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Abstract 
With the growing size of product catalogs, the task of finding an object has become analogous to finding a needle in 
a haystack. Recommendation systems are tools that help people in this process. There are two types of techniques 
for implementing such systems. Collaborative filtering uses statistical properties of the buying behavior of other 
users to recommend items that the user is likely to buy. Preference-based techniques construct an explicit profile of 
an individual user’s preferences, and find the best matches with that model. To make accurate recommendations, 
both methods currently require more data about a customer than is usually available: the preference-based method 
requires the user to specify preferences on the product attributes, while collaborative filtering requires that a 
significant number of items have been bought or ranked to determine the user’s type with sufficient significance.  
We conjecture that the weaknesses are due to a lack of inductive bias in the learning methods used to build the 
prediction models. We propose a new method, heterogeneous attribute utility model (HAUM), where the structure of 
user preferences are assumed to follow an ontology of product attributes. Using the data of the MovieLens system, 
we show that experimentally real user preferences indeed closely follow an ontology based on movie attributes, and 
that a recommender based just on a single individual’s preferences and this ontology performs better than 
collaborative filtering, with the greatest differences when little data about the user is available. This points the way 
to how proper inductive bias can be used for significantly more powerful recommender systems in the future. 
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1 Introduction 
Consider a situation where you find yourself with an evening alone and would like to rent a DVD to watch. There 
are hundreds of movies to choose from. For several reasons, this is a difficult problem. First, most people have 
limited knowledge about the alternatives. Second, the set of alternatives changes frequently. Third, this is an 
example of a low user involvement decision process where the user is not prepared to spend hours expressing his 
preferences. Recommender systems have been devised as tools to help people in such situations. Two kinds of 
techniques are widely used in e-commerce sites today.  
 
The first technique is item-to-item collaborative filtering (CF, [9]) which recommends products to users based on 
other users’ experience. Amazon.com1, with over 29 millions customers and several million catalog items [9], uses 
this technique which is more commonly known to end-user as “Customers who bought this item also bought these 
items:”. Collaborative filtering generates recommendations based on the experience of like-minded groups of users, 
based on the assumption that similar users like similar objects. Therefore, CF’s ability to recommend items depends 
on the ability to successfully identify the set of similar users, known as the target user’s neighborhood. CF does not 
build an explicit model of user preferences for individual product attributes. Instead, preferences remain implicit in 
the ratings that the user gives to some subset of products, either explicitly or by buying them. In practice, CF is the 
most popular recommendation technique and this is due to three main reasons. First, studies have shown it to have 
satisfactory performance when sufficient data is available. Second, it can compare items without modeling them and 
thus can theoretically deal with any kind of item as long as they have been rated by other people. Finally, the 
cognitive requirements on the user are very low. However, as argued by many authors [10][11][15][17], CF suffers 
from profound problems  such as : 

• Sparsity. This is CF’s major problem and occurs when the number of items far exceeds what an individual 
can rate.  

                                                           
1 http://www.amazon.com  
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• Cold start: When a new user enters the system, he has not yet rated a sufficient number of items for CF to 
correctly locate the right neighborhood.  

• Latency or new item problem: Product catalogs evolve over time; however, the collaborative approach 
cannot deal with new products as they have not been previously rated.   

• Scalability. The computation of the neighborhood requires looking at all the items and users in the systems.  
Consequently, as the number of users grows, so does the complexity.  

• Privacy. Users are becoming more and more reluctant to express their preferences. Currently, the similarity 
matrix is located on a server and is thus accessible to a third party. 

• Shilling attacks: malicious users can alter user ratings in order to influence the recommendations. 
 
The other widely used technique is preference-based recommendation. Here, a user is asked to express explicit 
preferences for certain attributes of the product. If preferences are accurately stated, multi-attribute utility theory 
(MAUT, [8]) provides methods to find the most preferred product even when the set of alternatives is extremely 
large and/or volatile, and thus has no problems of sparsity, cold starts, latency or scalability. Furthermore, since 
recommendations are based only on the individual user’s data, there are no problems with privacy or shilling. 
However, the big drawback of preference-based methods is that the user needs to express a potentially quite 
complex preference model. This may require a large number of interactions, and places a higher cognitive load on 
the user since he has to reason about the attributes that model the product.   
 
However, attribute-based preference models can also be learned from user choices or ratings, just as in collaborative 
filtering. In our experiments, this by itself can already result in recommendations that are almost as good as those of 
collaborative filtering. The main novelty of this paper, however, is to use an ontology of product attributes to 
provide an inductive bias that allows learning of this individual preference model to succeed even with very few 
ratings. This leads us to a technique for recommender systems that outperform the best known collaborative filtering 
techniques on the MovieLens data that we have been using for our experiments. Furthermore, very few ratings, just 
5 movies, suffice to get recommendations that are almost as good as what can be reached with many, 30 or more, 
ratings. At the same time, the user effort required by this technique is not significantly different from that in a 
collaborative filtering system. Thus, we can effectively get the best of both techniques.  
 
