
Heterogeneous Attribute Utility Model: A new approach for
modeling user profiles for recommendation systems

Vincent Schickel-Zuber, Boi Faltings
School of Computer and Communication Sciences – IC

Swiss Federal Institute of Technology (EPFL)
Lausanne, Switzerland

{vincent.schikel-zuber, boi.faltings}@epfl.ch

Abstract
With the growing size of product catalogs, the task of finding an object has become analogous to finding a needle in
a haystack. Recommendation systems are tools that help people in this process. There are two types of techniques
for implementing such systems. Collaborative filtering uses statistical properties of the buying behavior of other
users to recommend items that the user is likely to buy. Preference-based techniques construct an explicit profile of
an individual user’s preferences, and find the best matches with that model. To make accurate recommendations,
both methods currently require more data about a customer than is usually available: the preference-based method
requires the user to specify preferences on the product attributes, while collaborative filtering requires that a
significant number of items have been bought or ranked to determine the user’s type with sufficient significance.
We conjecture that the weaknesses are due to a lack of inductive bias in the learning methods used to build the
prediction models. We propose a new method, heterogeneous attribute utility model (HAUM), where the structure of
user preferences are assumed to follow an ontology of product attributes. Using the data of the MovieLens system,
we show that experimentally real user preferences indeed closely follow an ontology based on movie attributes, and
that a recommender based just on a single individual’s preferences and this ontology performs better than
collaborative filtering, with the greatest differences when little data about the user is available. This points the way
to how proper inductive bias can be used for significantly more powerful recommender systems in the future.

Key Words: Ontology, Utility Theory, User Model, Recommendation Systems.

1 Introduction
Consider a situation where you find yourself with an evening alone and would like to rent a DVD to watch. There
are hundreds of movies to choose from. For several reasons, this is a difficult problem. First, most people have
limited knowledge about the alternatives. Second, the set of alternatives changes frequently. Third, this is an
example of a low user involvement decision process where the user is not prepared to spend hours expressing his
preferences. Recommender systems have been devised as tools to help people in such situations. Two kinds of
techniques are widely used in e-commerce sites today.

The first technique is item-to-item collaborative filtering (CF, [9]) which recommends products to users based on
other users’ experience. Amazon.com1, with over 29 millions customers and several million catalog items [9], uses
this technique which is more commonly known to end-user as “Customers who bought this item also bought these
items:”. Collaborative filtering generates recommendations based on the experience of like-minded groups of users,
based on the assumption that similar users like similar objects. Therefore, CF’s ability to recommend items depends
on the ability to successfully identify the set of similar users, known as the target user’s neighborhood. CF does not
build an explicit model of user preferences for individual product attributes. Instead, preferences remain implicit in
the ratings that the user gives to some subset of products, either explicitly or by buying them. In practice, CF is the
most popular recommendation technique and this is due to three main reasons. First, studies have shown it to have
satisfactory performance when sufficient data is available. Second, it can compare items without modeling them and
thus can theoretically deal with any kind of item as long as they have been rated by other people. Finally, the
cognitive requirements on the user are very low. However, as argued by many authors [10][11][15][17], CF suffers
from profound problems such as :

• Sparsity. This is CF’s major problem and occurs when the number of items far exceeds what an individual
can rate.

1 http://www.amazon.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147916811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.amazon.com/

• Cold start: When a new user enters the system, he has not yet rated a sufficient number of items for CF to
correctly locate the right neighborhood.

• Latency or new item problem: Product catalogs evolve over time; however, the collaborative approach
cannot deal with new products as they have not been previously rated.

• Scalability. The computation of the neighborhood requires looking at all the items and users in the systems.
Consequently, as the number of users grows, so does the complexity.

• Privacy. Users are becoming more and more reluctant to express their preferences. Currently, the similarity
matrix is located on a server and is thus accessible to a third party.

• Shilling attacks: malicious users can alter user ratings in order to influence the recommendations.

The other widely used technique is preference-based recommendation. Here, a user is asked to express explicit
preferences for certain attributes of the product. If preferences are accurately stated, multi-attribute utility theory
(MAUT, [8]) provides methods to find the most preferred product even when the set of alternatives is extremely
large and/or volatile, and thus has no problems of sparsity, cold starts, latency or scalability. Furthermore, since
recommendations are based only on the individual user’s data, there are no problems with privacy or shilling.
However, the big drawback of preference-based methods is that the user needs to express a potentially quite
complex preference model. This may require a large number of interactions, and places a higher cognitive load on
the user since he has to reason about the attributes that model the product.

