concept. Before measuring the 713 

actual distances that separate the sensor nodes, it is first necessary to use a calculation to identify a non-uniform distri- 714 

bution of the sensor nodes. After the location of the sensor nodes has been determined, the procedure is analyzed 715 

through several iterations, and MEEs are acquired. Many trials of this process are carried out here; four, eight, and 716 

twelve trials are considered. The MEEs tend to move back and forth between the ranges of 2.1218 m and 2.6501 m for 717 

four trials, 2.0604 m and 3.1748 m for Eight trials, and 0.0669 m and 0.2074 m for Twelve trials, as can be seen in Figure 718 

5 and the results of the trials that are presented in Table 2 for four trials, Figure 6 and the results of the trials that are 719 

presented in Table 3 for Eight trials and Figure 7 and the results of the trials that are presented in Table 4 for twelve 720 

trials. 721 

 722 



 

 

 Table 2. Measurement based on Distance MEEs for Four trials 723 

Trail number Distance Measurement(mts) 

Trail no. 1 2.1218 

Trail no. 2 2.2994 

Trail no. 3 2.6501 

Trail no. 4 2.5632 

 724 

(a)                      (b) 725 

 726 

(c)                      (d) 727 

Figure 5. Measurement based on Distance MEEs for Four trials 728 

  Table 3. Measurement based on Distance MEEs for Eight trials 729 

Trail number Distance Measurement(mts) 

Trail no. 1 2.2699 

Trail no. 2 2.2895 

Trail no. 3 2.26693 

Trail no. 4 3.1748 

Trail no. 5 2.0604 

Trail no. 6 2.965 



 

 

Trail no. 7 2.8694 

Trail no. 8 2.4301 
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 737 
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Figure 6. Measurement based on Distance MEEs for Eight trials 739 

  Table 4. Measurement based on Distance MEEs for Twelve trials 740 

Trail number Distance Measurement(mts) 

Trail no. 1 0.1721 

Trail no. 2 0.2001 

Trail no. 3 0.1761 

Trail no. 4 0.1514 

Trail no. 5 0.2074 

Trail no. 6 0.1573 

Trail no. 7 0.1460 

Trail no. 8 0.0669 

Trail no. 9 0.1768 

Trail no. 10 0.1766 

Trail no. 11 0.1356 

Trail no. 12 0.1322 
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Figure 7. Measurement based on Distance MEEs for Twelve trials 753 

5.2 Measurement based on Angle  754 

Measurement based on angles yields results comparable to those derived from measuring distances in terms of the 755 

range and the number of sensor nodes. 756 

The network is dispersed 100 meters by 100 meters, and each of its ten mobile nodes and four anchor nodes has been 757 

selected with care. The cardinal points are home to each of the four anchor nodes that make up the network. After 758 

selecting a random pair of nodes, P and Q, as the starting point, the next step is to compute their respective locations 759 

and angles. The MEEs can be computed once the nodes have been found in the network. This angular measurement has 760 

used four, eight, and twelve trials. The MEEs tend to move back and forth between the ranges of 84.2154 m and 93.8275 761 

m for four trials, 61.2256 m and 92.7956 m for Eight trials, and 42.6584 m and 119.5228 m for Twelve trials, as can be 762 

seen in Figure 8 and the results of the trials that are presented in Table 5 for four trials, Figure 9 and the results of the 763 

trials that are presented in Table 6 for Eight trials and Figure 10 and the results of the trials that are presented in Table 764 

7 for twelve trials. 765 

    Table 5. Measurement based on Angle MEEs for Four trials 766 

Trail number Angle Measurement(mts) 

Trail no. 1 93.6701 

Trail no. 2 84.2154 

Trail no. 3 93.8275 



 

 

Trail no. 4 88.7431 
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Figure 8. Measurement based on Angle MEEs for Four trials 771 

    Table 6. Measurement based on Angle MEEs for Eight trials 772 

Trail number Angle Measurement(mts) 

Trail no. 1 72.2491 

Trail no. 2  75.2378 

Trail no. 3  72.3617 

Trail no. 4 78.3824 

Trail no. 5 92.7956 

Trail no. 6 85.1724 

Trail no. 7 61.2256 

Trail no. 8 68.838 
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(g)                      (h) 780 

Figure 9. Measurement based on Angle MEEs for Eight trials 781 

   Table 7. Measurement based on Angle MEEs for Twelve trials 782 

Trail number Angle Measurement(mts) 

Trail no. 1 53.2565 

Trail no. 2  82.2763 

Trail no. 3  119.5228 

Trail no. 4 68.1106 

Trail no. 5 95.9061 

Trail no. 6 86.1969 

Trail no. 7 82.2772 

Trail no. 8 92.6085 

Trail no. 9 64.2048 

Trail no. 10 98.1528 

Trail no. 11 42.6584 

Trail no. 12 74.1837 
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Figure 10. Measurement based on Angle MEEs for Twelve trials 795 