This paper is organized as follows: Section 2 provides fundamental background in Collaborative Filtering, Multi—
Attribute Utility Theory, and Ontology Reasoning while our novel approach with its algorithm is explained in 
Section 3. Section 4 contains experimental results with comparison to existing techniques. Finally, Section 5 
provides the conclusions. 

2 Existing techniques 
Our approach uses the cognitive simplicity of Collaborative Filtering whilst maintaining the advantages of the 
Multi-Attribute Utility Theory. This is achieved by employing the knowledge of ontology and reason over its 
concepts instead of the item’s content itself. Before defining our model, we start by introducing fundamental 
background. 

2.1 Collaborative filtering 
In pure collaborative filtering systems, users state their preferences by rating a set of items which are then stored in a 
user-item matrix called S. This matrix contains all the users’ profile where the rows represents the users U = 
{u1,…,um}, the columns the set of items I = {i1,…,iq}, and Sk,l the normalized rating assigned to item l by user k. 
Given the matrix S and a target user ui, a user-based CF predicts the rating of one or more target items by looking at 
the rated items of the k nearest neighbors to the target users. On the other hand, an item-based CF algorithm looks at 
the k most similar items that have been co-rated by different users. Due to the complexity of the former approach, 
we will not consider it and focus on the latter.  
 
The first step of item-based collaborative filtering is to compute the similarity between two co-rated items. Many 
similarity measures exist and can be used, but the most common one is the cosine metric which measures the angle 
between two vectors of size m. When 2 items are similar, then the angle between be small and consequently give a 
cosine value close to 1; and inversely  0 when items are totally different. Over the years, the cosine metric has been 
updated in order to take into account the variance in the ratings of each user. The adjusted cosine similarity (1) does 



exactly that by subtracting to each user rating Sj,a, the user’s average grade Ŝj. Once all the similarities have been 
computed, CF estimates the normalized rating of an item a by selecting the k most similar items to the target item a 
and predicts its weight (2). 
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Unfortunately, as the number of items and/or users grow so will the data sparsity in the matrix. This is CF’s 
fundamental problem and explains why numerous authors [10][11][17] have focused their work to try to overcome 
it. Data-mining [17] or Two-way Aspect Model [15]  are now used to extract the item similarity knowledge by using 
association between the user’s profile [17] and the object’s content [15]  in order to augment standard similarity 
matrix. To overcome the latency problem, the content of the object has also been used to try to predict its rating. 
This is achieved by filling up the similarity matrix [4] or simply by using a weighted combination [10] of the content 
and collaborative prediction.   

2.2 Multi-attribute utility theory 
Multi-attribute utility theory dates from the early 40s when Von Neumann et al [19] have laid the foundations and 
proved, under condition of four axioms, that preferences and attitudes towards risk can be adequately modeled by a 
utility function, u. In this paper, we do not consider uncertainty, therefore the utility function becomes equivalent to 
a value function but later we consider expected values of similarity. 
 
Formally, each outcome (item) is defined by a set of n attributes X = {X1,…,Xn}. Each Xi can take any value di from 
a domain Di = {d1,…,dk}. The Cartesian product D = D1x D2x… x Dn forms the space of all the possible outcomes 
O. The user expresses his preferences by defining the utility function and weight of each attribute. The simplified 
form of the Von Neumann and Morgenstern [19] theorem states that if outcome x is considered better or equivalent 
than outcome y, then the utility function u must satisfy equation (3). 

∀x,y ∈ O, x ≿ y ⇔ u(x) ≥ u(y) (3)

Furthermore, if we assume Mutual Preference Independence (MPI, [8]), then the theorem of Additive Value 
Function (WADD, [8]) can be used, and we can define the utility V of an outcome oi as  the sum of the sub-utility 
functions vi of outcome ok on each attribute multiplied by its weight wi. The outcome with highest overall evaluation 
value is chosen as the optimal solution.  
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Theoretically, and under the MPI hypothesis, this strategy can achieve 100% accuracy if all the parameters can be 
precisely elicited. Unfortunately, the elicitation of the parameters is expensive and various authors have tried to 
simplify this elicitation process in order to make it usable in real systems. Stolze et al. [16]  for example, exploit the 
idea of a scoring tree where a user expresses his preferences by modifying an existing tree via the use of rules. Once 
the preferences have been elicited, the system translates the scoring tree into a MAUT additive value function and 
then searches in the catalog for the most suitable products. Incremental Utility Elicitation [5], IUE, is another 
approach that eases the elicitation by an incremental process that interleaves utility elicitation and filtering of the 
outcomes based on the elicited information. A major contribution in that domain is the work done by Ha et al [5] [6] 
where polyhedral cones and pair wise comparison are used to estimate the user’s true weights. Also, [6] makes the 
assumption that the utility function has a multi-linear form, and that all the sub-utility functions are known. 
Regrettably, computing the cone is a hard problem that makes it unsuitable for real life scenarios. More recently, 
Blythe in [2] has simplified the process by assuming MAUT additive value functions and used a linear programming 
formulation and pair wise comparison of alternatives to estimate the user’s true utility. Nevertheless, all of the 
mentioned approaches work only for a small number of attributes which are difficult to apply to real life scenarios 
where alternatives are modeled by many features. 

