5,943 research outputs found

    Group-based replication of on-line transaction processing servers

    Get PDF
    Several techniques for database replication using group communication have recently been proposed, namely, the Database State Machine, Postgres-R, and the NODO protocol. Although all rely on a totally ordered multicast for consistency, they differ substantially on how multicast is used. This results in different performance trade-offs which are hard to compare as each protocol is presented using a different load scenario and evaluation method. In this paper we evaluate the suitability of such protocols for replication of On-Line Transaction Processing (OLTP) applications in clusters of servers and over wide area networks. This is achieved by implementing them using a common infra-structure and by using a standard workload. The results allows us to select the best protocol regarding performance and scalability in a demanding but realistic usage scenario.Projecto STRONGRE (POSI/CHS/41285/2001) financiado pela Fundação para a Ciência e a Tecnologia (FCT)

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Solutions and Tools for Secure Communication in Wireless Sensor Networks

    Get PDF
    Secure communication is considered a vital requirement in Wireless Sensor Network (WSN) applications. Such a requirement embraces different aspects, including confidentiality, integrity and authenticity of exchanged information, proper management of security material, and effective prevention and reaction against security threats and attacks. However, WSNs are mainly composed of resource-constrained devices. That is, network nodes feature reduced capabilities, especially in terms of memory storage, computing power, transmission rate, and energy availability. As a consequence, assuring secure communication in WSNs results to be more difficult than in other kinds of network. In fact, trading effectiveness of adopted solutions with their efficiency becomes far more important. In addition, specific device classes or technologies may require to design ad hoc security solutions. Also, it is necessary to efficiently manage security material, and dynamically cope with changes of security requirements. Finally, security threats and countermeasures have to be carefully considered since from the network design phase. This Ph.D. dissertion considers secure communication in WSNs, and provides the following contributions. First, we provide a performance evaluation of IEEE 802.15.4 security services. Then, we focus on the ZigBee technology and its security services, and propose possible solutions to some deficiencies and inefficiencies. Second, we present HISS, a highly scalable and efficient key management scheme, able to contrast collusion attacks while displaying a graceful degradation of performance. Third, we present STaR, a software component for WSNs that secures multiple traffic flows at the same time. It is transparent to the application, and provides runtime reconfigurability, thus coping with dynamic changes of security requirements. Finally, we describe ASF, our attack simulation framework for WSNs. Such a tool helps network designers to quantitatively evaluate effects of security attacks, produce an attack ranking based on their severity, and thus select the most appropriate countermeasures

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    Towards a Secure Web Based Health Care Application

    Get PDF
    Even though security requirements in health care are traditionally high, most computerized health care applications lack sophisticated security measures or focus only on single security objectives. This paper describes special security problems that arise when processing health care data using public networks such as the Internet. It proposes a structured approach using a context-dependent access control mechanism over the Internet as well as other security mechanisms to counter the threats against the major security objectives: confidentiality, integrity, availability, and accountability. The feasibility of the proposed security measures is shown through a prototype, which has been developed in a research project focussed on security in health care

    Tracking News Stories Using Blockchain to Guarantee their Traceability and Information Analysis

    Get PDF
    Nowadays, having a mechanism to guarantee the traceability of the information and to monitor the evolution of the news from its origin, and having elements to know the reputation and credibility of the media, analyze the news as well as its evolution and possible manipulation, etc. is becoming increasingly significant. Transparency in journalism is currently a key element in performing serious and rigorous journalism. End-users and fact-checking agencies need to be able to check and verify the information published in different media. This transparency principle enables the tracking of news stories and allows direct access to the source of essential content to contrast the information it contains and to know whether it has been manipulated. Additionally, the traceability of news constitutes another instrument in the fight against the lack of credibility, the manipulation of information, misinformation campaigns and the propagation of fake news. This article aims to show how to use Blockchain to facilitate the tracking and traceability of news so that it can provide support to the automatic indexing and extraction of relevant information from newspaper articles to facilitate the monitoring of the news story and allows users to verify the veracity of what they are reading

    Adaptive Mid-term and Short-term Scheduling of Mixed-criticality Systems

    Get PDF
    A mixed-criticality real-time system is a real-time system having multiple tasks classified according to their criticality. Research on mixed-criticality systems started to provide an effective and cost efficient a priori verification process for safety critical systems. The higher the criticality of a task within a system and the more the system should guarantee the required level of service for it. However, such model poses new challenges with respect to scheduling and fault tolerance within real-time systems. Currently, mixed-criticality scheduling protocols severely degrade lower criticality tasks in case of resource shortage to provide the required level of service for the most critical ones. The actual research challenge in this field is to devise robust scheduling protocols to minimise the impact on less critical tasks. This dissertation introduces two approaches, one short-term and the other medium-term, to appropriately allocate computing resources to tasks within mixed-criticality systems both on uniprocessor and multiprocessor systems. The short-term strategy consists of a protocol named Lazy Bailout Protocol (LBP) to schedule mixed-criticality task sets on single core architectures. Scheduling decisions are made about tasks that are active in the ready queue and that have to be dispatched to the CPU. LBP minimises the service degradation for lower criticality tasks by providing to them a background execution during the system idle time. After, I refined LBP with variants that aim to further increase the service level provided for lower criticality tasks. However, this is achieved at an increased cost of either system offline analysis or complexity at runtime. The second approach, named Adaptive Tolerance-based Mixed-criticality Protocol (ATMP), decides at runtime which task has to be allocated to the active cores according to the available resources. ATMP permits to optimise the overall system utility by tuning the system workload in case of shortage of computing capacity at runtime. Unlike the majority of current mixed-criticality approaches, ATMP allows to smoothly degrade also higher criticality tasks to keep allocated lower criticality ones

    TRENDS IN ELECTRONIC COMMERCE SECURITY: A MANAGERIAL BRIEF AND TEACHING NOTE

    Get PDF
    The Internet and similar networks provide new infrastructures for communications and commerce. These open networks interconnect computers across many different organizations with dramatically lower communications and distributed applications development costs. This motivates businesses to transfer commercial activity from closed private networks to open networks like the Internet. However, open network architectures are vulnerable to a number of different security threats. While many different hardware and software solutions exist to secure transactions over the Internet, greater consensus is required by companies and consumers on the processes, organizations and application of existing technical solutions for secure electronic commerce. Greater consensus on security among trading parties will lower the costs of electronic commerce and accelerate its deployment on the Internet.Information Systems Working Papers Serie
    corecore