However, attribute-based preference models can also be learned from user choices or ratings, just as in collaborative
filtering. In our experiments, this by itself can already result in recommendations that are almost as good as those of
collaborative filtering. The main novelty of this paper, however, is to use an ontology of product attributes to
provide an inductive bias that allows learning of this individual preference model to succeed even with very few
ratings. This leads us to a technique for recommender systems that outperform the best known collaborative filtering
techniques on the MovieLens data that we have been using for our experiments. Furthermore, very few ratings, just
5 movies, suffice to get recommendations that are almost as good as what can be reached with many, 30 or more,
ratings. At the same time, the user effort required by this technique is not significantly different from that in a
collaborative filtering system. Thus, we can effectively get the best of both techniques.

This paper is organized as follows: Section 2 provides fundamental background in Collaborative Filtering, Multi—
Attribute Utility Theory, and Ontology Reasoning while our novel approach with its algorithm is explained in
Section 3. Section 4 contains experimental results with comparison to existing techniques. Finally, Section 5
provides the conclusions.

2 Existing techniques
Our approach uses the cognitive simplicity of Collaborative Filtering whilst maintaining the advantages of the
Multi-Attribute Utility Theory. This is achieved by employing the knowledge of ontology and reason over its
concepts instead of the item’s content itself. Before defining our model, we start by introducing fundamental
background.

2.1 Collaborative filtering
In pure collaborative filtering systems, users state their preferences by rating a set of items which are then stored in a
user-item matrix called S. This matrix contains all the users’ profile where the rows represents the users U =
{u1,…,um}, the columns the set of items I = {i1,…,iq}, and Sk,l the normalized rating assigned to item l by user k.
Given the matrix S and a target user ui, a user-based CF predicts the rating of one or more target items by looking at
the rated items of the k nearest neighbors to the target users. On the other hand, an item-based CF algorithm looks at
the k most similar items that have been co-rated by different users. Due to the complexity of the former approach,
we will not consider it and focus on the latter.

The first step of item-based collaborative filtering is to compute the similarity between two co-rated items. Many
similarity measures exist and can be used, but the most common one is the cosine metric which measures the angle
between two vectors of size m. When 2 items are similar, then the angle between be small and consequently give a
cosine value close to 1; and inversely 0 when items are totally different. Over the years, the cosine metric has been
updated in order to take into account the variance in the ratings of each user. The adjusted cosine similarity (1) does

exactly that by subtracting to each user rating Sj,a, the user’s average grade Ŝj. Once all the similarities have been
computed, CF estimates the normalized rating of an item a by selecting the k most similar items to the target item a
and predicts its weight (2).

∑ ∑

∑

= =

=

−×−

−×−
=

m

j

m

j
jbjjaj

m

j
jbjjaj

ba

SSSS

SSSS
iisim

1 1

2
,

2
,

1
,,

)()(

))()((
),(

(1)

∑

∑

=

=

×
= k

j
aj

k

j
ajji

ai

iisim

iisimS
S

1

1
,

,

),(

)),((

(2)

Unfortunately, as the number of items and/or users grow so will the data sparsity in the matrix. This is CF’s
fundamental problem and explains why numerous authors [10][11][17] have focused their work to try to overcome
it. Data-mining [17] or Two-way Aspect Model [15] are now used to extract the item similarity knowledge by using
association between the user’s profile [17] and the object’s content [15] in order to augment standard similarity
matrix. To overcome the latency problem, the content of the object has also been used to try to predict its rating.
This is achieved by filling up the similarity matrix [4] or simply by using a weighted combination [10] of the content
and collaborative prediction.

2.2 Multi-attribute utility theory
Multi-attribute utility theory dates from the early 40s when Von Neumann et al [19] have laid the foundations and
proved, under condition of four axioms, that preferences and attitudes towards risk can be adequately modeled by a
utility function, u. In this paper, we do not consider uncertainty, therefore the utility function becomes equivalent to
a value function but later we consider expected values of similarity.

Formally, each outcome (item) is defined by a set of n attributes X = {X1,…,Xn}. Each Xi can take any value di from
a domain Di = {d1,…,dk}. The Cartesian product D = D1x D2x… x Dn forms the space of all the possible outcomes
O. The user expresses his preferences by defining the utility function and weight of each attribute. The simplified
form of the Von Neumann and Morgenstern [19] theorem states that if outcome x is considered better or equivalent
than outcome y, then the utility function u must satisfy equation (3).