2.3 Ontology reasoning 
With the emergence of the Semantic Web, it has been widely accepted that ontologies can be used to model the 
world in which we live in. In its general form, an ontology is a lattice where a node represents a concept (i.e.: an 



object of the world we want to model) whilst the edges between concepts correspond to theirs semantic relations.  
 
One of the simplest forms of an ontology is the concept tree (CT); a graph where the topology is a tree with only is-a 
relations. The tree structure makes the reasoning computationally efficient and the modeling of the domain easy. 
Despite its simplicity, a CT can greatly enhance modeling of the domain and the filtering process. Bradley et al in 
[3] have successfully used a concept tree to model the job domain and shown through experimentation that it is very 
useful for personalization. 
 
Concept similarity is the predominant form of ontology reasoning. Most technique use the distance between the 
concepts in a concept tree or similar graphical ontology to estimate their similarities; the smaller the distance 
between two concepts the more similar they are. In [3] for example, the distance was simply the number of edges 
between the concepts while Yang and al in [20] used the depth of the common ancestor. Resnik in [12] defined the 
similarity based on the information content shared by the concepts rather than its distance. Resnik's metric postulates 
higher similarity among rare concepts. While this makes sense for concepts themselves, there is no reason why this 
would also hold for preferences. 
 

The metrics in [3][12][20] assume that the similarity between two concepts is 
symmetric, i.e.: the similarity between concepts A and B is identical to the 
similarity between concepts B and A.  However, in real life situations, the 
distance should be considered asymmetric. Consider for example the concept 
tree in Figure 1. If a user liked any kind of vehicle, then he will probably like 
Mercedes cars to a similar degree. On the other hand, liking Mercedes cars does 
not necessarily mean liking any vehicle as some people become sick on boats. 
Formally, and assuming that P(X) corresponds to the probability of X occurring 
[12] and P(V ∩ M) is equal to α, then the probability P(V | M) is equal to (L*α) 
/(K+2) while P(M | V) is equal to (L* α) / K. This implies that P(V | M) < P(M | 
V), which means that the similarity function is asymmetric. 

K 

 
Andreason and al in [1] defined an asymmetric metric based on the principle of upward reachable nodes. Their 
metric can be applied to any graph structure and differentiates between the cost of traveling upward or downward 
the ontology. To the best of our knowledge, this metric has not been used in practice due to the computational 
complexity. Nevertheless, three important properties that we use in our model are defined in [1]: 

1. Generalization cost property. The cost of generalization should be significantly higher that the cost of 
specialization. 

2. Specificity cost property. The cost of traversing edges should be lower when nodes are more specific. 
3. Specialization cost property. Further specialization reduces similarity. 

 
The generalization cost property models the asymmetry of the similarity function, which implies that the similarity 
function is not a metric .The specificity cost property represents the fact that sub-concepts are more meaningful to 
the user than super-concepts whilst the specialization property reflects the fact that the further away two concepts 
are, then the more dissimilar they become. As a consequence, the specificity property reduces the cost of traversing 
edges as we go deeper in the ontology and the specialization property increases the cost between two concepts if 
other concepts are found on the path between those concepts.     

3 Heterogeneous attribute utility model 
The Utility model defined in section 2.2 is a powerful strategy as long as we have a complete user model and all the 
outcomes are defined by the same set of attributes. As previously argued, the former condition is unrealistic in most 
situations and consequently makes preference elicitation the central problem. Furthermore, in volatile environments, 
products continuously change, yet the utility model can only compare outcomes if they have the same attribute. In 
this section, we introduce the heterogeneous attribute utility model, HAUM, which is capable to build an accurate 
user model from implicit preferences. HAUM relaxes the previous two conditions and uses two key components to 
evaluate the user’s parameters: 

• Ontologies to model and estimate utility values. 
• Multiple regression to estimate the weights. 

Car

Vehicle 

Boat 

Mercedes 

L 

Figure 1:  A CT on transports 



3.1 Basic idea 
In recent years, the concept that ontologies could be used to represent knowledge has been developed [3] and 
accepted in the Semantic Web community. This paper goes further than existing work by using the ontology as a 
knowledge source in order to estimate missing user preferences. Our basic assumption is that an ontology can be 
used to model and estimate user preferences as long as a minimum of information about the user is known.  
 
