155 research outputs found

    Development of Heuristic Approaches for Last-Mile Delivery TSP with a Truck and Multiple Drones

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are gaining momentum in many civil and military sectors. An example is represented by the logistics sector, where UAVs have been proven to be able to improve the efficiency of the process itself, as their cooperation with trucks can decrease the delivery time and reduce fuel consumption. In this paper, we first state a mathematical formulation of the Travelling Salesman Problem (TSP) applied to logistic routing, where a truck cooperates synchronously with multiple UAVs for parcel delivery. Then, we propose, implement, and compare different sub-optimal routing approaches to the formulated mFSTSP (multiple Flying Sidekick Travelling Salesman Problem) since the inherent combinatorial computational complexity of the problem makes it unattractable for commercial Mixed-Integer Linear Programming (MILP) solvers. A local search algorithm, two hybrid genetic algorithms that permutate feasible and infeasible solutions, and an alternative ad-hoc greedy method are evaluated in terms of the total delivery time of the output schedule. For the sake of the evaluation, the savings in terms of delivery time over the well-documented truck-only TSP solution are investigated for each proposed routing solution, and this is repeated for two different scenarios. Monte Carlo simulations corroborate the results

    An Overview of Drone Energy Consumption Factors and Models

    Full text link
    At present, there is a growing demand for drones with diverse capabilities that can be used in both civilian and military applications, and this topic is receiving increasing attention. When it comes to drone operations, the amount of energy they consume is a determining factor in their ability to achieve their full potential. According to this, it appears that it is necessary to identify the factors affecting the energy consumption of the unmanned air vehicle (UAV) during the mission process, as well as examine the general factors that influence the consumption of energy. This chapter aims to provide an overview of the current state of research in the area of UAV energy consumption and provide general categorizations of factors affecting UAV's energy consumption as well as an investigation of different energy models

    Developing a Vans-and-Drones System for Last-Mile Delivery

    Get PDF
    The e-commerce industry is experiencing rapid growth, and growing customer expectations and demand challenges the industry to find more cost-efficient ways of performing the last-mile deliveries. Drones have in recent years been a hot topic, and with high versatility and several application areas it may be the answer to the challenge. In this project a Vans-and-Drones System for Last-Mile Delivery have been developed considering effective task allocation and route scheduling. A literature review is presented on the topic of drone technology and application areas, especially emphasizing utilization of drones in logistic operations and routing problems. A mathematical model for the Vehicle Routing Problem with Drones is derived based on the classical Capacitated Vehicle Routing Problem, and the formulation is modeled in Jupyter Notebook with Python programming language and solved with CPLEX solver. A case study is carried out to examine the effects of integrating drones into the delivery system for a vaccine distribution scenario in a sparsely populated area, Ofoten region, considering vehicle employment cost, delivery time and emission impact. Results show that the proposed vans-and-drones system outperforms a truck-only delivery system for this purpose

