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Obstacle Avoidance via Hybrid Feedback
Soulaimane Berkane , Member, IEEE, Andrea Bisoffi , Member, IEEE,

and Dimos V. Dimarogonas , Senior Member, IEEE

Abstract—In this article, we present a hybrid feedback approach
to solve the navigation problem in the n-dimensional space con-
taining an arbitrary number of ellipsoidal obstacles. The proposed
algorithm guarantees both global asymptotic stabilization to a tar-
get position and avoidance of the obstacles. The controller, exploit-
ing hysteresis regions, employs a Zeno-free switching between two
modes of control: stabilization and avoidance. Simulation results
illustrate the performance of the proposed approach for 2-D and
3-D scenarios.

Index Terms—Asymptotic stability, autonomous vehicles, con-
trol design, collision avoidance, motion control, nonlinear control
systems, Lyapunov methods.

I. INTRODUCTION

For decades, the obstacle avoidance problem has been an active
area of research in the robotics and control communities [1]. In a
typical robot navigation scenario, the robot is required to reach a given
goal (destination) while not colliding with a set of obstacle regions
in the workspace. For this problem, the pioneering work [2] proposed
to generate an artificial potential field that renders the goal attractive
and the obstacles repulsive. Then, by navigating along the negative
gradient of the artificial potential field, the robot will reach the desired
target while avoiding collision with the obstacles. However, artificial
potential field-based algorithms suffer from 1) the presence of local
minima preventing the successful navigation to the target point and
2) arbitrarily large repulsive potential near the obstacles, which is
in conflict with the inevitable actuator saturations. The navigation-
function approach, initiated by Koditscheck and Rimon [3] for sphere
worlds [3, p. 414], solves both problems. It allows obtaining artificial
potential fields with the nice property that all critical points except one
are saddles and the remaining critical point is the desired reference.
Since then, the navigation-function-based approach has been extended
in many different directions; e.g., for multiagent systems [4]–[6], for
unknown sphere words [7], and for focally admissible obstacles [8]. The
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major drawback of navigation functions is that they are not correct by
construction. In fact, navigation functions are theoretically guaranteed
to exist, but their explicit computation is not straightforward since they
require an unknown tuning of a given parameter to eliminate local
minima. Recently, Loizou [9] introduced the navigation transform that
diffeomorphically maps the workspace to a trivial domain called the
point world consisting of a closed ball with a finite number of points
removed. Once this transformation is found, the navigation problem is
solved from almost all initial conditions without requiring any tuning. In
addition, the trajectory duration is explicitly available, which provides a
timed-abstraction solution to the motion-planning problem. Similarly,
the recent work in [10] uses the so-called prescribed performance
control to design a time-varying control law that drives the robot, in
finite time, from all initial conditions to some neighborhood of the
target while avoiding the obstacles. Another approach to the navigation
problem is through barrier functions (see [11] and references therein),
which are developed for nonlinear systems with state-space constraints
and ensure safety. Model predictive control approaches have been also
used for reactive robot navigation, e.g., [12], [13].

However, by using any of the approaches described earlier, it is not
possible to ensure safety from all initial conditions in the obstacle-free
state space. As pointed out in [3], the appearance of additional undesired
equilibria is unavoidable when considering continuous time-invariant
vector fields. Furthermore, this problem is more far-reaching since it
is always possible to find arbitrarily small adversarial (noise) signals
acting on the vector field, such that a set of initial conditions different
from the target, possibly of measure zero, can be rendered stable [14,
Th. 6.5]. To deal with such limitations, Sanfelice et al. [15] proposed
a hybrid state feedback controller, using Lyapunov-based hysteresis
switching, to achieve robust global asymptotic regulation in R2 to
a target while avoiding a single obstacle. This approach has been
exploited in [16] to steer a planar vehicle to the source of an unknown
but measurable signal while avoiding an obstacle. In [17] and [18], a
hybrid control law was proposed to globally asymptotically stabilize a
class of linear systems while avoiding neighborhoods of unsafe isolated
points in Rn. Although such hybrid approaches are promising, they are
still challenged by constructing the suitable hybrid feedback for higher
dimensions and with more complex obstacles shapes.

In this article, we propose a hybrid control algorithm for the global
asymptotic stabilization of a point mass moving in an arbitrary n-
dimensional space while safely avoiding obstacles that have generic
ellipsoidal shapes, based on the preliminary treatment of this problem
for a single spherical obstacle in [19]. The ellipsoids provide a tighter
bounding volume than spheres, and in our scheme, they can be arbi-
trarily flat and close to the target, which leads to a significant reduction
in the level of conservatism compared, e.g., to [20, Th. 3] as we show
in Section VI. Our proposed hybrid algorithm employs a hysteresis-
based switching between the avoidance controller and the stabilizing
controller to guarantee forward invariance of the obstacle-free region
(corresponding to safety) and global asymptotic stability of the target
position. We consider trajectories in an n-dimensional Euclidean space
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and we resort to tools from higher dimensional geometry to provide
a construction of the flow and jump sets where the different modes
of operation of the hybrid controller are activated. Furthermore, the
hybrid control law guarantees a bounded control input, it matches the
stabilizing controller in arbitrarily large subsets of the obstacle-free
region by a suitable tuning of its parameters (hence qualifying as
minimally invasive), it can be readily extended to a nonpoint mass
vehicle and enjoys some level of inherent robustness to perturbations.

An extended version and all the proofs of the lemmas are in [21].

