2,070 research outputs found

    Improving hydrologic modeling of runoff processes using data-driven models

    Get PDF
    2021 Spring.Includes bibliographical references.Accurate rainfall–runoff simulation is essential for responding to natural disasters, such as floods and droughts, and for proper water resources management in a wide variety of fields, including hydrology, agriculture, and environmental studies. A hydrologic model aims to analyze the nonlinear and complex relationship between rainfall and runoff based on empirical equations and multiple parameters. To obtain reliable results of runoff simulations, it is necessary to consider three tasks, namely, reasonably diagnosing the modeling performance, managing the uncertainties in the modeling outcome, and simulating runoff considering various conditions. Recently, with the advancement of computing systems, technology, resources, and information, data-driven models are widely used in various fields such as language translation, image classification, and time-series analysis. In addition, as spatial and temporal resolutions of observations are improved, the applicability of data-driven models, which require massive amounts of datasets, is rapidly increasing. In hydrology, rainfall–runoff simulation requires various datasets including meteorological, topographical, and soil properties with multiple time steps from sub-hourly to monthly. This research investigates whether data-driven approaches can be effectively applied for runoff analysis. In particular, this research aims to explore if data-driven models can 1) reasonably evaluate hydrologic models, 2) improve the modeling performance, and 3) predict hourly runoff using distributed forcing datasets. The details of these three research aspects are as follows: First, this research developed a hydrologic assessment tool using a hybrid framework, which combines two data-driven models, to evaluate the performance of a hydrologic model for runoff simulation. The National Water Model, which is a fully distributed hydrologic model, was used as the physical-based model. The developed assessment tool aims to provide easy-to-understand performance ratings for the simulated hydrograph components, namely, the rising and recession limbs, as well as for the entire hydrograph, against observed runoff data. In this research, four performance ratings were used. This is the first research that tries to apply data-driven models for evaluating the performance of the National Water Model and the results are expected to reasonably diagnose the model's ability for runoff simulations based on a short-term time step. Second, correction of errors inherent in the predicted runoff is essential for efficient water management. Hydrologic models include various parameters that cannot be measured directly, but they can be adjusted to improve the predictive performance. However, even a calibrated model still has obvious errors in predicting runoff. In this research, a data-driven model was applied to correct errors in the predicted runoff from the National Water Model and improve its predictive performance. The proposed method uses historic errors in runoff to predict new errors as a post-processor. This research shows that data-driven models, which can build algorithms based on the relationships between datasets, have strong potential for correcting errors and improving the predictive performance of hydrologic models. Finally, to simulate rainfall-runoff accurately, it is essential to consider various factors such as precipitation, soil property, and runoff coming from upstream regions. With improvements in observation systems and resources, various types of forcing datasets, including remote-sensing based data and data-assimilation system products, are available for hydrologic analysis. In this research, various data-driven models with distributed forcing datasets were applied to perform hourly runoff predictions. The forcing datasets included different hydrologic factors such as soil moisture, precipitation, land surface temperature, and base flow, which were obtained from a data assimilation system. The predicted results were evaluated in terms of seasonal and event-based performances and compared with those of the National Water Model. The results demonstrated that data-driven models for hourly runoff forecasting are effective and useful for short-term runoff prediction and developing flood warning system during wet season

    Integrated High-Resolution Modeling for Operational Hydrologic Forecasting

    Get PDF
    Current advances in Earth-sensing technologies, physically-based modeling, and computational processing, offer the promise of a major revolution in hydrologic forecasting—with profound implications for the management of water resources and protection from related disasters. However, access to the necessary capabilities for managing information from heterogeneous sources, and for its deployment in robust-enough modeling engines, remains the province of large governmental agencies. Moreover, even within this type of centralized operations, success is still challenged by the sheer computational complexity associated with overcoming uncertainty in the estimation of parameters and initial conditions in large-scale or high-resolution models. In this dissertation we seek to facilitate the access to hydrometeorological data products from various U.S. agencies and to advanced watershed modeling tools through the implementation of a lightweight GIS-based software package. Accessible data products currently include gauge, radar, and satellite precipitation; stream discharge; distributed soil moisture and snow cover; and multi-resolution weather forecasts. Additionally, we introduce a suite of open-source methods aimed at the efficient parameterization and initialization of complex geophysical models in contexts of high uncertainty, scarce information, and limited computational resources. The developed products in this suite include: 1) model calibration based on state of the art ensemble evolutionary Pareto optimization, 2) automatic parameter estimation boosted through the incorporation of expert criteria, 3) data assimilation that hybridizes particle smoothing and variational strategies, 4) model state compression by means of optimized clustering, 5) high-dimensional stochastic approximation of watershed conditions through a novel lightweight Gaussian graphical model, and 6) simultaneous estimation of model parameters and states for hydrologic forecasting applications. Each of these methods was tested using established distributed physically-based hydrologic modeling engines (VIC and the DHSVM) that were applied to watersheds in the U.S. of different sizes—from a small highly-instrumented catchment in Pennsylvania, to the basin of the Blue River in Oklahoma. A series of experiments was able to demonstrate statistically-significant improvements in the predictive accuracy of the proposed methods in contrast with traditional approaches. Taken together, these accessible and efficient tools can therefore be integrated within various model-based workflows for complex operational applications in water resources and beyond