    ํŠธ๋Ÿญ์„ ์ด๋™ํ˜• ๋“œ๋ก  ๊ธฐ์ง€๋กœ ์‚ฌ์šฉํ•˜๋Š” ํ•œ์ •์šฉ๋Ÿ‰ ํŠธ๋Ÿญ-๋“œ๋ก  ๊ฒฝ๋กœ ๋ฐฐ์ • ๋ฌธ์ œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2022.2. ๊น€๋™๊ทœ.Drones initially received attention for military purposes as a collective term for unmanned aerial vehicles (UAVs), but recently, efforts to use them in logistics have been actively underway. If drones are put into places where low-weight and high-value items are currently difficult to deliver by existing delivery means, it will have the effect of greatly reducing costs. However, the disadvantages of drones in delivery are also clear. In order to improve the delivery capacity of drones, the size of drones must increase when drones are equipped with large-capacity batteries. This thesis introduced two methods and presented algorithms for each method among VRP-D. First of all, CVP-D is a method in which carriers such as trucks and ships with large capacity and slow speed carry robots and drones with small capacity. Next, in the CVRP-D, the vehicle and the drone move different paths simultaneously, and the drone can visit multiple nodes during one sortie. The two problems are problems in which restrictions are added to the vehicle route problem (VRP), known as the NP-hard problem. The algorithm presented in this study derived drone-truck routes for two problems within a reasonable time. In addition, sensitivity analysis was conducted to observe changes in the appropriate network structure for the introduction of drone delivery and the main parameters of the drone. In addition, the validity of the proposed algorithm was verified through comparison with the data used as a benchmark in previous studies. These research results will contribute to the creation of delivery routes quickly, considering the specification of a drone.๋“œ๋ก ์€ ๋ฌด์ธํ•ญ๊ณต๊ธฐ(UAV)์˜ ํ†ต์นญ์œผ๋กœ ์ดˆ๊ธฐ์—๋Š” ๊ตฐ์‚ฌ์  ๋ชฉ์ ์œผ๋กœ ์ฃผ๋ชฉ์„ ๋ฐ›์•˜์œผ๋‚˜ ์ตœ๊ทผ ๋ฌผ๋ฅ˜์—์„œ ์‚ฌ์šฉํ•˜๋ ค๋Š” ๋…ธ๋ ฅ์ด ์ ๊ทน์ ์œผ๋กœ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋“œ๋ก ์ด ์ €์ค‘๋Ÿ‰-๊ณ ๊ฐ€์น˜ ๋ฌผํ’ˆ์„ ๋ฐฐ์†ก์—์„œ ํ˜„์žฌ ๊ธฐ์กด ๋ฐฐ์†ก์ˆ˜๋‹จ์— ์˜ํ•ด ๋ฐฐ์†ก์ด ์–ด๋ ค์šด ๊ณณ์— ํˆฌ์ž…์ด ๋œ๋‹ค๋ฉด ํฐ ๋น„์šฉ์ ˆ๊ฐ์˜ ํšจ๊ณผ๊ฐ€ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ํ•˜์ง€๋งŒ ๋ฐฐ์†ก์— ์žˆ์–ด์„œ ๋“œ๋ก ์˜ ๋‹จ์ ๋„ ๋ช…ํ™•ํ•˜๋‹ค. ๋“œ๋ก ์˜ ๋ฐฐ์†ก๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋“œ๋ก ์ด ๋Œ€์šฉ๋Ÿ‰ ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ํƒ‘์žฌํ•˜๋ฉด ๋“œ๋ก  ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋“œ๋ก ๊ณผ ํŠธ๋Ÿญ์„ ๊ฒฐํ•ฉํ•˜์—ฌ ์šด์˜ํ•˜๋Š” ๋ฐฉ์‹์ด ์—ฐ๊ตฌ๋˜์–ด์™”๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ์‹ ์ค‘ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ๋ฐฉ์‹์„ ์†Œ๊ฐœํ•˜๊ณ , ๊ฐ๊ฐ์˜ ๋ฐฉ์‹์— ๋Œ€ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋จผ์ €, CVP-D๋Š” ์šฉ๋Ÿ‰์ด ํฌ๊ณ  ์†๋„๊ฐ€ ๋Š๋ฆฐ ํŠธ๋Ÿญ์ด๋‚˜ ๋ฐฐ ๋“ฑ์˜ ์บ๋ฆฌ์–ด๊ฐ€ ์šฉ๋Ÿ‰์ด ์ž‘์€ ๋กœ๋ด‡, ๋“œ๋ก  ๋“ฑ์„ ์‹ฃ๊ณ  ๋‹ค๋‹ˆ๋ฉด์„œ ๋ฐฐ์†ก์„ ํ•˜๋Š” ๋ฐฉ์‹์ด๋‹ค. ๋‹ค์Œ์œผ๋กœ, CVRP-D๋Š” ์ฐจ๋Ÿ‰๊ณผ ๋“œ๋ก ์ด ๋™์‹œ์— ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ฒฝ๋กœ๋ฅผ ์ด๋™ํ•˜๋ฉฐ, ๋“œ๋ก ์€ 1ํšŒ ๋น„ํ–‰(sortie)์‹œ ๋‹ค์ˆ˜์˜ ๋…ธ๋“œ๋ฅผ ๋ฐฉ๋ฌธํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋‘ ๋ฌธ์ œ๋Š” ์ฐจ๋Ÿ‰๊ฒฝ๋กœ๋ฌธ์ œ(VRP)์— ์ œ์•ฝ์ด ๋”ํ•ด์ง„ ๋ฌธ์ œ์ด๋‹ค. VRP๋Š” ๋Œ€ํ‘œ์ ์ธ NP-hard ๋ฌธ์ œ๋กœ ํ•ด๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด์„œ ํœด๋ฆฌ์Šคํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด ๋‘๋ฌธ์ œ์˜ ๋“œ๋ก -ํŠธ๋Ÿญ ๊ฒฝ๋กœ๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์‹ค์‹œํ•˜์—ฌ ๋“œ๋ก  ๋ฐฐ์†ก ๋„์ž…์„ ์œ„ํ•œ ์ ์ ˆํ•œ ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ ๋ฐ ๋“œ๋ก ์˜ ์ฃผ์š” ํŒŒ๋ผ๋ฏธํ„ฐ์— ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ณ€ํ™”๋ฅผ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ด๋Š” ์ฐจํ›„ ๋“œ๋ก ์˜ ์„ฑ๋Šฅ์— ๊ด€ํ•œ ์˜์‚ฌ๊ฒฐ์ • ์‹œ ๊ณ ๋ คํ•ด์•ผ ํ•  ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ๊ธฐ์ค€์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋˜ํ•œ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋ฒค์น˜๋งˆํฌ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์ดํ„ฐ์™€์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋“œ๋ก  ๋„์ž…์ด ๋ฐฐ์†ก์‹œ๊ฐ„์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ์šด์˜๋ฐฉ๋ฒ•์— ๋”ฐ๋ผ์„œ ๋ฐฐ์†ก์‹œ๊ฐ„์˜ ์ฐจ์ด๊ฐ€ ๋ฐœ์ƒํ•จ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ์„ฑ๊ณผ๋Š” ๋“œ๋ก  ๋ฐฐ์†ก ์‹œ ํ™˜๊ฒฝ๊ณผ ๊ธฐ๊ณ„์  ์„ฑ๋Šฅ์„ ๊ณ ๋ คํ•œ ๋ฐฐ์†ก ๊ฒฝ๋กœ๋ฅผ ๋‹จ์‹œ๊ฐ„๋‚ด ์ƒ์„ฑํ•˜์—ฌ ์ƒ์—…์ ์œผ๋กœ ์ด์šฉ๊ฐ€๋Šฅ ํ•  ๊ฒƒ์ด๋‹ค.Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Purpose 3 1.3 Contribution of Research 4 Chapter 2. Literature review 5 2.1 Vehicle Routing Problems with Drone 5 2.2 Carrier Vehicle Problem with Drone(CVP-D) 10 2.3 Capacitated VRP with Drone(CVRP-D) 12 Chapter 3. Mathematical Formulation 14 3.1 Terminology 14 3.2 CVP-D Formulation 15 3.3 CVRP-D Formulation 19 Chapter 4. Proposed Algorithms 23 4.1 Heuristic Algorithm 23 4.1.1 Knapsack Problem 23 4.1.2 Parallel Machine Scheduling (PMS) 25 4.1.3 Set Covering Location Problem (SCLP) 27 4.1.4 Guided Local Search (GLS) Algorithm 28 4.1.5 Genetic Algorithm (GA) 29 4.2 Proposed Heuristic Algorithm : GA-CVPD 30 4.3 Proposed Heuristic Algorithm : GA-CVRPD 33 Chapter 5. Numerical Analysis 36 5.1 Data Description 36 5.2 Numerical experiment 37 5.3 Sensitivity analysis 39 5.3.1 Analysis on GA-CVPD 39 5.3.2 Analysis on GA-CVRPD 42 5.3.3 Result on different Instances 45 Chapter 6. Conclusion 48 Bibliography 50 Abstract in Korean 53 4.1.5 Genetic Algorithm (GA) 29 4.2 Proposed Heuristic Algorithm : GA-CVPD 30 4.3 Proposed Heuristic Algorithm : GA-CVRPD 33 Chapter 5. Numerical Analysis 36 5.1 Data Description 36 5.2 Numerical experiment 37 5.3 Sensitivity analysis 42 5.3.1 Analysis on GA-CVPD 39 5.3.2 Analysis on GA-CVRPD 42 5.3.3 Result on different Instances 45 Chapter 6. Conclusion 48 Bibliography 50 Abstract in Korean 53์„