II. PRELIMINARIES

N, R, and R≥ denote, respectively, the set of nonnegative integers,
reals, and nonnegative reals. Rn is the n-dimensional Euclidean space
and Sn is the n-dimensional unit sphere embedded in Rn+1. Given
the column vectors v1 ∈ Rn1 and v2 ∈ Rn2 , (v1, v2) denotes the

stacked vector
[
v�1 v�2

]�
. The Euclidean norm of x ∈ Rn is defined

as ‖x‖ :=
√
x�x. For an arbitrary matrix A ∈ Rn×n, λi(A) denotes

the ith eigenvalue of A. If A is a symmetric matrix, then λmin(A) and
λmax(A) denote, respectively, the smallest and largest eigenvalue of
A. The closure, interior, and boundary of a set A ⊂ Rn are denoted as
A,A◦, and ∂A, respectively. The relative complement of a set B ⊂ Rn

with respect to a set A is denoted by A\B and contains the elements
of A, which are not in B. The tangent cone to a set K ⊂ Rn at a point
x ∈ Rn, denoted TK(x), is defined as in [22, Def. 5.12 and Fig. 5.4].
For z ∈ Rn\{0}, we define the three projection maps

π‖(z) := zz�
‖z‖2 , π

⊥(z) :=In− zz�
‖z‖2 , ρ(z) :=In− 2 zz�

‖z‖2 (1)

where In is the n× n identity matrix. The map π‖(·) is the parallel
projection map, π⊥(·) is the orthogonal projection map [23], and ρ(·) is
the reflector map (also called Householder transformation). For v 
= 0,
r ≥ 0, 2θ ∈ [0, π] andE positive definite, we define the next geometric
subsets of Rn:

• line L(c, v) := {x ∈ Rn : x = c+ λv, λ ∈ R} (2)

• hyperplane P(c, v) := {x ∈ Rn : v�(x− c) = 0} (3)

• sphere S(c, r) := {x ∈ Rn : ‖x− c‖ = r} (4)

• ellipsoid E(c,E) := {x ∈ Rn : ‖E(x− c)‖2 = 1} (5)

• cone C(c,v,θ,E) :={x ∈ Rn :

cos(θ)‖Ev‖‖E(x− c)‖=v�E2(x− c)}. (6)

In (3)–(6), we add subscripts ≤ or ≥ to refer to the set obtained by
substituting the = with ≤ or ≥. For example, P≤(c, v) and P≥(c, v)
are the two closed sets into which the hyperplane P(c, v) divides Rn.

Definition 1: Two ellipsoids E≤(c1, E1) and E≤(c2, E2) are weakly
disjoint if E≤(c1, E1) ∩ E≤(c2, E2) = ∅, and are strongly disjoint if
(λmin(E1))

−1 + (λmin(E2))
−1 < ‖c1 − c2‖.

Strong disjointness means that the two smallest spherical balls
containing the ellipsoids are disjoint and is more conservative than
weak disjointness. We use hybrid dynamical systems [22], i.e.,{

Ẋ ∈ F(X), X ∈ F
X+ ∈ J(X), X ∈ J (7)

where X ∈ Rn is the state, the (set-valued) flow map F : Rn ⇒ Rn

and jump map J : Rn ⇒ Rn govern continuous and discrete evolution,
which can occur, respectively, in the flow set F ⊂ Rn and the jump set
J ⊂ Rn. The notions of solution φ to a hybrid system, its hybrid time
domain domφ, maximal and complete solution are, respectively, as
in [22, Def. 2.6, Def. 2.3, Def. 2.7, p. 30].

III. PROBLEM FORMULATION

We consider a point mass vehicle moving in the n-dimensional
Euclidean space containing I ∈ N obstacles denoted by O1, . . . ,OI .
For each i ∈ {1, . . . , I} =: I, the obstacle Oi has an ellipsoidal shape
such thatOi := E≤(ci, Ei), for some center ci ∈ Rn and some positive
definite matrixEi ∈ Rn×n defining the shape of the obstacle. The free
workspace is then defined by the closed set

W :=
⋂
i∈I

E≥(ci, Ei). (8)

The vehicle is moving according to the dynamics

ẋ = u (9)

where x ∈ Rn is the state and u ∈ Rn is the control input. The vehicle
is required to stabilize its position to a target position while avoiding
the obstacles. Without loss of generality we consider the target position
to be the origin x = 0.

Assumption 1: n ≥ 2.
We consider n ≥ 2 since for n = 1 (i.e., the state space is a line),

global asymptotic stabilization with obstacle avoidance is infeasible.
Assumption 2: For all i ∈ I, ‖Eici‖ > 1.
Assumption 2 requires that the target position x = 0 is not inside

any of the obstacle regions Oi, otherwise the considered navigation
problem would be infeasible.

Assumption 3: {Oi}i∈I are weakly pairwise disjoint.
In Assumption 3, we impose that there is no intersection region

between any two obstacles. Our objectives in designing a control
strategy are
1) the obstacle-free region W in (8) is forward invariant (that is, the

free workspace W is safe);
2) the target x = 0 is globally asymptotically stable.

IV. HYBRID CONTROL FOR OBSTACLE AVOIDANCE

A. Control Input

In this section, we propose the feedback law for the control input u
in (9). We define a discrete variable

m ∈ {−1, 0, 1} =: M.

The value m = 0 corresponds to the activation of the stabilizing con-
troller and the values m = −1, m = 1 correspond to the activation of
one of the two configurations of the avoidance controller. The proposed
control input u depends on the state x ∈ Rn, the obstacle i ∈ I and the
control mode m ∈ M as

u = κ(x, i,m)

:=

{
−k0x, m = 0

−kmE−1
i π⊥(Ei(x− ci))Ei(x− pim), m ∈ {−1, 1} (10)

where k−1, k0, k1 > 0 are the control gains for each control mode
m ∈ M and the points pim ∈ Rn, m ∈ {−1, 1} and i ∈ I, are design
parameters defined later. In the stabilization mode (m = 0), the control
input in (10) steers x toward the origin through state feedback. In
the avoidance mode depicted in Fig. 1, the control input minimizes
the distance to the auxiliary attractive point pim while maintaining a
constant distance to the obstacle Oi. Indeed, the time derivative of
‖Ei(x− ci)‖2 along solutions of ẋ = κ(x, i,m) form ∈ {−1, 1} and
i ∈ I, is zero. Then, if we activate the avoidance mode sufficiently away
from the obstacle, the avoidance feedback u = κ(x, i,m) guarantees
that the vehicle does not hit the obstacle. Whereas the logic variable i
corresponds to obstacle Oi, the logic variable m is selected according
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Fig. 1. Illustration of the projection-based avoidance controller. The
vehicle is attracted to an auxiliary point pim while sliding on a
neighboring ellipsoid.

to a hybrid mechanism that exploits a suitable construction of flow and
jump sets, detailed in Section IV-B.