To illustrate this principle, take the following problem, where outcomes are defined by a set of 3 attributes X1, X2, 
and X3. For our DVD example, X1 could be the theme, X2 the duration of the movie, and X3 its MPPA rating. Figure 

2 illustrates a possible representation of the domain as a 
concept tree, where each depth represents an attribute and the 
concept at depth i the possible domain values of the attribute i. 
Let outcome oi be defined by the domain values {d1,1; d2,1; 
d3,1} and outcome oj by  {d1,1; d2,2; d3,2}. Again, Figure 2 
shows clearly that the 2 outcomes have some similarity as they 
both share the node d1,1, which means that they both have this 
domain value. According to ontology theory, if two concepts 
are closely related in terms of distance in the graph, then we 
can assume that they are very similar in terms of meaning.  
 

Following this, and ignoring the three properties in section 2.3, we can define a simple similarity function (5) 
between 2 outcomes oi and oj as the number of attributes they share over the total number of possible attributes; this 
normalization guarantees that the similarity value lies in the interval [0..1].   
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where x(oi) is the set of attributes defining outcome oi, and {X} is the set of all attributes. Furthermore, this equation 

 volatile environments, outcomes do not always have the same number of attributes. For example, suppose that o  

ccording to structural analysis, the similarity between two concepts is equal to one minus the distance between 

Where ρ is a generalization coefficient that must be included in the interval (0 , 1

After substituting the distance by one minus the similarity and simplified equation (6), we are able to decompose the 

st

assumes that each attribute is equally likely to contribute to whether one likes an outcome, and that each outcome is 
defined by the same number of attributes. In our example and using equation (5), we can deduce that outcomes oi 
and oj have a similarity equal to 1/3. Informally, this means that if the user liked outcome oi, then there is one chance 
out of three that he will like outcome oj. Notice that the additive utility model makes the assumption that if a user 
has liked features A and B, then he/she will like items containing A+B. This assumption is not made in probabilistic 
models, where each feature and its combination are considered independent. We argue that this inductive bias is 
realistic in most real life situations; and this is supported by our experimental results. 
 
In i
is defined by the values {d1,1; d2,1}, ok  by {d1,1; d2,2} and oj by  {d1,1; d2,2; d3,2}. Consequently to equation (5), the 
similarity between oi and ok is equal to 1/3, which is also equal to the similarity between oi and oj. Furthermore, the 
similarity between oi and oj is equal to the similarity oj and oi. However, both situations are incorrect as the former 
violates the specialization property, while the latter violates the generalization cost property.  
 
A
those concepts, where the distance is defined as a metric. Consider for example the simple generic graph in Figure 3; 
the distance between nodes ni and nj can be given as the distance between node ni and its ancestor np plus the 

distance between node np and nj. However, due to the generalization property, the 
distance from ni to its ancestor should be higher than the distance from the ancestor to nj. 
This property implies that the distance is in fact asymmetric and taking into account that 
the transitivity property of the distance, we can define the asymmetric distance between 
two nodes as:  

adi

.5 ] to 
satisfy the generalization property, and anc(ni,nj) is the closest common ancestor to node 
ni and nj. This coefficient implements the generalization property stated in section 2.3.  
 

asymmetric similarity between two nodes ni and nj as: 

)),,(()1()),(,(),( jjijiiji nnnancdistnnancndistnn ×−+×= ρρ   (6) 
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d3,1 d3,2d3,1 d3,2

Figure 2:  Representation of the Attributes 

np

n

nk

ni j

Figure 3:  A sim tree ple 



Furthermore, and by considering equation (5), we can define the similarity between a node n  and the cl  i
common ancestor of node n

osest
i and nj as the number of nodes on the path from the root to the common ancestor over 

the number of nodes on the path from the root to node ni.  
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In this equation, {N(ni)} is the set of nodes from the root to node n, which corresponds to the path from the root to 
the node, pathroot(ni). Subsequently, {N | N(anc(ni, nj)) }} is the set of nodes from the root to the closest common 
ancestor of both nodes ni and nj, which corresponds to the path from the root to the closest common ancestor of both 
nodes, pathroot(anc(ni, nj)). Note that in our model, the root node is not contained in the path and the notation 
pathroot(ni) is used instead of {N(ni)} to simplify the writing of the equations. By considering equation (7) and (8), 
we can improve equation (5) to measure the similarity between heterogeneous outcomes oi and oj as:  
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Following this, if we know that a user has liked outcome oi with a value equal to x, then we can estimate that he

nce all the utility values are known, we propose a novel way of estimating the weights. Rather than eliciting the 