∀x,y ∈ O, x ≿ y ⇔ u(x) ≥ u(y) (3)

Furthermore, if we assume Mutual Preference Independence (MPI, [8]), then the theorem of Additive Value
Function (WADD, [8]) can be used, and we can define the utility V of an outcome oi as the sum of the sub-utility
functions vi of outcome ok on each attribute multiplied by its weight wi. The outcome with highest overall evaluation
value is chosen as the optimal solution.

∑
=

=
n

1i
)()(kiik ovwoV (4)

Theoretically, and under the MPI hypothesis, this strategy can achieve 100% accuracy if all the parameters can be
precisely elicited. Unfortunately, the elicitation of the parameters is expensive and various authors have tried to
simplify this elicitation process in order to make it usable in real systems. Stolze et al. [16] for example, exploit the
idea of a scoring tree where a user expresses his preferences by modifying an existing tree via the use of rules. Once
the preferences have been elicited, the system translates the scoring tree into a MAUT additive value function and
then searches in the catalog for the most suitable products. Incremental Utility Elicitation [5], IUE, is another
approach that eases the elicitation by an incremental process that interleaves utility elicitation and filtering of the
outcomes based on the elicited information. A major contribution in that domain is the work done by Ha et al [5] [6]
where polyhedral cones and pair wise comparison are used to estimate the user’s true weights. Also, [6] makes the
assumption that the utility function has a multi-linear form, and that all the sub-utility functions are known.
Regrettably, computing the cone is a hard problem that makes it unsuitable for real life scenarios. More recently,
Blythe in [2] has simplified the process by assuming MAUT additive value functions and used a linear programming
formulation and pair wise comparison of alternatives to estimate the user’s true utility. Nevertheless, all of the
mentioned approaches work only for a small number of attributes which are difficult to apply to real life scenarios
where alternatives are modeled by many features.

2.3 Ontology reasoning
With the emergence of the Semantic Web, it has been widely accepted that ontologies can be used to model the
world in which we live in. In its general form, an ontology is a lattice where a node represents a concept (i.e.: an

object of the world we want to model) whilst the edges between concepts correspond to theirs semantic relations.

One of the simplest forms of an ontology is the concept tree (CT); a graph where the topology is a tree with only is-a
relations. The tree structure makes the reasoning computationally efficient and the modeling of the domain easy.
Despite its simplicity, a CT can greatly enhance modeling of the domain and the filtering process. Bradley et al in
[3] have successfully used a concept tree to model the job domain and shown through experimentation that it is very
useful for personalization.

Concept similarity is the predominant form of ontology reasoning. Most technique use the distance between the
concepts in a concept tree or similar graphical ontology to estimate their similarities; the smaller the distance
between two concepts the more similar they are. In [3] for example, the distance was simply the number of edges
between the concepts while Yang and al in [20] used the depth of the common ancestor. Resnik in [12] defined the
similarity based on the information content shared by the concepts rather than its distance. Resnik's metric postulates
higher similarity among rare concepts. While this makes sense for concepts themselves, there is no reason why this
would also hold for preferences.

The metrics in [3][12][20] assume that the similarity between two concepts is
symmetric, i.e.: the similarity between concepts A and B is identical to the
similarity between concepts B and A. However, in real life situations, the
distance should be considered asymmetric. Consider for example the concept
tree in Figure 1. If a user liked any kind of vehicle, then he will probably like
Mercedes cars to a similar degree. On the other hand, liking Mercedes cars does
not necessarily mean liking any vehicle as some people become sick on boats.
Formally, and assuming that P(X) corresponds to the probability of X occurring
[12] and P(V ∩ M) is equal to α, then the probability P(V | M) is equal to (L*α)
/(K+2) while P(M | V) is equal to (L* α) / K. This implies that P(V | M) < P(M |
V), which means that the similarity function is asymmetric.

K

Andreason and al in [1] defined an asymmetric metric based on the principle of upward reachable nodes. Their
metric can be applied to any graph structure and differentiates between the cost of traveling upward or downward
the ontology. To the best of our knowledge, this metric has not been used in practice due to the computational
complexity. Nevertheless, three important properties that we use in our model are defined in [1]:

1. Generalization cost property. The cost of generalization should be significantly higher that the cost of
specialization.

2. Specificity cost property. The cost of traversing edges should be lower when nodes are more specific.
3. Specialization cost property. Further specialization reduces similarity.