In order to clear the obstacle while approaching the desired target
position at the origin, we select the points pi1 and pi−1 in the region
between the obstacle and the origin, see Fig. 1. More precisely, for
θi > 0 (which will be further bounded in Lemma 3), the points pi1 and
pi−1 are selected as

pi1 ∈ C(ci,−ci, θi, Ei)\{ci} (11a)

pi−1 := −E−1
i ρ(Eici)Eip

i
1. (11b)

By (11), pi−1 opposes pi1 diametrically with respect to the cone axis (for
Ei = In, pi−1 is obtained by an orthogonal reflection) and also belongs
to C(ci,−ci, θi, Ei)\{ci} as shown in the next lemma.

Lemma 1: pi−1 ∈ C(ci,−ci, θi, Ei)\{ci}.
Note that the results of this article hold for any selection of the

point pi1 as long as it lies on the surface of the cone as in (11a). An
explicit guided choice for the points pi1 is given in Section VI for the
2-D and 3-D cases. The motivation for the choice of the avoidance
controller mode in (10) is that the avoidance task is analogous (up to
a linear transformation) to a stabilization problem on the unit sphere
Sn−1. Therefore, as pointed out for instance in [24], global asymptotic
stabilization cannot be accomplished by only one continuous time-
invariant controller, but it can be by a hybrid feedback with at least two
configurations. For this reason, we consider two avoidance modes with
m = −1 andm = 1 and, hence, the points pi1 and pi−1 must be distinct.
Further motivation for this construction is detailed in Section IV-B.

B. Geometric Construction of the Flow and Jump Sets

In this section, we construct explicitly the flow and jump sets where
the stabilization and avoidance controllers are activated.

1) Safety Helmets: Our proposed construction of flow and jump
sets is based on regions that have the shape of a helmet, whose
construction is now motivated. In the stabilization mode m = 0, the
closed-loop system should not flow when: 1) x is close enough to any
of the obstacle regions E≤(ci, Ei) and 2) the vector field −k0x points
inside E≤(ci, Ei). Otherwise, the vehicle ends up hitting the obstacle
i. Indeed, by computing the time derivative of ‖Ei(x− ci)‖2 along
solutions of the vector field −k0x, we obtain

1
2

d
dt
‖Ei(x− ci)‖2 = k0‖Eic̄i‖2

(
1− ‖Ēi(x− c̄i)‖2

)
(12)

where c̄i := ci/2 and Ēi := 2Ei/(‖Eici‖). Equation (12) implies that
the distance function ‖Ei(x− ci)‖2 decreases for all x in the closed
set E≥(c̄i, Ēi). Consider now Fig. 2 for a sketch of the next sets. For
obstacle i, define the helmet-shaped set

H∗
i := E(ci, Ei) ∩ E≥(c̄i, Ēi). (13)

H∗
i is the set of all points that lie on the boundary of the obstacle Oi and

are associated with a vector field pointing toward the obstacle. Then,

Fig. 2. Helmet H∗
i in (13) (red) corresponds to all boundary points

where the stabilization vector field is pointing inside the obstacle (grey).
The safety helmet Hi(ε, ν) in (14) (green) corresponds to a dilated
version of H∗

i .

for obstacle i, we define the safety helmet as

Hi(ε, ν) := E≤(ci, εEi) ∩ E≥(ci, Ei) ∩ E≥(c̄i, νĒi) (14)

for some parameters ε, ν > 0. ε and ν determine the thickness of
the safety helmet by tuning the dilation/shrinking of the ellipsoids
E(ci, Ei) andE(c̄i, Ēi), thereby generating a dilated version ofH∗

i . The
safety helmet Hi(ε, ν) constitutes the main ingredient of our following
constructions.

2) Stabilization Mode m = 0: Consider Fig. 3 from now on
for a visualization of the sets we are introducing in our construction.
In stabilization mode (m = 0), we create around each obstacle Oi a
safety helmet Hi(εi, νi) that adds a safety layer to the given obstacle.
The controller mode must be switched to the avoidance mode whenever
the vehicle reaches this safety helmet. Specifically, we define for each
i ∈ I, a jump set

J i
0 := Hi(εi, νi) ∩W (15)

where εi ∈ (0, 1) dilates E≤(ci, Ei) to E≤(ci, εiEi), νi ∈ (1,∞)
shrinks E≥(c̄i, Ēi) to E≥(c̄i, νiĒi), and W is the free workspace
defined in (8). We emphasize that we consider the intersection with
W in (15) for convenience, but later we tune the parameters such
that Hi(εi, νi) ⊂ W , which implies J i

0 will equal to Hi(εi, νi). The
selection of J i

0 in (15) leads naturally to the next set (corresponding to
the closed complement of J i

0 in the free workspace)

F i
0 :=

(E≥(ci, εiEi) ∪ E≤(c̄i, νiĒi)
) ∩W, (16)

which we use for the flow set of the stabilization mode. Finally,
from (15) and (16), we take all the obstacles into account and define
the flow and jump sets for the stabilization mode as

F0 :=

(⋂
i∈I

F i
0

)
× I, J0 :=

(⋃
i∈I

J i
0

)
× I. (17)

Indeed, the stabilization mode will be selected when the state x belongs
to the intersection of the sets F i

0, and a jump to the avoidance mode
will occur when the state x belongs to the union of the sets J i

0 . In other
words, if during the stabilization mode the vehicle reaches any one of
the safety helmets, then the controller jumps to one of the avoidance
modes with m equal to −1 or 1.