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?

    Get PDF
    International audienceThis study provides a comprehensive assessment of state-of-the-art evolutionary multiobjective optimization (EMO) tools' relative effectiveness in calibrating hydrologic models. The relative computational efficiency, accuracy, and ease-of-use of the following EMO algorithms are tested: Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (?-NSGAII), the Multiobjective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Strength Pareto Evolutionary Algorithm 2 (SPEA2). This study uses three test cases to compare the algorithms' performances: (1) a standardized test function suite from the computer science literature, (2) a benchmark hydrologic calibration test case for the Leaf River near Collins, Mississippi, and (3) a computationally intensive integrated surface-subsurface model application in the Shale Hills watershed in Pennsylvania. One challenge and contribution of this work is the development of a methodology for comprehensively comparing EMO algorithms that have different search operators and randomization techniques. Overall, SPEA2 attained competitive to superior results for most of the problems tested in this study. The primary strengths of the SPEA2 algorithm lie in its search reliability and its diversity preservation operator. The biggest challenge in maximizing the performance of SPEA2 lies in specifying an effective archive size without a priori knowledge of the Pareto set. In practice, this would require significant trial-and-error analysis, which is problematic for more complex, computationally intensive calibration applications. ?-NSGAII appears to be superior to MOSCEM-UA and competitive with SPEA2 for hydrologic model calibration. ?-NSGAII's primary strength lies in its ease-of-use due to its dynamic population sizing and archiving which lead to rapid convergence to very high quality solutions with minimal user input. MOSCEM-UA is best suited for hydrologic model calibration applications that have small parameter sets and small model evaluation times. In general, it would be expected that MOSCEM-UA's performance would be met or exceeded by either SPEA2 or ?-NSGAII

    River flow forecasting using an integrated approach of wavelet multi-resolution analysis and computational intelligence techniques

    Get PDF
    In this research an attempt is made to develop highly accurate river flow forecasting models. Wavelet multi-resolution analysis is applied in conjunction with artificial neural networks and adaptive neuro-fuzzy inference system. Various types and structure of computational intelligence models are developed and applied on four different rivers in Australia. Research outcomes indicate that forecasting reliability is significantly improved by applying proposed hybrid models, especially for longer lead time and peak values

    Doctor of Philosophy

    Get PDF
    dissertationControlling combined sewer overflows (CSOs) is one of the greatest urban drainage challenges in more than 700 communities in the United States. Traditional drainage design typically leads to centralized, costly and energy-intensive infrastructure solutions. Recently, however, application of decentralized techniques to reduce the costs and environmental impacts is gaining popularity. Rainwater harvesting (RWH) is a decentralized technique being used more often today, but its sustainability evaluation has been limited to a building scale, without considering hydrologic implications at the watershed scale. Therefore, the goal of this research is to study watershed-scale life cycle effects of RWH on controlling CSOs. To achieve this goal, (i) the life cycle costs (LCC) and long-term hydrologic performance are combined to evaluate the cost-effectiveness of control plans, (ii) the life cycle assessment (LCA) and hydrologic analysis were integrated into a framework to evaluate environmental sustainability of control plans, and (iii) the major sources of uncertainty in the integrated framework with relative impacts were identified and quantified, respectively. A case study of the City of Toledo, Ohio serves as the platform to investigate these approaches and to compare RWH with centralized infrastructure strategies. LCC evaluation shows that incorporating RWH into centralized control plans could noticeably improve the cost-effectiveness over the life cycle of drainage infrastructure. According to the results of the integrated framework, incorporating RWH could reduce Eco-toxicity Water (ETW) impacts, but caused an increase in the Global Warming Potential (GWP). In fact, incorporating RWH contributes to avoidance of untreated discharges into water bodies (thus reducing ETW) and additional combined sewage delivered to treatment facilities (thus increasing GWP). The uncertainty analysis suggests that rainfall data (as a hydrologic parameter) could be a significant source of the uncertainty in outputs of the integrated framework. Conversely, parameters of LCIA (life cycle impact assessment) could have trivial impacts on the outputs. This supports the need for robust hydrologic data and associated analyses to increase the reliability of LCA-based urban drainage design. In addition, results suggest that such an uncertainty analysis is capable of rendering optimal RWH system capacity as a function of annual rainfall depth to lead to minimized life cycle impacts. Capacities smaller than the optimal size would likely result in loss of RWH potable water savings and CSO control benefits, while capacities larger than optimal would probably incur excessive wastewater treatment burden and construction phase impacts