3.2 Definitions 
 the idea that attributes could be modeled by a concept tree, and that a concept tree could be 

defined by the 8-tuple: <Xi, Di, Ti, ≤ i, DCTi, fDCT,i , simDC , 

cept representing the attribute Xi and linked to DCTi with the binary relations hasDom; 

s in Di; 
f  Di; 

ments in Di and with the null concept as the root; 

jjijiiji nnnancsimn(,(),( nancnsimnnasim )),,(()1()), ×−+×= ρρ

 or 
she will also like outcome oj by a value equal to x*asim(oi, oj). Consequently, if we know that a user has liked  the 
values d1,1 and liked d2,1 by a value x, then we can estimate that they will like d2,2 by a value equal x*asim(d2,1, d2,2). 
Hence, we can make use of concept tree as user model to store the user’s utility values and also estimate missing 
ones by looking at the similarity between the concept representing the missing value and the nearest concept on 
which the user has expressed a preference.  
 
O
weights from the user, we suggest to estimate them by multiple regression. This is made possible by the fact that 
each user has rated a given number of items and thus we can obtain a system of n equations with n unknowns.  

Section 3.1 introduced
used to estimate missing values. We can extend this idea on domain values as they usually have also some kind of 
relationships between them. For example, if you like action movies then you will probably also like adventure ones 
as action and adventure are closely related. We represent this information by an attribute concept tree, where the 
domain values are modeled by concepts, the value of the concept represents the user’s utility value, and the 
relationships between them are is-a relations.   

   (7)
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Definition 1 An attribute concept tree ACTi is T,i
combDCT,i>, where 

• Xi is a con
• Di is the domain of the attribute Xi; 
• Ti defines the type of all the element
• ≤ i is an ordering relation on all the element o
• DCTi is a concept tree ontology modeling all the ele
• fDCT,i is a function that given a domain value from Di returns the corresponding concept in DCTi; 

) 

      X3

      a 

      b       c 

     d      

    null 

Figure 4: (a) with is-a relationship between  ACT 
domain values, and (b) without relationships  
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• simDCT,i is a function that computes the similarity between any two concept in DCTi; and 
• combDCT,i  is a function that estimates  the value of a concept in DCTi.  
 

Whe  the domain Di is discrete, HAUM exploits the is-a relationship between the values by building a hierarchy 

 many situations, different attributes represent the same concept or have similar meaning. In the computer domain, 

efinition 2 A compound attribute concept tree CACTj is defined by the 7-tuple: <CAj, Z j, ≤ j, AsCTj, fAsCT,j , 

ttribute concept representing the compound attribute CAj and linked to AsCTj with the 

•  CAj; 
e element of  Zj; 

lements in Zj and with the root concept as the root; 

Not  concepts of the AsCT are in fact attribute concept trees. Informally, CACT can be seen as a bi-

on 3 Given an ontology λ made of CACTs, we define the heterogeneous attribute utility model (HAUM) as 

efinition 4 Given a problem where outcomes are defined using the HAUM model, the optimal solution, if exists, is 

in

j
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In this equation, M is the number of compound attributes defining the class modeling the outcomes, and ni  

3.3 Reasoning with the ontology 
.1 to take into account the specificity of our model. Firstly, equation 

n
(Figure 4.a). On the other hand, if a domain value is without any relationship, then it will be directly attached to the 
null concept (Figure 4.b). The null concept represents the null domain value and is used if an object does not contain 
that attribute. However, if Di is continuous, we tend to use the classic ordering (i.e.:<) and each element of Di is 
directly connected to the root concept as before. Hence, if we know that two concepts are linked to the root concept, 
then we can deduce that they have nothing in common and the similarity function will return zero.  
 
In
for example, the attributes processor speed and RAM are related because large memory usually implies a fast 
processor. Our model exploits this pattern by grouping similar attributes together in a set called compound attribute. 
 
D
simAsCT,j, combAsCT,j>, where 

• CAj is a compound a
binary relations hasDom; 
Zj  is the set of attributes in

• ≤ j is an ordering relation on all th
• AsCTi is a concept tree ontology modeling all the e
• fAsCT,i is a function that given an attribute from CAi returns the corresponding concept in AsCTj; 
• simAsCT,j is a function that computes the similarity between any two concept in AsCTj; and 
• combDCT,j  is a function that estimates  the value of a concept in AsCTj. 
 

e that the
dimensional ontology where one dimension represents the attributes, while the other represents their corresponding 
domain values. Similarly to the ACT, if 2 attributes have no relationship between them, then they will be attached to 
the root concept. 
 
Definiti
an extension from the multi-attribute utility theory (MAUT) where all the outcomes are modeled by λ, and where the 
mutual preferential independence hypothesis holds on all the attributes.  
 