3) Avoidance Mode m ∈ {−1, 1}: We consider now the con-
struction of flow and jump sets for the avoidance modes m ∈ {−1, 1}
and the specific obstacle i ∈ I with the aid of Fig. 3. To highlight
their motivation, we first define such flow sets and state later in (20)
the corresponding jump sets. For each i ∈ I and m ∈ {−1, 1}, the
avoidance flow set is

F i
m := Hi(δi, μi) ∩ C≥(ci, ci − pim, ψi, Ei) ∩W (18)
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Fig. 3. 2-D illustration of flow and jump sets considered in Sections IV
and V corresponding to obstacle Oi (in the presence of a second obsta-
cle Oj ). The stabilization-mode jump set J i

0 (hatched red) is constructed
by using the helmet Hi(εi, νi), whereas the corresponding flow set Fi

0

is the complement of J i
0 in the free workspace. For the avoidance mode

we select pi1 and pi−1 to lie on the cone C(ci,−ci, θi, Ei) (solid brown
line). The avoidance flow set Fi

m, with m ∈ {−1, 1}, corresponds to the
helmet Hi(δi, μi) deprived of the interior of the cone region defined by
C(ci, ci − pim, ψi, Ei) (solid purple line for m = −1 and solid orange line
for m = 1). The corresponding jump set J i

m is the complement of Fi
m

in the free workspace.

with δi ∈ (0, εi) dilating E≤(ci, εiEi) to E≤(ci, δiEi), μi ∈ (νi,∞)
shrinking E≥(c̄i, νiĒi) to E≥(c̄i, μiĒi), and ψi ∈ (0, π/2]. In the two
configurationsm ∈ {−1, 1}of the avoidance of obstacle i ∈ I, we want
the vehicle to slide on the safety helmet Hi(δi, μi) while maintaining
a constant distance to the obstacle. By selecting δi ∈ (0, εi) and μi ∈
(νi,∞), one obtains a dilated version ofHi(εi, νi) used inJ i

0 and, thus,
creates a hysteresis region useful to prevent infinitely many consecutive
jumps (Zeno behavior). However, the avoidance vector field κ(x, i,m)
in (10) has some undesirable equilibria, which we need to rule out from
the flow sets F i

1 and F i
−1 and we characterize in the next lemma.

Lemma 2: Let c ∈ Rn, p ∈ Rn\{c} and E ∈ Rn×n positive defi-
nite. For each x ∈ Rn\{c}, π⊥(E(x− c))E(x− p) = 0 if and only
if x ∈ L(c, p− c).

For eachm ∈ {−1, 1}, i ∈ I, we want solutions to eventually leave
the set F i

m of the avoidance mode, so it is necessary to select point
pim and flow set F i

m such that L(ci, pim − ci) ∩ F i
m = ∅ based on

TABLE I
SELECTION OF THE DESIGN PARAMETERS OF (22), WITH i ∈ I

Lemma 2, otherwise solutions could stay in avoidance mode indefi-
nitely. This motivates the intersection with the cone in (18), and the
next lemma.

Lemma 3: For each i ∈ I, define the quantities

δi := ‖Eici‖− 1
2 (19a)

μ̄i(δi) :=
(
1− 4δ2i (1− δ2i /δ

2
i )
)− 1

2 (19b)

θ̄i(δi, μi) := arccos

(
δ2i
δ2i

+
1

4δ2i

(
1− 1

μ2
i

))
(19c)

and select the parameters δi, μi, θi, ψi as in Table I so that μ̄i(δi) and
θ̄i(δi, μi) are well defined. Then, for each m ∈ {−1, 1}, L(ci, pim −
ci) ∩ F i

m = ∅.
From the flow set in (18), we suitably define the jump set for the

avoidance mode, of an obstacle i ∈ I with configurationm ∈ {−1, 1},
to be the closed complement of F i

m in the free workspace. For i ∈ I
and m ∈ {−1, 1}
J i

m :=
(E≥(ci, δiEi) ∪ E≤(c̄i, μiĒi) ∪ C≤(ci, ci−pim, ψi, Ei)

) ∩W.
(20)

Finally, the avoidance mode has overall flow and jump sets

F1 :=
⋃
i∈I

(F i
1×{i}) , J1 :=

⋃
i∈I

(J i
1×{i}) (21a)

F−1 :=
⋃
i∈I

(F i
−1×{i}) , J−1 :=

⋃
i∈I

(J i
−1×{i}) (21b)

where F i
m and J i

m (m ∈ {−1, 1}) are defined in (18) and (20). Indeed,
each obstacle i gives rise, for the avoidance mode, to a specific flow
(jump) set with two configurations F i

1 and F i
−1 (J i

1 and J i
−1), as we

motivated in this section.

C. Hybrid Mode Selection

In this section, we define the hybrid switching strategy that permits
a Zeno-free transition between the different control modes. The hybrid
selection of the logical variables i ∈ I and m ∈ M is implemented in
the hybrid system⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = κ(x, i,m),

˙̂
i = 0,

ṁ = 0,

(x, i,m) ∈ F (22a)

⎧⎪⎨⎪⎩
x+ = x,[

i+

m+

]
∈ L(x, i,m),

(x, i,m) ∈ J (22b)

where κ(x, i,m) is the control input defined in (10) and the flow and
jump sets are given by

F :=
⋃

m∈M

(Fm×{m}) , J :=
⋃

m∈M

(Jm×{m}) (22c)
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with Fm and Jm being defined in (17) for m = 0 and in (21a)–(21b)
form ∈ {−1, 1}. We define now the (set-valued) jump map L in (22b).
To this end, for i ∈ I and m ∈ {−1, 1}, define the sets Ci

m as

Ci
m := C≥(ci, ci − pim, ψ̄i, Ei), (22d)

which corresponds to the region outside the cone with vertex at ci, axis
ci − pim and aperture 2ψ̄i, where ψ̄i is a design parameter selected later.
The jump map L for m ∈ {−1, 1} is then defined as

L(x, i,−1) := L(x, i, 1) :=

{[
i
0

]}
, (22e)

i.e., when jumping to stabilization mode, the obstacle index i is not
used in the control law κ in (10) and consequently is not updated. The
jump map L for m = 0 is

L(x, i, 0) :=

{[
i′

m′

]
: x ∈ J i′

0 ,m
′ ∈ M(x, i′)

}
(22f)

where M is defined, based on (22d), as

M(x, i) :=

⎧⎪⎨⎪⎩
{−1}, x ∈ Ci

−1\Ci
1

{1}, x ∈ Ci
1\Ci

−1

{−1, 1}, x ∈ Ci
−1 ∩ Ci

1.