    Multi criteria decision support system for watershed management under uncertain conditions, A

    Get PDF
    2012 Summer.Includes bibliographical references.Nonpoint source (NPS) pollution is the primary cause of impaired water bodies in the United States and around the world. Elevated nutrient, sediment, and pesticide loads to waterways may negatively impact human health and aquatic ecosystems, increasing costs of pollutant mitigation and water treatment. Control of nonpoint source pollution is achievable through implementation of conservation practices, also known as Best Management Practices (BMPs). Watershed-scale NPS pollution control plans aim at minimizing the potential for water pollution and environmental degradation at minimum cost. Simulation models of the environment play a central role in successful implementation of watershed management programs by providing the means to assess the relative contribution of different sources to the impairment and water quality impact of conservation practices. While significant shifts in climatic patterns are evident worldwide, many natural processes, including precipitation and temperature, are affected. With projected changes in climatic conditions, significant changes in diffusive transport of nonpoint source pollutants, assimilative capacity of water bodies, and landscape positions of critical areas that should be targeted for implementation of conservation practices are also expected. The amount of investment on NPS pollution control programs makes it all but vital to assure the conservation benefits of practices will be sustained under the shifting climatic paradigms and challenges for adoption of the plans. Coupling of watershed models with regional climate projections can potentially provide answers to a variety of questions on the dynamic linkage between climate and ecologic health of water resources. The overarching goal of this dissertation is to develop a new analysis framework for the development of optimal NPS pollution control strategy at the regional scale under projected future climate conditions. Proposed frameworks were applied to a 24,800 ha watershed in the Eagle Creek Watershed in central Indiana. First, a computational framework was developed for incorporation of disparate information from observed hydrologic responses at multiple locations into the calibration of watershed models. This study highlighted the use of multiobjective approaches for proper calibration of watershed models that are used for pollutant source identification and watershed management. Second, an integrated simulation-optimization approach for targeted implementation of agricultural conservation practices was presented. A multiobjective genetic algorithm (NSGA-II) with mixed discrete-continuous decision variables was used to identify optimal types and locations of conservation practices for nutrient and pesticide control. This study showed that mixed discrete-continuous optimization method identifies better solutions than commonly used binary optimization methods. Third, the conclusion from application of NSGA-II optimization followed by development of a multi criteria decision analysis framework to identify near-optimal NPS pollution control plan using a priori knowledge about the system. The results suggested that the multi criteria decision analysis framework can be an effective and efficient substitute for optimization frameworks. Fourth, the hydrologic and water quality simulations driven by an extensive ensemble of climate projections were analyzed for their respective changes in basin average temperature and precipitation. The results revealed that the water yield and pollutants transport are likely to change substantially under different climatic paradigms. And finally, impact of projected climate change on performance of conservation practice and shifts in their optimal types and locations were analyzed. The results showed that performance of NPS control plans under different climatic projections will alter substantially; however, the optimal types and locations of conservation practices remained relatively unchanged

    Geospatial Artificial Intelligence (GeoAI) in the Integrated Hydrological and Fluvial Systems Modeling: Review of Current Applications and Trends

    Get PDF
    This paper reviews the current GeoAI and machine learning applications in hydrological and hydraulic modeling, hydrological optimization problems, water quality modeling, and fluvial geomorphic and morphodynamic mapping. GeoAI effectively harnesses the vast amount of spatial and non-spatial data collected with the new automatic technologies. The fast development of GeoAI provides multiple methods and techniques, although it also makes comparisons between different methods challenging. Overall, selecting a particular GeoAI method depends on the application's objective, data availability, and user expertise. GeoAI has shown advantages in non-linear modeling, computational efficiency, integration of multiple data sources, high accurate prediction capability, and the unraveling of new hydrological patterns and processes. A major drawback in most GeoAI models is the adequate model setting and low physical interpretability, explainability, and model generalization. The most recent research on hydrological GeoAI has focused on integrating the physical-based models' principles with the GeoAI methods and on the progress towards autonomous prediction and forecasting systems
    • …
    corecore