5 research outputs found

    Graphically structured value-function compilation

    Get PDF
    AbstractClassical work on eliciting and representing preferences over multi-attribute alternatives has attempted to recognize conditions under which value functions take on particularly simple and compact form, making their elicitation much easier. In this paper we consider preferences over discrete domains, and show that for a certain class of simple and intuitive qualitative preference statements, one can always generate compact value functions consistent with these statements. These value functions maintain the independence structure implicit in the original statements. For discrete domains, these representation theorems are much more general than previous results. However, we also show that it is not always possible to maintain this compact structure if we add explicit ordering constraints among the available outcomes

    Overcoming Incomplete User Models in Recommendation Systems Via an Ontology

    Get PDF
    To make accurate recommendations, recommendation systems currently require more data about a customer than is usually available. We conjecture that the weaknesses are due to a lack of inductive bias in the learning methods used to build the prediction models. We propose a new method that extends the utility model and assumes that the structure of user preferences follows an ontology of product attributes. Using the data of the MovieLens system, we show experimentally that real user preferences indeed closely follow an ontology based on movie attributes. Furthermore, a recommender based just on a single individual’s preferences and this ontology performs better than collaborative filtering, with the greatest differences when little data about the user is available. This points the way to how proper inductive bias can be used for significantly more powerful recommender systems in the future
    corecore