(22g)

L(·, ·, 0) captures that when jumping from the stabilization modem =
0, the suitable avoidance mode of obstacle i′ ∈ I with configuration
m′ ∈ {−1, 1} is selected based on the position x of the vehicle (m′,
in particular, is selected based on whether x is within the cone region
Ci′
−1 or Ci′

1 ). A necessary condition to implement our hybrid controller
is that the jump map is nonempty, for which we have the next lemma.

Lemma 4: Select the parameters ψ̄i and ψi as in Table I. Then, the
set L(x, i,m) is nonempty for all (x, i,m) ∈ J .

For compact notation, we write flow and jump maps as

(x, i,m) �→ F(x, i,m) := (κ(x, i,m), 0, 0) (22h)

(x, i,m) ⇒ J(x, i,m) := (x,L(x, i,m)) (22i)

and the overall state of the hybrid system as

ξ := (x, i,m) ∈ Rn × I × M. (22j)

This completes the description of the hybrid controller in (22). The
selections we made in this section for the parameters of (22) are
summarized in Table I.

V. MAIN RESULTS

In this section, we show that the hybrid controller achieves forward
invariance and global asymptotic stability, as well as some complemen-
tary properties. The mild regularity conditions satisfied by the hybrid
system (22), as in the next lemma, allow us to invoke useful results on
hybrid systems for proving our results.

Lemma 5: The hybrid system with data (F ,F,J ,J) satisfies the
hybrid basic conditions in [22, Assumption 6.5].

A. Forward Invariance

Since the state x must evolve always within the free workspace
W in (8) regardless of the logic variables i and m, we seek forward
invariance of the set K defined as

K :=
⋂
i∈I

E≥(ci, Ei)× I × M = W × I × M. (23)

The next lemma shows that the union of flow and jump sets covers
exactly the obstacle-free state space K and that solutions cannot leave
K through jumps.

Lemma 6: F ∪ J = K and J(J ) ⊂ K.
Forward invariance of K holds by the next theorem, proven in the

Appendix.
Theorem 1: Under Assumptions 1–3, consider the hybrid system

(22) with parameters selected as in Table I. Assume also that the con-
troller parameters δi are tuned so that the ellipsoids {E≤(ci, δiEi)}i∈I

are weakly pairwise disjoint. Then, the obstacle-free set K in (23) is
forward invariant.

The existence of tuning parameters δ1, . . . , δI satisfying the weak
pairwise disjointness of the sets {E≤(ci, δiEi)}i∈I is guaranteed by
Assumption 3, which implies that weak pairwise disjointness holds
when δi = 1 for all i ∈ I. Hence, by a continuity argument, we can
always tune each δi sufficiently close to 1 in order to guarantee the
weak pairwise disjointness of the dilated obstacles {E≤(ci, δiEi)}i∈I .
Algebraic tests of weak pairwise disjointness (in [25, Th. 6] for n = 2
and in [26, Th. 8] for n = 3) can be used for this tuning.

B. Global Asymptotic Stability

We show that from all initial conditions in the free workspace,
all solutions converge asymptotically to the origin. To this end, we
define the notion of sufficient disjointness of a set of ellipsoids, which
is slightly stronger than weak disjointness but less conservative than
strong disjointness, and guarantees that each obstacle is avoided at
most one time. The motivation behind the assumption of sufficient
disjointness is that the arbitrarily large and flat ellipsoids considered
here may lead to long avoidance-mode detours that take the vehicle
far away from the origin and can prevent from converging to it for
specific obstacles configurations. Similarly, this occurs in the Bug 0
planning algorithm [27], where convergence to the origin is not always
guaranteed since the algorithm is designed to “walk toward the target
whenever you can” [27], and our hybrid feedback shares a similar
philosophy, see (12) and Section IV.B. To proceed, the next lemma
characterizes the intersection of two ellipsoids of interest.

Lemma 7: Consider an arbitrary i ∈ I. For δi, δ �→ μ̄i(δ) and
(δ, μ) �→ θ̄i(δ, μ) defined in (19), let δ ∈ [δi, 1], μ ∈ [1, μ̄i(δ)] and
ϑi(δ, μ) be such that

cos(ϑi(δ, μ)) :=
1− cos(θ̄i(δ, μ))δ

2
i√

(1 + μ−2)/2− δ−2δ4i

. (24)

The expression in (24) is well defined and positive, and

E(ci, δEi) ∩ E(c̄i, μĒi) ⊂ C(0, ci, ϑi(δ, μ), Ei). (25)

Let us consider for each obstacle i ∈ I the sphereS(0, r̄i)with center
at the origin and radius r̄i defined by r̄2i := min{‖x‖2 : x ∈ H∗

i}where
H∗

i is the helmet defined in (13). The radius r̄i defines the minimum
distance from the helmet H∗

i to the origin. Let x be a point belonging to
the intersection of the two ellipsoids E(ci, Ei) and E(c̄i, Ēi). Taking
δ and μ equal to 1 in Lemma 7, one obtains x ∈ C(0, ci, ϑ̄i, Ei)
with cos(ϑ̄i) := cos(ϑi(1, 1)) =

√
1− ‖Eici‖−2 from (24), (19c),

and (19a). Now, let us define the set

R∗
i := C(0, ci, ϑ̄i, Ei) ∩ S≥(0, r̄i) ∩ E≥(ci, Ei) ∩ E≤(c̄i, Ēi), (28)

whose geometry is sketched in Fig. 4. In particular, it is contained in
the set of points on the cone C(0, ci, ϑ̄i, Ei) that have a distance to
the origin greater than the distance r̄i of the helmet H∗

i to the origin.
The idea is that the vehicle should not start avoiding another obstacle
while it is still in R∗

i , otherwise there is no guarantee that the number of
times the vehicle avoids obstacles is bounded and that global attractivity
holds. This leads to the next definition.
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Fig. 4. Different types of disjointness introduced in this article with
set R∗

i (orange) in (28). For global attractivity, sufficient disjointness
is asked.