D
the outcome maximizing the utility in  (10). 

= vwoV
M

'' ()( ∑∑
==

=  (

is the
number of attributes in the compound attribute i.  The sub-utility functions vj and v’i, and the weights w’i of the 
compound attributes are defined on the interval [-1,1] and ∑|wi

’|=1. However, the weights wj are defined on the 
interval [0,1] and ∑wj=1. In our model, we apply the Equal Weight Policy [21] to compute the value of each wj. This 
strategy consists of assigning the same value (wj=1/ni) to each weight while making sure that ∑wj=1. We have 
preferred this strategy as it has a very high relative accuracy compared to more complex one [21] while still being 
very simple to implement.  The computation of the wi

’ is explained in details in section 3.4.2. 

We can now extend the reasoning of section 3
(9) is generalized to measure the similarity between any two concepts in a given concept tree as:  

|)(|
|)),((|

)1(
|)),((|

),( jirootjiroot ccancpathccancpath
ccasim ×−+×= ρρ  

|)(| jrootiroot
ji cpathcpath

 
(1

Where ρ is the same generalization coefficient defined in section 3.1. In our experiments,  ρ was arbitrary set to 

1)

0.75 
but further research is under progress to determine exactly how to evaluate this coefficient. 



 
HAUM estimates the missing utility value of concept ci by looking at the set of the closest concepts on which we 
have preferences, CCP, and compute  an average value based on the similarity it has with the concept ci using: 
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In this equation, {CCP}i is the ith closest concept on which we have a utility value, and simx is the similarity metric 

3.4 HAUM process 
our steps iterative process as show in Figure 6. 

3.4.1 Preference elicitation 
designed to be very simple and similar to collaborative filtering. Each user is 

3.4.2 Parameter estimation 
e  apply a simple data mining algorithm, frequency count (FC), on the UPS in 

nfortunately, the Frequency Count algorithm is very unlikely to have computed the sub-utility of each possible 

nce all the sub-utility functions have been computed, we have to estimate the weights. After the UE algorithm has 
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The preference elicitation process is 
asked to give at least M outcomes with their associated ratings. The number M corresponds to the number of 
compound attributes whilst the rating is usually an integer ranging from one to five. It is necessary to ensure that the 
given objects are uniformly distributed in two distinct sets: liked or disliked objects that we call respectively LS and 
DS. The union of both sets, the user’s preference set (UPS), is going to be our learning set for the parameters 
estimation process.  

Once th  elicitation is completed, we
order to estimate some of the utility values. The FC works as follows: first we convert the grade into a utility value 
ranging from [-1, .., 1]. Then, for each present domain value of each attribute, we sum its utility value and divide it 
by the number of times it was present in the UPS. This is a simple algorithm that assumes the independence of the 
attributes and do not look at any combination what so ever. Note that our model is built on the additive utility model 
that makes such hypothesis.  
 
U
domain value. Consequently, we use a utility estimation (UE) algorithm that estimates the missing utilities based on 
the surrounding concepts in a CACT. The utility estimation will be done using equation (12). However, this equation 
needs to identify the closest concepts CCP on which we have utility values. To do this, we start by instantiating the 
various DCTs in the ontology with the utilities computed by the FC algorithm. Next, we select each concept without 
values, look for its closest neighbors that have values, and apply equation (12). Two cases need to be considered 
when looking for neighbors: when neighbors in the same Attribute Concept Tree can be found, or when they cannot. 
The former is straight forward and requires navigating through the DCT while the latter is more complex and 
requires jumping from one ACT to another via the CACT until we find a similar concept with value.  
 
O
been applied, we are left with a system with at least M equations, M unknowns, and M grades. We translate the 
grades into adequate utility values and then use classical multiple regression (MR) to estimate the weights of the 
compound attributes. Finally, the weights are normalized to satisfy to the properties defined in section 3.2.   

Estimation Elicitation ediction

Refine model

STOP 

Figure 6: Illustration of the HAUM Process 



3.4.3 Top-N selection 
Once all the user parameters have been estimated, we can compute the utility of each outcome by applying equation  
(10). Finally, we rank the outcomes in decreasing order of the computed utility and select the first N one; this is 
called the top-N items recommendation strategy where N is a parameter set by the system and usually ∈ [3, .., 10]. 

3.4.4 Refinement process 
Finally, the user has the opportunity to add or remove outcomes from the UPS in order to refine his model. 
Furthermore, he can directly modify the utility value or weights assigned to each attribute. This allows building a 
dynamic user model using both implicit and explicit preferences. 

