2,424 research outputs found

    A Hybrid Controller for Obstacle Avoidance in an n-dimensional Euclidean Space

    Full text link
    For a vehicle moving in an nn-dimensional Euclidean space, we present a construction of a hybrid feedback that guarantees both global asymptotic stabilization of a reference position and avoidance of an obstacle corresponding to a bounded spherical region. The proposed hybrid control algorithm switches between two modes of operation: stabilization (motion-to-goal) and avoidance (boundary-following). The geometric construction of the flow and jump sets of the hybrid controller, exploiting a hysteresis region, guarantees robust switching (chattering-free) between the stabilization and avoidance modes. Simulation results illustrate the performance of the proposed hybrid control approach for a 3-dimensional scenario.Comment: 8 pages, 3 figures, conferenc

    On the Construction of Safe Controllable Regions for Affine Systems with Applications to Robotics

    Full text link
    This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That is, we are concerned with constructing regions in the state space of affine systems such that all the states in the interior of the region are mutually accessible through the region's interior by applying uniformly bounded inputs. We first show that existing results for checking in-block controllability on given polytopic regions cannot be easily extended to address the question of constructing IBC regions. We then explore the geometry of the problem to provide a computationally efficient algorithm for constructing IBC regions. We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe speed profiles for different robotic systems, including fully-actuated robots, ground robots modeled as unicycles with acceleration limits, and unmanned aerial vehicles (UAVs). Finally, we present several experimental results on UAVs to verify the effectiveness of the proposed algorithm. For instance, we use the proposed algorithm for real-time collision avoidance for UAVs.Comment: 17 pages, 18 figures, under review for publication in Automatic

    Obstacle Avoidance via Hybrid Feedback

    Get PDF
    In this paper we present a hybrid feedback approach to solve the navigation problem of a point mass in the n-dimensional space containing an arbitrary number of ellipsoidal shape obstacles. The proposed hybrid control algorithm guarantees both global asymptotic stabilization to a reference and avoidance of the obstacles. The intuitive idea of the proposed hybrid feedback is to switch between two modes of control: stabilization and avoidance. The geometric construction of the flow and jump sets of the proposed hybrid controller, exploiting hysteresis regions, guarantees Zeno-free switching between the stabilization and the avoidance modes. Simulation results illustrate the performance of the proposed hybrid control approach for 2-dimensional and 3-dimensional scenarios

    Hybrid Feedback for Autonomous Navigation in Environments with Arbitrary Non-Convex Obstacles

    Full text link
    We develop an autonomous navigation algorithm for a robot operating in two-dimensional environments containing obstacles, with arbitrary non-convex shapes, which can be in close proximity with each other, as long as there exists at least one safe path connecting the initial and the target location. The proposed navigation approach relies on a hybrid feedback to guarantee global asymptotic stabilization of the robot towards a predefined target location while ensuring the forward invariance of the obstacle-free workspace. The proposed hybrid feedback controller guarantees Zeno-free switching between the move-to-target mode and the obstacle-avoidance mode based on the proximity of the robot with respect to the obstacle-occupied workspace. An instrumental transformation that reshapes (virtually) the non-convex obstacles, in a non-conservative manner, is introduced to facilitate the design of the obstacle-avoidance strategy. Finally, we provide an algorithmic procedure for the sensor-based implementation of the proposed hybrid controller and validate its effectiveness through simulation results.Comment: arXiv admin note: text overlap with arXiv:2111.0938

    Forward Stochastic Reachability Analysis for Uncontrolled Linear Systems using Fourier Transforms

    Full text link
    We propose a scalable method for forward stochastic reachability analysis for uncontrolled linear systems with affine disturbance. Our method uses Fourier transforms to efficiently compute the forward stochastic reach probability measure (density) and the forward stochastic reach set. This method is applicable to systems with bounded or unbounded disturbance sets. We also examine the convexity properties of the forward stochastic reach set and its probability density. Motivated by the problem of a robot attempting to capture a stochastically moving, non-adversarial target, we demonstrate our method on two simple examples. Where traditional approaches provide approximations, our method provides exact analytical expressions for the densities and probability of capture.Comment: V3: HSCC 2017 (camera-ready copy), DOI updated, minor changes | V2: Review comments included | V1: 10 pages, 12 figure

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT
    • …
    corecore