Fig. 5. Safety helmet Hi(δi, μi) (green) and the corresponding escape
region Ri(δi, μi) (orange). The region Ri(δi, μi) must not intersect with
any other jump set J i′

0 , i′ 
= i, to avoid starting another avoidance while
the distance to the target has not decreased yet.

Definition 2: The ellipsoids {E(ci, Ei)}i∈I are sufficiently pairwise
disjoint if they are weakly pairwise disjoint and for all i, i′ ∈ I with
i 
= i′, R∗

i ∩ E≤(ci′ , Ei′) = ∅.
Now, let us introduce the ingredients for a “dilated” version of

R∗
i as in (31) and refer to Fig. 5. First, consider the escape annulus

cone where solutions escape from the avoidance mode by applying
the stabilization vector field. This region lies between the two cones
C(0, ci, ϑi(1, μi), Ei) and C(0, ci, ϑi(δi, μi), Ei), which are related,
according to Lemma 7, to the intersections E(ci, Ei) ∩ E(c̄i, μiĒi)
and E(ci, δiEi) ∩ E(c̄i, μiĒi), respectively. Second, consider for each
obstacle i ∈ I the ball S≥(0, ri) where the radius ri is defined by r2i :=
min{‖x‖2 : x ∈ Hi(δi, μi)}.Note that the safety helmet Hi(δi, μi) is
nonempty and compact; hence, a scalar ri exists. Moreover ri > 0 for
each i ∈ I because ‖δiEici‖ = δiδ

−2
i > δiδ

−1
i > 1 by Assumption 2

and the selection of δi in Table I, so that 0 /∈ E≤(ci, δiEi) and in turn
0 /∈ Hi(δi, μi) sinceHi(δi, μi) ⊂ E≤(ci, δiEi). Finally, we can define
a “dilated” version of R∗

i as

Ri(δi, μi) := S≥(0, ri) ∩ E≥(ci, δiEi) ∩ E≤(c̄i, Ēi)

∩ C≥(0, ci, ϑi(1, μi), Ei) ∩ C≤(0, ci, ϑi(δi, μi), Ei). (31)

Lemma 8: Assume that the obstacles {Oi}i∈I are sufficiently pair-
wise disjoint. Then, for each i ∈ I, there exist δ∗i , μ

∗
i such that for all

δi ∈ (δ∗i , 1) and μi ∈ (1, μ∗
i), we have

∀i,′ i′′ ∈ I, i′ 
= i,′′ Ri′(δi′ , μi′) ∩ E≤(ci′′ , δi′′Ei′′) = ∅. (32)

Property (32) of Lemma 8 is used to show global attractivity. Intu-
itively, we require that after avoiding an obstacle, the distance ‖x‖ to
the target decreases before the vehicle reaches the proximity of another
obstacle. Although the bounds δ∗i and μ∗

i are not defined explicitly for
generic ellipsoids, the parameters δi and μi can be tuned offline. Next
is our main result for this section, proven in the Appendix.

Theorem 2: Consider the hybrid system (22) under the same as-
sumptions as Theorem 1. Assume also that the obstacles {Oi}i∈I

are sufficiently pairwise disjoint, and the δi’s and μi’s are tuned

so that (32) holds. Then, the set A := {0} × I × M is glob-
ally asymptotically stable for (22) and the number of jumps
is bounded.

For spherical obstacles, we show next that the extra tuning of the
parameters to satisfy (32) is not needed. The proof is in [21].

Theorem 3: (Spherical obstacles) LetEi = λiIn for all i ∈ I. Under
the same assumptions as Theorem 1, the set A := {0} × I × M is
globally asymptotically stable for (22) and the number of jumps is
bounded.

C. Complementary Properties

1) Bounded Control: First, solutions initialized within a certain
compact ball always remain there. Indeed, letS≤(0, rb), with rb > 0, be
the smallest ball containing all the dilated ellipsoids E(ci, δiEi) (which
must exist since these ellipsoids are compact). During stabilization
mode the distance ‖x‖ is decreasing and during avoidance mode the
vehicle stays within the dilated ellipsoids E(ci, δiEi). Then, it is guar-
anteed that from all x(0, 0) ∈ S≤(0, rb), all solutions satisfy x(t, j) ∈
S≤(0, rb) for all (t, j) ∈ domx. Moreover, since the projection matrix
π⊥(Ei(x− ci)) has eigenvalues in 0 and 1, it follows that we can
upper bound the control input in (10) by ‖u‖ ≤ kα(rb + p) where
k = max{k1, k0, k−1}, α = maxi∈I(λmax(Ei)/λmin(Ei)) and p =
maxi∈I ‖pi1‖. The control gains can then be tuned to satisfy the inherent
practical saturation of the actuators.

2) Semiglobal Preservation: This property [17, Sec. II] is de-
sirable when the original controller parameters are optimally tuned and
the controller modifications imposed by the presence of the obstacles
should be as minimal as possible. Such a property is also accounted for
in the quadratic programming formulation of [28, III.A]. In our case,
we have the next proposition, whose proof is given in [21].

Proposition 1: Let ε ∈ (0, 1) and Wε :=
⋂

i∈I E≥(ci, εEi). There
exist controller parameters such that the control law matches, in Wε,
the stabilization feedback u = −k0x (k0 > 0) used in the absence of
obstacles.