4 EXPERIMENTAL RESULTS 
In this section, we explain the experimental methodology and the metric used to validate the hypothesis of our 
model. We ran our model on the famous MovieLens2 data; we used this data set as it is widely being used through 
out the research community [11][14][15] and it contains the data requires to solve our example given in the 
introduction. MovieLens is a data set containing the rating of 943 users on at least 20 movies. There are in total 1682 
movies in the database described by 19 themes (drama, action, …, war). To increase the description of the movies, 
we wrote a wrapper that extracted the year, MPPA rating, duration, actors and directors (due to the high sparsity of 
the actors and directors, it was decided to ignore those attributes in our experiments) from the IMDB3 website given 
a movie’s URL. 

4.1 HAUM model analysis 
The most important aspect we tested was whether or not the HAUM using 5 ratings in the learning set was close to 
the optimal model. To test this facet, we implemented a cross validation test close to the one proposed by Salzberg 
[13] with k=5 and using the McNemar test. For the purpose of this experiment, we simplified the model and only 
considered one compound attribute: CAThemes and its 19 attributes. We implemented two different models: a data-
rich one – RICH, and our new model – HAUM. Obviously, obtaining the optimal model as such is impossible as it is 
unknown. Therefore, we estimated it by using the frequency count algorithm and learned the utility values of all the 
domain values using 50 ratings from the user’s preference set. On the other hand, the HAUM model used 5 ratings 
from the user’s preference set to learn the utility value of 5 representative attributes, the RCSet, while the remaining 
were estimated using equation (12) and with a ρ set to 0.75.   
 
The experiment was as follows: we filtered the users with insufficient data and only kept those with at least 75 
ratings in the MovieLens data set; after this selection process, the number of users was reduced from 943 to 286. For 
all remaining users, we randomly selected exactly 75 ratings from the MovieLens data set, and 50 unrated movies 
that we stored respectively in two sets; the learning set and the test set. The learning set was then divided into k 
subsets, where k=5, for cross validation, while the test set was used to test both models. For each subset of the 
learning set, 5 ratings were randomly selected to estimate the values of the RCSet, whilst another 50 ratings were 
randomly picked from the remaining four subsets to estimate all the utility values of the RICH model. Once all the 
utility values of each model were computed, we used both models to estimate the rating of every movie in the test 
set. As our experiment used two models to rate an item, the rating of a movie was represented as a tuple: 
〈ratingHAUM, ratingRICH〉. Once all the movies have been rated, each rating was rescaled as follows: if the rating was 
from 1 to 4 exclusive, then we assigned the value rejected; otherwise we used the value accepted. For each user, we 
then counted how many times each combination (i.e.: 〈accepted, accepted〉… 〈rejected, rejected〉) was obtained and 
added the result into the table result. This table contained the possible rating combination for each user where the 
rows represent the four rating combinations and the columns represent the users. Finally, and after the k runs, the 
data in the table result was averaged, summed up, and the McNemar test was performed to test the difference in 
prediction between the two models.  
 
After 5 runs of the experiments, we obtained an average chi-square of 2.03 and p-value of 0.157. This p-value 
clearly indicates that we cannot reject the null hypothesis that both models perform equally. Concretely, this means 
                                                           
2 http://www.cs.umn.edu/Research/GroupLens/data/ml-data.zip  
3 http://www.imdb.com

http://www.cs.umn.edu/Research/GroupLens/data/ml-data.zip
http://www.imdb.com/


that the difference in prediction between the optimal model and HAUM is not statistically significant and show that 
our model with just 5 ratings is close to the optimal one, so that inferring preferences through the ontology indeed 
seems to make sense. 

4.2 Overall performance analysis 
Finally, we tested the accuracy of the HAUM against existing recommendation techniques and studied how many 
ratings were required by the parameters estimation algorithm in order to obtain an accurate model.  
 
The experiment was as follows. First, users with less than 115 ratings were removed from the data set and for each 
remaining user, 15 ratings were inserted into a test set while the rest was inserted into a temporary set. From the 
temporary set, 11 learning sets of varying size were created in order to test the accuracy of the model. The size of the 
sets varied incrementally from 4 to 100 ratings and with learning_seti+1=learning_seti ∩ ratings_from_temporary_set.  
Various techniques were used to estimate the weights and the utility functions from the learning set: the model 
defined in the previous section with a ρ set to 0.75 – HAUM, random utility values for all the attributes but 
compound attributes’ weights estimated by multiple regression– randFunc, and random compound attributes’ 
weights but with the utility value estimated by the ontology – randWeights. HAUM was benchmarked against the 
random policy – RAND, and the adjusted cosine collaborative filtering with 90 neighbors – CF. Collaborative 
Filtering algorithm was chosen as benchmark over classical content based filtering as it is known that it is today’s 
best performing filtering and most widely used recommendation system. Moreover, experimental results by 
Melvielle et al [10] have shown that CF performs better than pure content based filtering in the movie domain. We 
did not implement the CF algorithm; instead, we used the freely available MultiLens4 package with the filter ZScore 
which will allow us to perform adjusted cosine similarity. We set the neighbors to 90 as authors [11][14] have 
shown that the optimal for the MovieLens data set is very close to this value.  
 
