26,822 research outputs found

    A Hybrid Energy Efficient Protocol for Mobile Ad Hoc Networks

    Get PDF
    We proposed an energy conservation technique called Location Based Topology Control with Sleep Scheduling for ad hoc networks. It uses the feature of both topology control approach and power management approach. Like the topology control approach, it attempts to reduce the transmission power of a node, which is determined from its neighborhood location information. A node goes to sleep state based on the traffic condition as that of power management approach. In the proposed scheme, a node goes to sleep state only when its absence does not create local partition in its neighborhood. We preformed extensive simulation to compare the proposed scheme with existing ones. Simulation results show that the energy consumption is lower with increase in the network lifetime and higher throughput in the proposed scheme

    Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks

    Get PDF
    [EN] Mobile ad hoc networks (MANETs) are generally created for temporary scenarios. In such scenarios, where nodes are in mobility, efficient routing is a challenging task. In this paper, we propose an adaptive and cross-layer multipath routing protocol for such changing scenarios. Our routing mechanisms operate keeping in view the type of applications. For simple applications, the proposed protocol is inspired from traditional on-demand routing protocols by searching shortest routes from source to destination using default parameters. In case of multimedia applications, the proposed mechanism considers such routes which are capable of providing more data rates having less packet loss ratio. For those applications which need security, the proposed mechanism searches such routes which are more secure in nature as compared to others. Cross-layer methodology is used in proposed routing scheme so as to exchange different parameters across the protocol stack for better decision-making at network layer. Our approach is efficient and fault tolerant in a variety of scenarios that we simulated and tested.The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group no. 037-1435-RG.Iqbal, Z.; Khan, S.; Mehmood, A.; Lloret, J.; Alrajeh, NA. (2016). Adaptive Cross-Layer Multipath Routing Protocol for Mobile Ad Hoc Networks. Journal of Sensors. 2016:1-18. https://doi.org/10.1155/2016/5486437S1182016Abusalah, L., Khokhar, A., & Guizani, M. (2008). A survey of secure mobile Ad Hoc routing protocols. IEEE Communications Surveys & Tutorials, 10(4), 78-93. doi:10.1109/surv.2008.080407Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. Mobile Networks and Applications, 1(2), 183-197. doi:10.1007/bf01193336Toh, C.-K. (1997). Wireless Personal Communications, 4(2), 103-139. doi:10.1023/a:1008812928561Pearlman, M. R., & Haas, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395-1414. doi:10.1109/49.779922ZHEN, Y., WU, M., WU, D., ZHANG, Q., & XU, C. (2010). Toward path reliability by using adaptive multi-path routing mechanism for multimedia service in mobile Ad-hoc network. The Journal of China Universities of Posts and Telecommunications, 17(1), 93-100. doi:10.1016/s1005-8885(09)60431-3Sivakumar, R., Sinha, P., & Bharghavan, V. (1999). CEDAR: a core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected Areas in Communications, 17(8), 1454-1465. doi:10.1109/49.779926Zapata, M. G. (2002). Secure ad hoc on-demand distance vector routing. ACM SIGMOBILE Mobile Computing and Communications Review, 6(3), 106-107. doi:10.1145/581291.581312Khan, S., & Loo, J. (2010). Cross Layer Secure and Resource-Aware On-Demand Routing Protocol for Hybrid Wireless Mesh Networks. Wireless Personal Communications, 62(1), 201-214. doi:10.1007/s11277-010-0048-ySharma, V., & Alam, B. (2012). Unicaste Routing Protocols in Mobile Ad Hoc Networks: A Survey. International Journal of Computer Applications, 51(14), 9-18. doi:10.5120/8108-1714Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125-1143. doi:10.1016/j.jnca.2009.07.002Shiwen Mao, Shunan Lin, Yao Wang, Panwar, S. S., & Yihan Li. (2005). Multipath video transport over ad hoc networks. IEEE Wireless Communications, 12(4), 42-49. doi:10.1109/mwc.2005.1497857Li, Z., Chen, Q., Zhu, G., Choi, Y., & Sekiya, H. (2015). A Low Latency, Energy Efficient MAC Protocol for Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 11(8), 946587. doi:10.1155/2015/946587Zheng, Z., Liu, A., Cai, L. X., Chen, Z., & Shen, X. (2016). Energy and memory efficient clone detection in wireless sensor networks. IEEE Transactions on Mobile Computing, 15(5), 1130-1143. doi:10.1109/tmc.2015.2449847Dong, M., Ota, K., Liu, A., & Guo, M. (2016). Joint Optimization of Lifetime and Transport Delay under Reliability Constraint Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 27(1), 225-236. doi:10.1109/tpds.2015.2388482Hamrioui, S., Lorenz, P., Lloret, J., & Lalam, M. (2013). A Cross Layer Solution for Better Interactions Between Routing and Transport Protocols in MANET. Journal of Computing and Information Technology, 21(3), 137. doi:10.2498/cit.1002136Sanchez-Iborra, R., & Cano, M.-D. (2014). An approach to a cross layer-based QoE improvement for MANET routing protocols. Network Protocols and Algorithms, 6(3), 18. doi:10.5296/npa.v6i3.5827Cho, J.-H., Swami, A., & Chen, I.-R. (2011). A Survey on Trust Management for Mobile Ad Hoc Networks. IEEE Communications Surveys & Tutorials, 13(4), 562-583. doi:10.1109/surv.2011.092110.0008