3) Nonpoint Mass Vehicles: There is no loss of generality in
considering a point-mass vehicle in this article. In fact, let us consider a
vehicle with some volume, e.g., bounded byS≤(x, rv). Then, in a feasi-
ble navigation scenario, the radius rv of the vehicle needs to be smaller
than the smallest distance between the obstacles, i.e., for all i, i′ ∈ I
with i 
= i′, rv < dist(E≤(ci, Ei), E≤(ci′ , Ei′)) := inf{|x− x′| : x ∈
E≤(ci, Ei), x

′ ∈ E≤(ci′ , Ei′)}. For safety of the whole volume of the
vehicle, the selection εi < (1 + λmax(Ei)rv)

−1 is sufficient (in ad-
dition to Table I) to guarantee that the vehicle in stabilization mode
starts the avoidance mode away from the obstacle. Indeed, under this
condition, it is easy to show that for all x ∈ E≥(ci, εiEi) (i.e., the
vehicle center is outside the dilated ellipsoid E(ci, εiEi)) and for all
x′ ∈ S≤(x, rv), one has x′ ∈ E≥(ci, Ei), which guarantees safety of
the whole volume of the vehicle.

4) Robustness: The constructed hybrid controller guarantees
some level of robustness to perturbations (e.g., in the form of mea-
surement noise). Hysteresis switching is one of the typical ways to
ensure robustness to measurement noise, and hysteresis switching is,
indeed, behind the designed hybrid feedback, in particular the hysteresis
regions of flow and jump sets in Section IV-B and the logical selections
of the jump sets in Section IV-C. More generally, fundamental results
in [22, Ch. 7] guarantee structurally that global asymptotic stability of
A in Theorem 2 is also uniform (by [22, Th. 7.12]) and robust (by [22,
Th. 7.21]) with respect to perturbations since A is a compact set and
the hybrid basic conditions are satisfied as per Lemma 5.
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Fig. 6. Plot (at times t = 0.5 and t = 30 s) of the 2-D trajectory of the
vehicle starting at different initial conditions.

Fig. 7. Plot (at time t = 30 s) of the 3-D trajectory of the vehicle starting
under different initial conditions.

VI. SIMULATIONS

We illustrate the effectiveness of the proposed hybrid control strategy
through two simulation scenarios. The first scenario considers nine
obstacles in 2-D as in Fig. 6, whereas the second one considers five
obstacles in 3-D as in Fig. 7. For both cases, Table I provides a suitable
order to choose the parameters for each i ∈ I, as follows.
1) For δi in (19a), select δi and εi so that δi < δi < εi < 1.
2) For δi and μ̄i(δi) in (19b), select νi and μi so that 1 < νi < μi <
μ̄i(δi), possibly iterating steps 1 and 2 so that δi and μi satisfy
(32).

3) For δi, μi and θ̄i(δi, μi) in (19c), select ψi, ψ̄i and θi so that
0 < ψi < ψ̄i < θi < θ̄i(δi, μi).

Any parameter selection according to this guideline guarantees our
results and can be carried out keeping in mind the physical inter-
pretation illustrated in Section IV-B for these parameters. The gains
are k0 = k1 = k−1 = 1/4 and determine the speed of convergence
of the scheme. By (11a), the point pi1 can be selected arbitrarily as
long as it is on C(ci,−ci, θi, Ei)\{ci}. A suitable choice is given by
pi1 = π⊥(E−1

i R(θi)Eici)ci whereR(θi) is the standard2× 2 rotation
matrix with angle θi or the standard 3× 3 axis-angle rotation matrix
with angle θi and an arbitrary vector of S2 as axis. The idea behind this
choice of pi1 is to project ci on the plane orthogonal to a rotated version
of ci, in order to obtain the point lying on the cone and closest to the
origin. Having all points pim close enough to the origin is an effective
way so that k0, k1, k−1 can take the same values and yield comparable
speeds for avoidance and stabilization, independently of the obstacles.

Figs. 6 and 7 show that the solutions generated by the closed-loop
hybrid system avoid the 2-D and 3-D obstacles and converge to the
origin. The respective complete simulation videos can be found at https:
//youtu.be/CnXJlhzlzd8 , https://youtu.be/4mzTXPR6D9Y.

Finally, we note that for the very obstacle configuration of the 2-D
scenario, the state-of-the-art approach of navigation functions [3], [20]
cannot be applied since the condition [20, Th. 3, eq. (23)] is violated

for all obstacles except obstacle O5, where [20, eq. (23)] intuitively
corresponds to the fact that obstacles are not too flat and not too close
to the target position. [20, eq. (23)] is violated for all obstacles of
the 3-D scenario. Moreover, navigation function approaches require
tuning a parameter sufficiently large, namely k in [20, eq. (17) and
Remark 5] and this may conflict with actuator limitations. Instead, our
approach provides a clear tuning guideline for all parameters (given
in this section) and actuator limitations can be taken into account (see
Section V-C1).

VII. CONCLUSION

We proposed a novel hybrid feedback on Rn to solve the obstacle
avoidance problem for generic ellipsoidal obstacles, in particular flat
and close to the target. Our control strategy ensures global asymptotic
stabilization to the target and safety (thus, successful navigation from all
initial conditions) while guaranteeing a Zeno-free switching between
the avoidance and stabilization modes. Moreover, the control input
remains bounded (also in arbitrary proximity to obstacles) and matches
semiglobally in the free-state space the nominal feedback used in
the absence of obstacles. Future work will be devoted to considering
more complex vehicle dynamics (e.g., underactuated and second-order
dynamics) and more generic obstacle shapes (e.g., convex obstacles).

