110 research outputs found

    A hybrid error control and artifact detection mechanism for robust decoding of H.264/AVC video sequences

    Get PDF
    This letter presents a hybrid error control and artifact detection (HECAD) mechanism which can be used to enhance the error resilient capabilities of the standard H.264/advanced video coding (AVC) codec. The proposed solution first exploits the residual source redundancy to recover the most likelihood H.264/AVC bitstream. If error recovery is unsuccessful, the residual corrupted slices are then passed through a pixel-level artifact detection mechanism to detect the visually impaired macroblocks to be concealed. The proposed HECAD algorithm achieves overall peak signal-to-noise ratio gains between 0.4 dB and 4.5 dB relative to the standard with no additional bandwidth requirement. The cost of this solution translates in a marginal increase in the complexity of the decoder. In addition, this method can be applied in conjunction with other error resilient strategies and scales well with different encoding configurations.peer-reviewe

    Signal processing for improved MPEG-based communication systems

    Get PDF

    Performance of an error detection mechanism for damaged H. 264/AVC sequences

    Get PDF
    In mobile video applications, the error-prone wireless connection can cause the stream to be incorrectly received. An occurring error will propagate both spatially (in the current frame) and temporally (to the following frames). This work presents the implementation of an error detection and concealment mechanism for H.264/AVC encoded video and the design of a quality estimator. The detection is performed by means of two interacting strategies. At bit level, the syntax of the received bitstream will be analyzed in order to detect inconsistent or illegal codewords. At the pixel level, the remaining visual impairments in the decoded frame will be detected. The quality estimator is capable of, given the information output by the decoder, to estimate the subjective quality of the decoded H.264 video. This detection and concealment is implemented in the H.264/AVC decoder, without causing transmission overhead. Simulations show improvements both in objective (luminance peak-signal-to-noise ratio) and subjective (mean opinion score) tests with respect to the common slice rejection mechanism. The quality estimator is only a Matlab design and is not implemented in the decoder

    Performance of enhanced error concealment techniques in multi-view video coding systems

    Get PDF
    This research work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union - European Social Fund (ESF 1.25).Transmission of multi-view video encoded bit-streams over error-prone channels demands robust error concealment techniques. This paper studies the performance of solutions that exploit the neighbourhood spatial, temporal and inter-view information for this scope. Furthermore, different boundary distortion measurements, motion compensation refinement and temporal error concealment of Anchor frames were exploited to improve the results obtained by the basic error concealment techniques. Results show that a gain in performance is obtained with the implementation of each independent concealment technique. Furthermore, Peak Signal-to-Noise Ratio (PSNR) gains of about 4dB relative to the standard were achieved when adopting a hybrid error concealment approach.peer-reviewe

    Performance of an error detection mechanism for damaged H. 264/AVC sequences

    Get PDF
    In mobile video applications, the error-prone wireless connection can cause the stream to be incorrectly received. An occurring error will propagate both spatially (in the current frame) and temporally (to the following frames). This work presents the implementation of an error detection and concealment mechanism for H.264/AVC encoded video and the design of a quality estimator. The detection is performed by means of two interacting strategies. At bit level, the syntax of the received bitstream will be analyzed in order to detect inconsistent or illegal codewords. At the pixel level, the remaining visual impairments in the decoded frame will be detected. The quality estimator is capable of, given the information output by the decoder, to estimate the subjective quality of the decoded H.264 video. This detection and concealment is implemented in the H.264/AVC decoder, without causing transmission overhead. Simulations show improvements both in objective (luminance peak-signal-to-noise ratio) and subjective (mean opinion score) tests with respect to the common slice rejection mechanism. The quality estimator is only a Matlab design and is not implemented in the decoder

    Contributions to reconfigurable video coding and low bit rate video coding

    Get PDF
    In this PhD Thesis, two different issues on video coding are stated and their corresponding proposed solutions discussed. In the first place, some problems of the use of video coding standards are identi ed and the potential of new reconfigurable platforms is put to the test. Specifically, the proposal from MPEG for a Reconfigurable Video Coding (RVC) standard is compared with a more ambitious proposal for Fully Configurable Video Coding (FCVC). In both cases, the objective is to nd a way for the definition of new video codecs without the concurrence of a classical standardization process, in order to reduce the time-to-market of new ideas while maintaining the proper interoperability between codecs. The main difference between these approaches is the ability of FCVC to reconfigure each program line in the encoder and decoder definition, while RVC only enables to conform the codec description from a database of standardized functional units. The proof of concept carried out in the FCVC prototype enabled to propose the incorporation of some of the FCVC capabilities in future versions of the RVC standard. The second part of the Thesis deals with the design and implementation of a filtering algorithm in a hybrid video encoder in order to simplify the high frequencies present in the prediction residue, which are the most expensive for the encoder in terms of output bit rate. By means of this filtering, the quantization scale employed by the video encoder in low bit rate is kept in reasonable values and the risk of appearance of encoding artifacts is reduced. The proposed algorithm includes a block for filter control that determines the proper amount of filtering from the encoder operating point and the characteristics of the sequence to be processed. This filter control is tuned according to perceptual considerations related with overall subjective quality assessment. Finally, the complete algorithm was tested by means of a standard subjective video quality assessment test, and the results showed a noticeable improvement in the quality score with respect to the non-filtered version, confirming that the proposed method reduces the presence of harmful low bit rate artifacts

    No-reference image and video quality assessment: a classification and review of recent approaches

    Get PDF

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    Robust density modelling using the student's t-distribution for human action recognition

    Full text link
    The extraction of human features from videos is often inaccurate and prone to outliers. Such outliers can severely affect density modelling when the Gaussian distribution is used as the model since it is highly sensitive to outliers. The Gaussian distribution is also often used as base component of graphical models for recognising human actions in the videos (hidden Markov model and others) and the presence of outliers can significantly affect the recognition accuracy. In contrast, the Student's t-distribution is more robust to outliers and can be exploited to improve the recognition rate in the presence of abnormal data. In this paper, we present an HMM which uses mixtures of t-distributions as observation probabilities and show how experiments over two well-known datasets (Weizmann, MuHAVi) reported a remarkable improvement in classification accuracy. © 2011 IEEE
    • …
    corecore