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis

    MARIAN: A hybrid, metric-driven, agent-based routing protocol for multihop ad-hoc networks

    Get PDF
    Recent advances in technology provided the ground for highly dynamic, mobile, infrastructure-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full potential cannot be reached unless certain issues are resolved. These mainly involve routing, as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain location information and route data packets in a multi-hop fashion. Specifically, typical adhoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the available throughput, life-time, and performance, that these may provide, as routing elements. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be utilised for routing according to their fitness, as different device types significantly vary in terms of routing fitness. In addition, a concrete agent-based approach can provide a set of advantages over a non-agent-based one, which includes: better design practice; and automatic reconfigurability.This research work aims to investigate the applicability of stationary and mobile agent technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid, metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance current routing schemes. The novelties that are expected to be achieved include: maximum network performance, increased scalability, dynamic adaptation, Quality of Service (QoS), energy conservation, reconfigurability, and security. The underlying idea is based on the fact that stationary and mobile agents can be ideal candidates for such dynamic environments due to their advanced characteristics, and thus offer state of the art support in terms of organising the otherwise disoriented network into an efficient and flexible hierarchical structure, classifying the routing fitness of participating devices, and therefore allow intelligent routing decisions to be taken on that basis

    Energy Efficient Location Aided Routing Protocol for Wireless MANETs

    Get PDF
    A Mobile Ad-Hoc Network (MANET) is a collection of wireless mobile nodes forming a temporary network without using any centralized access point, infrastructure, or centralized administration. In this paper we introduce an Energy Efficient Location Aided Routing (EELAR) Protocol for MANETs that is based on the Location Aided Routing (LAR). EELAR makes significant reduction in the energy consumption of the mobile nodes batteries by limiting the area of discovering a new route to a smaller zone. Thus, control packets overhead is significantly reduced. In EELAR a reference wireless base station is used and the network's circular area centered at the base station is divided into six equal sub-areas. At route discovery instead of flooding control packets to the whole network area, they are flooded to only the sub-area of the destination mobile node. The base station stores locations of the mobile nodes in a position table. To show the efficiency of the proposed protocol we present simulations using NS-2. Simulation results show that EELAR protocol makes an improvement in control packet overhead and delivery ratio compared to AODV, LAR, and DSR protocols.Comment: 9 Pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.423, http://sites.google.com/site/ijcsis
    • …
    corecore