    A Hybrid Genetic Algorithm for the Traveling Salesman Problem with Drone

    Full text link
    This paper addresses the Traveling Salesman Problem with Drone (TSP-D), in which a truck and drone are used to deliver parcels to customers. The objective of this problem is to either minimize the total operational cost (min-cost TSP-D) or minimize the completion time for the truck and drone (min-time TSP-D). This problem has gained a lot of attention in the last few years since it is matched with the recent trends in a new delivery method among logistics companies. To solve the TSP-D, we propose a hybrid genetic search with dynamic population management and adaptive diversity control based on a split algorithm, problem-tailored crossover and local search operators, a new restore method to advance the convergence and an adaptive penalization mechanism to dynamically balance the search between feasible/infeasible solutions. The computational results show that the proposed algorithm outperforms existing methods in terms of solution quality and improves best known solutions found in the literature. Moreover, various analyses on the impacts of crossover choice and heuristic components have been conducted to analysis further their sensitivity to the performance of our method.Comment: Technical Report. 34 pages, 5 figure

    Two-Echelon Vehicle and UAV Routing for Post-Disaster Humanitarian Operations with Uncertain Demand

    Full text link
    Humanitarian logistics service providers have two major responsibilities immediately after a disaster: locating trapped people and routing aid to them. These difficult operations are further hindered by failures in the transportation and telecommunications networks, which are often rendered unusable by the disaster at hand. In this work, we propose two-echelon vehicle routing frameworks for performing these operations using aerial uncrewed autonomous vehicles (UAVs or drones) to address the issues associated with these failures. In our proposed frameworks, we assume that ground vehicles cannot reach the trapped population directly, but they can only transport drones from a depot to some intermediate locations. The drones launched from these locations serve to both identify demands for medical and other aids (e.g., epi-pens, medical supplies, dry food, water) and make deliveries to satisfy them. Specifically, we present two decision frameworks, in which the resulting optimization problem is formulated as a two-echelon vehicle routing problem. The first framework addresses the problem in two stages: providing telecommunications capabilities in the first stage and satisfying the resulting demands in the second. To that end, two types of drones are considered. Hotspot drones have the capability of providing cell phone and internet reception, and hence are used to capture demands. Delivery drones are subsequently employed to satisfy the observed demand. The second framework, on the other hand, addresses the problem as a stochastic emergency aid delivery problem, which uses a two-stage robust optimization model to handle demand uncertainty. To solve the resulting models, we propose efficient and novel solution approaches
    • โ€ฆ
    corecore