The generalization cost property models the asymmetry of the similarity function, which implies that the similarity
function is not a metric .The specificity cost property represents the fact that sub-concepts are more meaningful to
the user than super-concepts whilst the specialization property reflects the fact that the further away two concepts
are, then the more dissimilar they become. As a consequence, the specificity property reduces the cost of traversing
edges as we go deeper in the ontology and the specialization property increases the cost between two concepts if
other concepts are found on the path between those concepts.

3 Heterogeneous attribute utility model
The Utility model defined in section 2.2 is a powerful strategy as long as we have a complete user model and all the
outcomes are defined by the same set of attributes. As previously argued, the former condition is unrealistic in most
situations and consequently makes preference elicitation the central problem. Furthermore, in volatile environments,
products continuously change, yet the utility model can only compare outcomes if they have the same attribute. In
this section, we introduce the heterogeneous attribute utility model, HAUM, which is capable to build an accurate
user model from implicit preferences. HAUM relaxes the previous two conditions and uses two key components to
evaluate the user’s parameters:

• Ontologies to model and estimate utility values.
• Multiple regression to estimate the weights.

Car

Vehicle

Boat

Mercedes

L

Figure 1: A CT on transports

3.1 Basic idea
In recent years, the concept that ontologies could be used to represent knowledge has been developed [3] and
accepted in the Semantic Web community. This paper goes further than existing work by using the ontology as a
knowledge source in order to estimate missing user preferences. Our basic assumption is that an ontology can be
used to model and estimate user preferences as long as a minimum of information about the user is known.

To illustrate this principle, take the following problem, where outcomes are defined by a set of 3 attributes X1, X2,
and X3. For our DVD example, X1 could be the theme, X2 the duration of the movie, and X3 its MPPA rating. Figure

2 illustrates a possible representation of the domain as a
concept tree, where each depth represents an attribute and the
concept at depth i the possible domain values of the attribute i.
Let outcome oi be defined by the domain values {d1,1; d2,1;
d3,1} and outcome oj by {d1,1; d2,2; d3,2}. Again, Figure 2
shows clearly that the 2 outcomes have some similarity as they
both share the node d1,1, which means that they both have this
domain value. According to ontology theory, if two concepts
are closely related in terms of distance in the graph, then we
can assume that they are very similar in terms of meaning.

Following this, and ignoring the three properties in section 2.3, we can define a simple similarity function (5)
between 2 outcomes oi and oj as the number of attributes they share over the total number of possible attributes; this
normalization guarantees that the similarity value lies in the interval [0..1].

|}{|
|)}()(|{|

),(
oxoxx

oosim ji =
=

Xji (5)

where x(oi) is the set of attributes defining outcome oi, and {X} is the set of all attributes. Furthermore, this equation

 volatile environments, outcomes do not always have the same number of attributes. For example, suppose that o

ccording to structural analysis, the similarity between two concepts is equal to one minus the distance between

Where ρ is a generalization coefficient that must be included in the interval (0 , 1

After substituting the distance by one minus the similarity and simplified equation (6), we are able to decompose the

st

assumes that each attribute is equally likely to contribute to whether one likes an outcome, and that each outcome is
defined by the same number of attributes. In our example and using equation (5), we can deduce that outcomes oi
and oj have a similarity equal to 1/3. Informally, this means that if the user liked outcome oi, then there is one chance
out of three that he will like outcome oj. Notice that the additive utility model makes the assumption that if a user
has liked features A and B, then he/she will like items containing A+B. This assumption is not made in probabilistic
models, where each feature and its combination are considered independent. We argue that this inductive bias is
realistic in most real life situations; and this is supported by our experimental results.

In i
is defined by the values {d1,1; d2,1}, ok by {d1,1; d2,2} and oj by {d1,1; d2,2; d3,2}. Consequently to equation (5), the
similarity between oi and ok is equal to 1/3, which is also equal to the similarity between oi and oj. Furthermore, the
similarity between oi and oj is equal to the similarity oj and oi. However, both situations are incorrect as the former
violates the specialization property, while the latter violates the generalization cost property.