The top-5 policy was used to select the 5 best outcomes based on their estimated grade. The accuracy of the 
prediction was measured using the Mean Absolute Error (MAE) in order to compare it with existing techniques. 
However, Herlocker et al in [7] have argued that MAE is a less appropriate measure when considering the top-N 
policy over rated items due to the small granularity of the user’s preferences. 
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Figure 7: MAE vs. size of learning set with policy Figure 8: Improvement of HAUM over CF 

 
The results illustrated in Figure 7 were much better than expected and shows that HAUM can be used to build robust 
recommendation systems. As expected, collaborative filtering performs poorly when the number of ratings in the 
learning set is very low. It rapidly improves until it reaches the 20 ratings threshold and then the improvement slows 
down. This is a well known effect that is due to the high data sparsity (sparsity>0.99), it also reflects the behavior of 
the systems when new items are added and need to be evaluated. These results clearly show that CF is unsuitable for 
the volatile environment when dealing with low involvement user decision process. On the other hand, the HAUM 
approach performs extremely well even with high data sparsity. Furthermore, it performs much better than CF 
(Figure 8) with improvement up to 76.4%. The student test reinforces this statement with a t-obs=-39.99 and t-

                                                           
4 http://knuth.luther.edu/~bmiller/multilens.html  

http://knuth.luther.edu/~bmiller/multilens.html


value<<0.01. The random policy was also plotted to see if our HAUM approach does actually improve something; 
and with an MAE of ~1.09, it is clear that it does. 
 
What is interesting is to consider whether or not our utility estimation algorithm and frequency count is better than 
just using random values. The graph clearly illustrates that HAUM performs better than randFunc and statistical 
analysis showed that the improvement is significant when we had at least 10 ratings in the learning set (t-test: t-obs= 
2.99, p-value=0.0016). This behavior makes sense and implies that a minimum of knowledge on some of the values 
must be known in order to estimate the rest of the utility values. Concerning the utility of the multiple regression to 
estimate the weights, we cannot assert anything as we obtained a p-value~0.1. However, the graph shows that 
HAUM performs slightly better than randWeights whatever the size of the learning set. Finally, it is worth pointing 
out that with only 4 ratings in the learning set, the HAUM model is able to perform reasonable well. The optimal 
accuracy is obtained with 60 ratings in the learning set, which is 10% better that CF. Moreover, this experiment 
shows that HAUM is quite robust as the accuracy hardly changes with varying size of the learning set.  

4.3 Discussion 
Many researchers have tried to boost the accuracy of Collaborative Filtering. Melvielle et al [10] is probably the 
most famous work in this domain. They use a content-based approach to try to fill up the CF’s matrix in order to 
avoid the sparsity problem and new-item problem. They performed experiments on the EachMovie data set and 
obtained an improvement of 4% over classical CF when they have 25% of the ratings in the test set. With this 
configuration, HAUM generates an improvement of over 10%. However, MovieLens is a subset of the EachMovie 
data so we cannot draw any clear conclusion. Mobasher et al in [11] improved CF by adding semantic context to the 
problem. They extracted the attribute values of each movie and from it created a semantic matrix. This matrix is 
exploited in order to compute the similarity between two movies. Finally, they predict the rating using a weighted 
combination of the semantic matrix result and CF. Their method shows very good performance with up to 22% 
improvement on the MAE when data sparsity is high. The best improvement is achieved when the ratio of the 
learning / test set is around 0.3. At very low ratio, the improvement is around 15% which is 60% less than our 
HAUM approach.  
 
Those results tend to show that we could improve our HAUM by combining it in some form with CF. By doing that, 
we could improve the accuracy but we would then violate the user’s privacy and make it vulnerable to schilling 
attacks. This would have to be a trade-off that has to be studied.   

5 CONCLUSIONS 
Existing recommendation techniques include insufficient inductive bias to obtain an accurate user model from the 
amount of data that is typically available. We have shown how ontologies can provide the right inductive bias so that 
accurate recommendations are possible even with very little data about the user’s preferences. On experiments using 
the MovieLens data, they consistently outperform collaborative filtering even when every little data is available.  
 
Note that our HAUM technique does not use any information about other user’s preferences as it the case in 
collaborative filtering. Instead, knowledge of what is common behavior is brought in through the ontology. The next 
step is now to apply ontology learning techniques to automatically construct reasonable ontologies for a given 
attribute model of the items. This should allow to better fine-tune the ontology to actual user preferences, and 
achieves further significant performance gains. We also consider using collaborative approach, as well as learning 
technique, to try to better estimate the generalization coefficient rather than arbitrary value. 
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