APPENDIX

A. Proof of Theorem 1

Define SH (K) as the set of all maximal solutions φ to H =
(F ,F,J ,J) with φ(0, 0) ∈ K. Each φ ∈ SH (K) has range rgeφ ⊂
K = F ∪ J by Lemma 6 and the definition of hybrid solution [22,
p. 124], so K is forward pre-invariant [29, Def. 3.3]. The set K is in
fact forward invariant [29, Def. 3.3] if for each ξ ∈ K, there exists
one solution and each φ ∈ SH (K) is complete, which we show in the
rest of the proof through [22, Prop. 6.10]. In the rest of the proof, let
F∗

0 :=
⋂

i∈I F i
0,J ∗

0 :=
⋃

i∈I J i
0 .

Lemma 9: Under the assumptions of Theorem 1, we have for each
i ∈ I and m ∈ {−1, 1}:
1) J i

0 = Hi(εi, νi),
2) F i

m = Hi(δi, μi) ∩ C≥(ci, ci − pim, ψi, Ei),
3) ∂F∗

0\J ∗
0 ⊂ ⋃i∈I

(E(ci, Ei)\E≥(c̄i, Ēi)
)
,

4) ∂F i
m\J i

m⊂E(ci, Ei)\
(E≤(c̄i, μiĒi) ∪ C≤(ci, ci−pim, ψi, Ei)

)
.

First, let us show that the viability condition

F(x, i,m) ∩TF (x, i,m) 
= ∅ (35)

holds for all (x, i,m) ∈ F\J . Let (x, i,m) ∈ F\J , which implies
by (22c) that (x, i) ∈ Fm\Jm for some m ∈ M, and divide into the
cases m = 0 and m ∈ {−1, 1}. When m = 0, from (17), there exists
i ∈ I such thatx ∈ F∗

0\J ∗
0 . Ifx ∈ (F∗

0)
◦\J ∗

0 (hence,x is in the interior
ofF∗

0), thenTF∗
0
(x) = Rn, so thatTF (ξ) = Rn × {0} × {0} and (35)

holds. If x ∈ ∂F∗
0\J ∗

0 , which satisfies the set inclusion in Lemma 9,
the weak pairwise disjointness of {E(ci, Ei)}i∈I yields

x ∈ E(ci, Ei), i ∈ I

TF (x, i, 0) = P≥(0, E2
i (x− ci))× {0} × {0}.

(36)

By (12) and x /∈ E≥(c̄i, Ēi) by the set inclusion for ∂F∗
0\J ∗

0 in Lemma
9, we obtain −k0x�E2

i (x−ci) = k0‖Eic̄i‖2
(
1−‖Ēi(x− c̄i)‖2

)
>0

hence κ(x, i, 0) ∈ P≥(0, E2
i (x− ci)) in (36), and (35) holds for m =

0. Whenm ∈ {−1, 1}, we have i ∈ I and x ∈ ∂F i
m\J i

m, which satis-
fies the set inclusion in Lemma 9, and so

TF (x, i,m) = P≥(0, E2
i (x− ci))× {0} × {0}. (38)
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κ(x, i,m) ∈ P≥(0, E2
i (x− ci)) in (38) because −km(x−

pim)�Eiπ
⊥(Ei(x− ci))Ei(x− ci) = 0, so the viability condition

(35) holds for m ∈ {−1, 1} as well.
Second, we apply [22, Prop. 6.10]. By it and (35), there exists

a nontrivial solution to H from each initial condition in K. Finite
escape times can only occur through flow. They can neither occur
for x in the set F i

−1 ∪ F i
1 because F i

−1 and F i
1 are bounded by their

definitions in (18), nor forx in the setF∗
0 because they would makex�x

grow unbounded, and this would contradict that d
dt
(x�x) ≤ 0 by the

definition of κ(x, i, 0) and by (22a). So, all maximal solutions do not
have finite escape times. By Lemma 6, J(J ) ⊂ K = F ∪ J . Hence,
by [22, Prop. 6.10], all maximal solutions are complete.

B. Proof of Theorem 2

We prove global asymptotic stability of A by [22, Def. 7.1]. For
each i ∈ I, ‖δiEici‖ = δiδ

−2
i > δiδ

−1
i > 1 by Assumption 2 and the

selection of δi in Table I, so 0 /∈ E≤(ci, δiEi). As a consequence, there
exists ε∗ > 0 such that the ball S≤(0, ε∗) does not intersect with any
of the dilated obstacles E≤(ci, δiEi). It can be shown easily that for
each ε ∈ [0, ε∗], the set S := S≤(0, ε)× I × M is forward invariant
because S≤(0, ε) is disjoint from J ∗

0 and the component x of solutions
evolves, after at most one jump, with the stabilization mode ẋ = −k0x.
Thanks to forward invariance of S , stability of A for (22) is immediate
from [22, Def. 7.1]. Let us prove global attractivity of A. Before that,
we need the next result.

Lemma 10: There exists σ > 0 such that for all solutions ξ =
(x, i,m) with ξ(t, j) ∈ Fl × {l} for some l ∈ {−1, 1} and (t, j) ∈
dom ξ, there exists (s, �) ∈ dom ξ such that (s, �) � (t, j) and
‖x(s, �)‖ ≤ ‖x(t, j)‖ − σ.

Now, for each solution ξ to (22), there exists a finite time (T, J) �
(0, 0) after which the solution does not evolve with the avoidance
controller any longer, i.e., m(t, j) = 0 for all (t, j) � (T, J). Other-
wise, there would exist a sequence of hybrid times {(tk, jk)}∞k=0 such
that ξ(tk, jk) ∈ Flk × {lk} with lk ∈ {−1, 1} and this would imply
by Lemma 10 that ‖x(tk+1, jk+1)‖ ≤ ‖x(tk, jk)‖ − σ for all k ∈ N.
This is, indeed, a contradiction as it would lead to ‖x(·, ·)‖ becoming
negative. Then, the solution ξ enters the stabilizing mode m = 0 after
(T, J) and its flow map ẋ = −k0x guarantees in turn global attractivity.
Moreover, J is the maximum number of jumps of the hybrid system
since any extra jump will cause m to take values in {−1, 1}, which is
not possible after (T, J).
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