A
those concepts, where the distance is defined as a metric. Consider for example the simple generic graph in Figure 3;
the distance between nodes ni and nj can be given as the distance between node ni and its ancestor np plus the

distance between node np and nj. However, due to the generalization property, the
distance from ni to its ancestor should be higher than the distance from the ancestor to nj.
This property implies that the distance is in fact asymmetric and taking into account that
the transitivity property of the distance, we can define the asymmetric distance between
two nodes as:

adi

.5] to
satisfy the generalization property, and anc(ni,nj) is the closest common ancestor to node
ni and nj. This coefficient implements the generalization property stated in section 2.3.

asymmetric similarity between two nodes ni and nj as:

)),,(()1()),(,(),(jjijiiji nnnancdistnnancndistnn ×−+×= ρρ (6)

d1,1

d2,1

d1,2

d2,2 d2,3

X1

X2

X3

d3,1 d3,2d3,1 d3,2

Figure 2: Representation of the Attributes

np

n

nk

ni j

Figure 3: A sim tree ple

Furthermore, and by considering equation (5), we can define the similarity between a node n and the cl i
common ancestor of node n

osest
i and nj as the number of nodes on the path from the root to the common ancestor over

the number of nodes on the path from the root to node ni.

|)}({|
|))},((|{|

)),(,(nnancnsim =
i

ji
jii nN

nnancNN
 (8)

In this equation, {N(ni)} is the set of nodes from the root to node n, which corresponds to the path from the root to
the node, pathroot(ni). Subsequently, {N | N(anc(ni, nj)) }} is the set of nodes from the root to the closest common
ancestor of both nodes ni and nj, which corresponds to the path from the root to the closest common ancestor of both
nodes, pathroot(anc(ni, nj)). Note that in our model, the root node is not contained in the path and the notation
pathroot(ni) is used instead of {N(ni)} to simplify the writing of the equations. By considering equation (7) and (8),
we can improve equation (5) to measure the similarity between heterogeneous outcomes oi and oj as:

|)(|
|)),((|

)1(
|)),((|

),(jirootjiroot ooancpathooancpath
ooasim ×−+×= ρρ

|)(| jrootiroot
ji opathopath (9)

Following this, if we know that a user has liked outcome oi with a value equal to x, then we can estimate that he

nce all the utility values are known, we propose a novel way of estimating the weights. Rather than eliciting the

3.2 Definitions
 the idea that attributes could be modeled by a concept tree, and that a concept tree could be

defined by the 8-tuple: <Xi, Di, Ti, ≤ i, DCTi, fDCT,i , simDC ,

cept representing the attribute Xi and linked to DCTi with the binary relations hasDom;

s in Di;
f Di;

ments in Di and with the null concept as the root;

jjijiiji nnnancsimn(,(),(nancnsimnnasim)),,(()1()), ×−+×= ρρ

 or
she will also like outcome oj by a value equal to x*asim(oi, oj). Consequently, if we know that a user has liked the
values d1,1 and liked d2,1 by a value x, then we can estimate that they will like d2,2 by a value equal x*asim(d2,1, d2,2).
Hence, we can make use of concept tree as user model to store the user’s utility values and also estimate missing
ones by looking at the similarity between the concept representing the missing value and the nearest concept on
which the user has expressed a preference.

O
weights from the user, we suggest to estimate them by multiple regression. This is made possible by the fact that
each user has rated a given number of items and thus we can obtain a system of n equations with n unknowns.

Section 3.1 introduced
used to estimate missing values. We can extend this idea on domain values as they usually have also some kind of
relationships between them. For example, if you like action movies then you will probably also like adventure ones
as action and adventure are closely related. We represent this information by an attribute concept tree, where the
domain values are modeled by concepts, the value of the concept represents the user’s utility value, and the
relationships between them are is-a relations.

 (7)

(a

Definition 1 An attribute concept tree ACTi is T,i
combDCT,i>, where

• Xi is a con
• Di is the domain of the attribute Xi;
• Ti defines the type of all the element
• ≤ i is an ordering relation on all the element o
• DCTi is a concept tree ontology modeling all the ele
• fDCT,i is a function that given a domain value from Di returns the corresponding concept in DCTi;

)

 X3

 a

 b c

 d

 null

Figure 4: (a) with is-a relationship between ACT
domain values, and (b) without relationships

 X2

 a b

 null

(b)

hasDom

 Is-a

 X2

Movie

Themes MPAAs RDs….

rootrootroot

 X3 X1
 X6

 X1 X4

 X5

CACT

CA

Class

Figure 5: Overvi ovie Ontology ew of M

• simDCT,i is a function that computes the similarity between any two concept in DCTi; and
• combDCT,i is a function that estimates the value of a concept in DCTi.

