9 research outputs found

    A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability

    Get PDF
    We extend a smooth dynamical systems averaging technique to a class of hybrid systems with a limit cycle that is particularly relevant to the synthesis of stable legged gaits. After introducing a definition of hybrid averageability sufficient to recover the classical result, we illustrate its applicability by analysis of first a one-legged and then a two-legged hopping model. These abstract systems prepare the ground for the analysis of a significantly more complicated two legged model—a new template for quadrupedal running to be analyzed and implemented on a physical robot in a companion paper. We conclude with some rather more speculative remarks concerning the prospects for further extension and generalization of these ideas

    What is Robotics: Why Do We Need It and How Can We Get It?

    Get PDF
    Robotics is an emerging synthetic science concerned with programming work. Robot technologies are quickly advancing beyond the insights of the existing science. More secure intellectual foundations will be required to achieve better, more reliable and safer capabilities as their penetration into society deepens. Presently missing foundations include the identification of fundamental physical limits, the development of new dynamical systems theory and the invention of physically grounded programming languages. The new discipline needs a departmental home in the universities which it can justify both intellectually and by its capacity to attract new diverse populations inspired by the age old human fascination with robots. For more information: Kod*la

    Modular Hopping and Running via Parallel Composition

    Get PDF
    Though multi-functional robot hardware has been created, the complexity in its functionality has been constrained by a lack of algorithms that appropriately manage flexible and autonomous reconfiguration of interconnections to physical and behavioral components. Raibert pioneered a paradigm for the synthesis of planar hopping using a composition of ``parts\u27\u27: controlled vertical hopping, controlled forward speed, and controlled body attitude. Such reduced degree-of-freedom compositions also seem to appear in running animals across several orders of magnitude of scale. Dynamical systems theory can offer a formal representation of such reductions in terms of ``anchored templates,\u27\u27 respecting which Raibert\u27s empirical synthesis (and the animals\u27 empirical performance) can be posed as a parallel composition. However, the orthodox notion (attracting invariant submanifold with restriction dynamics conjugate to a template system) has only been formally synthesized in a few isolated instances in engineering (juggling, brachiating, hexapedal running robots, etc.) and formally observed in biology only in similarly limited contexts. In order to bring Raibert\u27s 1980\u27s work into the 21st century and out of the laboratory, we design a new family of one-, two-, and four-legged robots with high power density, transparency, and control bandwidth. On these platforms, we demonstrate a growing collection of {\{body, behavior}\} pairs that successfully embody dynamical running / hopping ``gaits\u27\u27 specified using compositions of a few templates, with few parameters and a great deal of empirical robustness. We aim for and report substantial advances toward a formal notion of parallel composition---embodied behaviors that are correct by design even in the presence of nefarious coupling and perturbation---using a new analytical tool (hybrid dynamical averaging). With ideas of verifiable behavioral modularity and a firm understanding of the hardware tools required to implement them, we are closer to identifying the components required to flexibly program the exchange of work between machines and their environment. Knowing how to combine and sequence stable basins to solve arbitrarily complex tasks will result in improved foundations for robotics as it goes from ad-hoc practice to science (with predictive theories) in the next few decades

    Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos

    Get PDF
    Las aplicaciones de técnicas provenientes de la Geometría Diferencial moderna y la Topología han ayudado a una mayor comprensión de los problemas provenientes de la teoría de Sistemas Dinámicos. Estas aplicaciones han reformulado la mecánica analítica y clásica en un lenguaje geométrico que junto a nuevos métodos analíticos, topológicos y numéricos conforman una nueva área de investigación en matemática y física llamada Mecánica Geométrica. La Mecánica Geométrica se configura como un punto de encuentro de disciplinas diversas como la Mecánica, la Geometría, el Análisis, el Álgebra, el Análisis Numérico, las Ecuaciones en Derivadas Parciales, entre otras. Actualmente, la Mecánica Geométrica es un área de investigación pujante con fructíferas conexiones con otras disciplinas como la Teoría de Control no-lineal y los Sistemas Dinámicos. El objetivo de la Teoría de Control es determinar el comportamiento de un sistema dinámico por medio de acciones externas de forma que se cumplan ciertas condiciones prefijadas, como por ejemplo, que haya un extremo fijo, los dos, que ciertas variables no alcancen algunos valores u otro tipo de situaciones más o menos complicadas. Las aplicaciones de la Mecánica Geométrica en Teoría de Control han causado grandes progresos de esta área de investigación. Por otro lado, los sistemas híbridos son sistemas dinámicos que poseen dos componentes particulares en su dinámica: una dinámica a tiempo continua y una dinámica discreta. Estos sistemas son capaces de modelar varios sistemas ingenieriles como por ejemplo robots bípedos y el trabajo cooperativo con drones. La teoría de reducción es uno de los temas más estudiados de la Mecánica Geométrica. El punto de partida de todos los trabajos que estudian este tema es eliminar variables asociadas con un grupo de simetrías para reducir los grados de libertad de un sistema mecánico. En Mecánica Geométrica, las variedades simplécticas son utilizadas como espacios de fases de momentos, es decir, fibrados cotangentes en un espacio de configuración Q. En ese caso, las variedades simplécticas son los espacios naturales en las cuales se realiza la formulación Hamiltoniana de la Mecánica Clásica en el sentido autónomo. Dado un grupo de Lie, si el grupo de Lie actúa en Q, entonces se puede reducir la variedad simpléctica con respecto a la correspondiente acción levantada al cotangente y la aplicación momento canónica. Una de la formulaciones modernas de la teoría de reducción es conocida como reducción simpléctica o reducción de Marsden-Weinstein. La idea principal es la siguiente: suponer que un grupo de Lie actúa simplécticamente en una variedad simpléctica y que la aplicación momento está dada. El conjunto de nivel de esta aplicación, está equipado con una 2-forma canónica cerrada que generalmente no es no-degenerada. Bajo ciertas condiciones, se puede cocientar con respecto al grupo de isotropía para así eliminar las variables degeneradas y obtener una nueva 2-forma que resulta ser simpléctica. En el marco de sistemas que dependen explícitamente del tiempo, la situación es diferente. El espacio de configuraciones es una variedad diferenciable con su parte en el conjunto de números reales. Uno puede pensar en aplicar nuevamente los resultados conocidos a este nuevo marco y realizar una teoría análoga dependiente en el tiempo. En esta Tesis, el estudio de reducción por simetrías para sistemas Lagrangianos y Hamiltonianos híbridos es desarrollado en profundidad generalizando los resultados ya conocidos. Todos los distintos procesos de reducción que aparecen en mecánica de sistemas a tiempo continuo, de una u otra manera, pueden ser llevados a cabo en el contexto híbrido y así conseguir un sistema equivalente (que luego recuperará la solución del original) más fácil de resolver. El presente trabajo de investigación incluye nuevos resultados en el área de la Mecánica Geométrica que permiten el estudio de sistemas mecánicos (en particular sobre técnicas de reducción aplicadas en distintos contextos), su aplicación a la teoría de control y a los sistemas híbridos con y sin dependencia del tiempo. Presentamos una nueva formulación geométrica para la dinámica de los sistemas mecánicos de orden superior reducidos y la existencia de términos magnéticos, tanto en estos sistemas como en los sistemas mecánicos híbridos, que aparecen luego de aplicar un proceso de reducción Hamiltoniana. El trabajo desarrollado en esta Tesis contribuye a la Mecánica de Orden Superior, la Mecánica Discreta, la Teoría de reducción, la estabilidad y reducción de los Sistemas Mecánicos Híbridos, la Geometría Cosimpléctica y la Teoría de Control Geométrico.Facultad de Ciencias Exacta

    A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability

    No full text
    https://repository.upenn.edu/ese_images/1052/thumbnail.jp

    A hybrid dynamical extension of averaging and its application to the analysis of legged gait stability

    No full text
    https://repository.upenn.edu/ese_images/1052/thumbnail.jp
    corecore