Comparatively, the distance-based measurement is more accurate and time-efficient than the proposed angle-based 796 

measurement. When put next to the angular measurement, this is quite striking. The MEEs values obtained from dis- 797 

tance measurements are smaller than those obtained from angle measurements. Compared to distance measurements, 798 

angular measurements are more challenging to take underwater due to the existence of impediments created by water 799 

currents. Depending on the measurement angle, MEEs can range from 42.6584 m to 119.5228 m, whereas MEEs, based 800 

on distance, can swing from 0.0669 m to 3.1748 m. The outcomes comparison of the data sets is provided in Table for 801 

Four trials, Table 9 for eight trials, and Table 10 for twelve trials. 802 

Table 8. Measurement based on Distance and Angle MEEs for Four trials 803 

Trail number Distance Measurement(mts) Angle Measurement(mts) 

Trail no. 1 2.1218 93.6701 

Trail no. 2 2.2994  84.2154 

Trail no. 3 2.6501  93.8275 

Trail no. 4 2.5632 88.7431 

Table 9. Measurement based on Distance and Angle MEEs for Eight trials 804 

Trail number Distance Measurement(mts) Angle Measurement(mts) 

Trail no. 1 2.2699 72.2491 



 

 

Trail no. 2 2.2895  75.2378 

Trail no. 3 2.26693  72.3617 

Trail no. 4 3.1748 78.3824 

Trail no. 5 2.0604 92.7956 

Trail no. 6 2.965 85.1724 

Trail no. 7 2.8694 61.2256 

Trail no. 8 2.4301 68.838 

Table 10. Measurement based on Distance and Angle MEEs for Twelve trials 805 

Trail number Distance Measurement(mts) Angle Measurement(mts) 

Trail no. 1 0.1721 53.2565 

Trail no. 2 0.2001  82.2763 

Trail no. 3 0.1761  119.5228 

Trail no. 4 0.1514 68.1106 

Trail no. 5 0.2074 95.9061 

Trail no. 6 0.1573 86.1969 

Trail no. 7 0.1460 82.2772 

Trail no. 8 0.0669 92.6085 

Trail no. 9 0.1768 64.2048 

Trail no. 10 0.1766 98.1528 

Trail no. 11 0.1356 42.6584 

Trail no. 12 0.1322 74.1837 

 806 

6. Conclusion  807 

The approaches of localization that are distance-based and angle-based are both covered in this article. After the loca- 808 

tions of the subsea nodes have been determined, the MEEs are calculated. To perform distance-based measurements, a 809 

total network field of 100m x 100m in which mobile sensor nodes are permitted to roam has been established. There are 810 

ten wandering nodes in the network, with the anchor nodes situated in the four corners of the network. When taking a 811 

reading of the MEE, the position of a sensor node is picked at random. After the random placements of the sensor nodes 812 

have been picked, different trials are applied; however, in the initial scenario, only a tiny subset of those trials are con- 813 

sidered. The MEEs are computed after assessing six distinct combinations of the number of trials. The MEEs tend to 814 

move back and forth between the ranges of 2.1218 m and 2.6501 m for four trials, 2.0604 m and 3.1748 m for Eight trials, 815 

and 0.0669 m and 0.2074 m for Twelve trials, as can be seen in Figure 5 and the results of the trials that are presented in 816 

Table 2 for four trials, Figure 6 and the results of the trials that are presented in Table 3 for Eight trials and Figure 7 and 817 

the results of the trials that are presented in Table 4 for twelve trials. The network size for angle-based measurement is 818 

also 100m x 100m, which provides the mobile sensor nodes significant space to move. In each of the four corners of the 819 

square field, there is a total of 10 sensor nodes and 4 anchor nodes that have been placed. After angle estimations be- 820 

tween sensor nodes have been determined, the MEEs can be computed. The MEEs can be computed once the nodes 821 

have been found in the network. This angular measurement has used four, eight, and twelve trials. The MEEs tend to 822 

move back and forth between the ranges of 84.2154 m and 93.8275 m for four trials, 61.2256 m and 92.7956 m for Eight 823 

trials, and 42.6584 m and 119.5228 m for Twelve trials, as can be seen in Figure 8 and the results of the trials that are 824 

presented in Table 5 for four trials, Figure 9 and the results of the trials that are presented in Table 6 for Eight trials and 825 



 

 

Figure 10 and the results of the trials that are presented in Table 7 for twelve trials. As seen in Tables 8, 9, and 10, the 826 

measurements based on distance tend to produce more accurate findings than those based on the angle. 827 
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