Whe the domain Di is discrete, HAUM exploits the is-a relationship between the values by building a hierarchy

 many situations, different attributes represent the same concept or have similar meaning. In the computer domain,

efinition 2 A compound attribute concept tree CACTj is defined by the 7-tuple: <CAj, Z j, ≤ j, AsCTj, fAsCT,j ,

ttribute concept representing the compound attribute CAj and linked to AsCTj with the

• CAj;
e element of Zj;

lements in Zj and with the root concept as the root;

Not concepts of the AsCT are in fact attribute concept trees. Informally, CACT can be seen as a bi-

on 3 Given an ontology λ made of CACTs, we define the heterogeneous attribute utility model (HAUM) as

efinition 4 Given a problem where outcomes are defined using the HAUM model, the optimal solution, if exists, is

in

j
kjjkikiik ovwovwhereo

0

'

1i
)()(,)

10)

In this equation, M is the number of compound attributes defining the class modeling the outcomes, and ni

3.3 Reasoning with the ontology
.1 to take into account the specificity of our model. Firstly, equation

n
(Figure 4.a). On the other hand, if a domain value is without any relationship, then it will be directly attached to the
null concept (Figure 4.b). The null concept represents the null domain value and is used if an object does not contain
that attribute. However, if Di is continuous, we tend to use the classic ordering (i.e.:<) and each element of Di is
directly connected to the root concept as before. Hence, if we know that two concepts are linked to the root concept,
then we can deduce that they have nothing in common and the similarity function will return zero.

In
for example, the attributes processor speed and RAM are related because large memory usually implies a fast
processor. Our model exploits this pattern by grouping similar attributes together in a set called compound attribute.

D
simAsCT,j, combAsCT,j>, where

• CAj is a compound a
binary relations hasDom;
Zj is the set of attributes in

• ≤ j is an ordering relation on all th
• AsCTi is a concept tree ontology modeling all the e
• fAsCT,i is a function that given an attribute from CAi returns the corresponding concept in AsCTj;
• simAsCT,j is a function that computes the similarity between any two concept in AsCTj; and
• combDCT,j is a function that estimates the value of a concept in AsCTj.

e that the
dimensional ontology where one dimension represents the attributes, while the other represents their corresponding
domain values. Similarly to the ACT, if 2 attributes have no relationship between them, then they will be attached to
the root concept.

Definiti
an extension from the multi-attribute utility theory (MAUT) where all the outcomes are modeled by λ, and where the
mutual preferential independence hypothesis holds on all the attributes.

D
the outcome maximizing the utility in (10).

= vwoV
M

'' ()(∑∑
==

= (

is the
number of attributes in the compound attribute i. The sub-utility functions vj and v’i, and the weights w’i of the
compound attributes are defined on the interval [-1,1] and ∑|wi

’|=1. However, the weights wj are defined on the
interval [0,1] and ∑wj=1. In our model, we apply the Equal Weight Policy [21] to compute the value of each wj. This
strategy consists of assigning the same value (wj=1/ni) to each weight while making sure that ∑wj=1. We have
preferred this strategy as it has a very high relative accuracy compared to more complex one [21] while still being
very simple to implement. The computation of the wi

’ is explained in details in section 3.4.2.

We can now extend the reasoning of section 3
(9) is generalized to measure the similarity between any two concepts in a given concept tree as:

|)(|
|)),((|

)1(
|)),((|

),(jirootjiroot ccancpathccancpath
ccasim ×−+×= ρρ

|)(| jrootiroot
ji cpathcpath

(1

Where ρ is the same generalization coefficient defined in section 3.1. In our experiments, ρ was arbitrary set to

1)

0.75
but further research is under progress to determine exactly how to evaluate this coefficient.

HAUM estimates the missing utility value of concept ci by looking at the set of the closest concepts on which we
have preferences, CCP, and compute an average value based on the similarity it has with the concept ci using:

∑

∑

=

==
}{

0

}{CCP

0

),}({

)),}({*)}({(
)(_

CCP

i
iix

i
iixi

i

cCCPasim

cCCPasimCCPvalue
cvalueutility

2)

In this equation, {CCP}i is the ith closest concept on which we have a utility value, and simx is the similarity metric

3.4 HAUM process
our steps iterative process as show in Figure 6.

3.4.1 Preference elicitation
designed to be very simple and similar to collaborative filtering. Each user is

3.4.2 Parameter estimation
e apply a simple data mining algorithm, frequency count (FC), on the UPS in

nfortunately, the Frequency Count algorithm is very unlikely to have computed the sub-utility of each possible

nce all the sub-utility functions have been computed, we have to estimate the weights. After the UE algorithm has

(1

of the ACTx or a DCTx.

