18 research outputs found

    Parallel ProXimal Algorithm for Image Restoration Using Hybrid Regularization -- Extended version

    Get PDF
    Regularization approaches have demonstrated their effectiveness for solving ill-posed problems. However, in the context of variational restoration methods, a challenging question remains, namely how to find a good regularizer. While total variation introduces staircase effects, wavelet domain regularization brings other artefacts, e.g. ringing. However, a trade-off can be made by introducing a hybrid regularization including several terms non necessarily acting in the same domain (e.g. spatial and wavelet transform domains). While this approach was shown to provide good results for solving deconvolution problems in the presence of additive Gaussian noise, an important issue is to efficiently deal with this hybrid regularization for more general noise models. To solve this problem, we adopt a convex optimization framework where the criterion to be minimized is split in the sum of more than two terms. For spatial domain regularization, isotropic or anisotropic total variation definitions using various gradient filters are considered. An accelerated version of the Parallel Proximal Algorithm is proposed to perform the minimization. Some difficulties in the computation of the proximity operators involved in this algorithm are also addressed in this paper. Numerical experiments performed in the context of Poisson data recovery, show the good behaviour of the algorithm as well as promising results concerning the use of hybrid regularization techniques

    Scalable Bayesian uncertainty quantification in imaging inverse problems via convex optimization

    Full text link
    We propose a Bayesian uncertainty quantification method for large-scale imaging inverse problems. Our method applies to all Bayesian models that are log-concave, where maximum-a-posteriori (MAP) estimation is a convex optimization problem. The method is a framework to analyse the confidence in specific structures observed in MAP estimates (e.g., lesions in medical imaging, celestial sources in astronomical imaging), to enable using them as evidence to inform decisions and conclusions. Precisely, following Bayesian decision theory, we seek to assert the structures under scrutiny by performing a Bayesian hypothesis test that proceeds as follows: firstly, it postulates that the structures are not present in the true image, and then seeks to use the data and prior knowledge to reject this null hypothesis with high probability. Computing such tests for imaging problems is generally very difficult because of the high dimensionality involved. A main feature of this work is to leverage probability concentration phenomena and the underlying convex geometry to formulate the Bayesian hypothesis test as a convex problem, that we then efficiently solve by using scalable optimization algorithms. This allows scaling to high-resolution and high-sensitivity imaging problems that are computationally unaffordable for other Bayesian computation approaches. We illustrate our methodology, dubbed BUQO (Bayesian Uncertainty Quantification by Optimization), on a range of challenging Fourier imaging problems arising in astronomy and medicine

    Accurate 3D-reconstruction and -navigation for high-precision minimal-invasive interventions

    Get PDF
    The current lateral skull base surgery is largely invasive since it requires wide exposure and direct visualization of anatomical landmarks to avoid damaging critical structures. A multi-port approach aiming to reduce such invasiveness has been recently investigated. Thereby three canals are drilled from the skull surface to the surgical region of interest: the first canal for the instrument, the second for the endoscope, and the third for material removal or an additional instrument. The transition to minimal invasive approaches in the lateral skull base surgery requires sub-millimeter accuracy and high outcome predictability, which results in high requirements for the image acquisition as well as for the navigation. Computed tomography (CT) is a non-invasive imaging technique allowing the visualization of the internal patient organs. Planning optimal drill channels based on patient-specific models requires high-accurate three-dimensional (3D) CT images. This thesis focuses on the reconstruction of high quality CT volumes. Therefore, two conventional imaging systems are investigated: spiral CT scanners and C-arm cone-beam CT (CBCT) systems. Spiral CT scanners acquire volumes with typically anisotropic resolution, i.e. the voxel spacing in the slice-selection-direction is larger than the in-the-plane spacing. A new super-resolution reconstruction approach is proposed to recover images with high isotropic resolution from two orthogonal low-resolution CT volumes. C-arm CBCT systems offers CT-like 3D imaging capabilities while being appropriate for interventional suites. A main drawback of these systems is the commonly encountered CT artifacts due to several limitations in the imaging system, such as the mechanical inaccuracies. This thesis contributes new methods to enhance the CBCT reconstruction quality by addressing two main reconstruction artifacts: the misalignment artifacts caused by mechanical inaccuracies, and the metal-artifacts caused by the presence of metal objects in the scanned region. CBCT scanners are appropriate for intra-operative image-guided navigation. For instance, they can be used to control the drill process based on intra-operatively acquired 2D fluoroscopic images. For a successful navigation, accurate estimate of C-arm pose relative to the patient anatomy and the associated surgical plan is required. A new algorithm has been developed to fulfill this task with high-precision. The performance of the introduced methods is demonstrated on simulated and real data

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Patch-based graphical models for image restoration

    Get PDF
    corecore