The HAUM algorithm is a f

TopN
pr

Preference Parameter

The preference elicitation process is
asked to give at least M outcomes with their associated ratings. The number M corresponds to the number of
compound attributes whilst the rating is usually an integer ranging from one to five. It is necessary to ensure that the
given objects are uniformly distributed in two distinct sets: liked or disliked objects that we call respectively LS and
DS. The union of both sets, the user’s preference set (UPS), is going to be our learning set for the parameters
estimation process.

Once th elicitation is completed, we
order to estimate some of the utility values. The FC works as follows: first we convert the grade into a utility value
ranging from [-1, .., 1]. Then, for each present domain value of each attribute, we sum its utility value and divide it
by the number of times it was present in the UPS. This is a simple algorithm that assumes the independence of the
attributes and do not look at any combination what so ever. Note that our model is built on the additive utility model
that makes such hypothesis.

U
domain value. Consequently, we use a utility estimation (UE) algorithm that estimates the missing utilities based on
the surrounding concepts in a CACT. The utility estimation will be done using equation (12). However, this equation
needs to identify the closest concepts CCP on which we have utility values. To do this, we start by instantiating the
various DCTs in the ontology with the utilities computed by the FC algorithm. Next, we select each concept without
values, look for its closest neighbors that have values, and apply equation (12). Two cases need to be considered
when looking for neighbors: when neighbors in the same Attribute Concept Tree can be found, or when they cannot.
The former is straight forward and requires navigating through the DCT while the latter is more complex and
requires jumping from one ACT to another via the CACT until we find a similar concept with value.

O
been applied, we are left with a system with at least M equations, M unknowns, and M grades. We translate the
grades into adequate utility values and then use classical multiple regression (MR) to estimate the weights of the
compound attributes. Finally, the weights are normalized to satisfy to the properties defined in section 3.2.

Estimation Elicitation ediction

Refine model

STOP

Figure 6: Illustration of the HAUM Process

3.4.3 Top-N selection
Once all the user parameters have been estimated, we can compute the utility of each outcome by applying equation
(10). Finally, we rank the outcomes in decreasing order of the computed utility and select the first N one; this is
called the top-N items recommendation strategy where N is a parameter set by the system and usually ∈ [3, .., 10].

3.4.4 Refinement process
Finally, the user has the opportunity to add or remove outcomes from the UPS in order to refine his model.
Furthermore, he can directly modify the utility value or weights assigned to each attribute. This allows building a
dynamic user model using both implicit and explicit preferences.

4 EXPERIMENTAL RESULTS
In this section, we explain the experimental methodology and the metric used to validate the hypothesis of our
model. We ran our model on the famous MovieLens2 data; we used this data set as it is widely being used through
out the research community [11][14][15] and it contains the data requires to solve our example given in the
introduction. MovieLens is a data set containing the rating of 943 users on at least 20 movies. There are in total 1682
movies in the database described by 19 themes (drama, action, …, war). To increase the description of the movies,
we wrote a wrapper that extracted the year, MPPA rating, duration, actors and directors (due to the high sparsity of
the actors and directors, it was decided to ignore those attributes in our experiments) from the IMDB3 website given
a movie’s URL.

4.1 HAUM model analysis
The most important aspect we tested was whether or not the HAUM using 5 ratings in the learning set was close to
the optimal model. To test this facet, we implemented a cross validation test close to the one proposed by Salzberg
[13] with k=5 and using the McNemar test. For the purpose of this experiment, we simplified the model and only
considered one compound attribute: CAThemes and its 19 attributes. We implemented two different models: a data-
rich one – RICH, and our new model – HAUM. Obviously, obtaining the optimal model as such is impossible as it is
unknown. Therefore, we estimated it by using the frequency count algorithm and learned the utility values of all the
domain values using 50 ratings from the user’s preference set. On the other hand, the HAUM model used 5 ratings
from the user’s preference set to learn the utility value of 5 representative attributes, the RCSet, while the remaining
were estimated using equation (12) and with a ρ set to 0.75.

The experiment was as follows: we filtered the users with insufficient data and only kept those with at least 75
ratings in the MovieLens data set; after this selection process, the number of users was reduced from 943 to 286. For
all remaining users, we randomly selected exactly 75 ratings from the MovieLens data set, and 50 unrated movies
that we stored respectively in two sets; the learning set and the test set. The learning set was then divided into k
subsets, where k=5, for cross validation, while the test set was used to test both models. For each subset of the
learning set, 5 ratings were randomly selected to estimate the values of the RCSet, whilst another 50 ratings were
randomly picked from the remaining four subsets to estimate all the utility values of the RICH model. Once all the
utility values of each model were computed, we used both models to estimate the rating of every movie in the test
set. As our experiment used two models to rate an item, the rating of a movie was represented as a tuple:
〈ratingHAUM, ratingRICH〉. Once all the movies have been rated, each rating was rescaled as follows: if the rating was
from 1 to 4 exclusive, then we assigned the value rejected; otherwise we used the value accepted. For each user, we
then counted how many times each combination (i.e.: 〈accepted, accepted〉… 〈rejected, rejected〉) was obtained and
added the result into the table result. This table contained the possible rating combination for each user where the
rows represent the four rating combinations and the columns represent the users. Finally, and after the k runs, the
data in the table result was averaged, summed up, and the McNemar test was performed to test the difference in
prediction between the two models.

After 5 runs of the experiments, we obtained an average chi-square of 2.03 and p-value of 0.157. This p-value
clearly indicates that we cannot reject the null hypothesis that both models perform equally. Concretely, this means

2 http://www.cs.umn.edu/Research/GroupLens/data/ml-data.zip
3 http://www.imdb.com

http://www.cs.umn.edu/Research/GroupLens/data/ml-data.zip
http://www.imdb.com/

that the difference in prediction between the optimal model and HAUM is not statistically significant and show that
our model with just 5 ratings is close to the optimal one, so that inferring preferences through the ontology indeed
seems to make sense.

4.2 Overall performance analysis
Finally, we tested the accuracy of the HAUM against existing recommendation techniques and studied how many
ratings were required by the parameters estimation algorithm in order to obtain an accurate model.

The experiment was as follows. First, users with less than 115 ratings were removed from the data set and for each
remaining user, 15 ratings were inserted into a test set while the rest was inserted into a temporary set. From the
temporary set, 11 learning sets of varying size were created in order to test the accuracy of the model. The size of the
sets varied incrementally from 4 to 100 ratings and with learning_seti+1=learning_seti ∩ ratings_from_temporary_set.
Various techniques were used to estimate the weights and the utility functions from the learning set: the model
defined in the previous section with a ρ set to 0.75 – HAUM, random utility values for all the attributes but
compound attributes’ weights estimated by multiple regression– randFunc, and random compound attributes’
weights but with the utility value estimated by the ontology – randWeights. HAUM was benchmarked against the
random policy – RAND, and the adjusted cosine collaborative filtering with 90 neighbors – CF. Collaborative
Filtering algorithm was chosen as benchmark over classical content based filtering as it is known that it is today’s
best performing filtering and most widely used recommendation system. Moreover, experimental results by
Melvielle et al [10] have shown that CF performs better than pure content based filtering in the movie domain. We
did not implement the CF algorithm; instead, we used the freely available MultiLens4 package with the filter ZScore
which will allow us to perform adjusted cosine similarity. We set the neighbors to 90 as authors [11][14] have
shown that the optimal for the MovieLens data set is very close to this value.

The top-5 policy was used to select the 5 best outcomes based on their estimated grade. The accuracy of the
prediction was measured using the Mean Absolute Error (MAE) in order to compare it with existing techniques.
However, Herlocker et al in [7] have argued that MAE is a less appropriate measure when considering the top-N
policy over rated items due to the small granularity of the user’s preferences.

0.7

0.8

0.9

1

1.1

1.2

1.3

4 10 20 30 40 50 60 70 80 90 100

#equations in learning set

M
AE

HAUM
randFunc
randWeigh
RAND
CF

0

10

20

30

40

50

60

70

80

4 10 20 30 40 50 60 70 80 90 100

#equations in learning set

Im
pr

ov
m

en
t i

n
%

 o
ve

r C
F

MAE for HAUM

Figure 7: MAE vs. size of learning set with policy Figure 8: Improvement of HAUM over CF

The results illustrated in Figure 7 were much better than expected and shows that HAUM can be used to build robust
recommendation systems. As expected, collaborative filtering performs poorly when the number of ratings in the
learning set is very low. It rapidly improves until it reaches the 20 ratings threshold and then the improvement slows
down. This is a well known effect that is due to the high data sparsity (sparsity>0.99), it also reflects the behavior of
the systems when new items are added and need to be evaluated. These results clearly show that CF is unsuitable for
the volatile environment when dealing with low involvement user decision process. On the other hand, the HAUM
approach performs extremely well even with high data sparsity. Furthermore, it performs much better than CF
(Figure 8) with improvement up to 76.4%. The student test reinforces this statement with a t-obs=-39.99 and t-

4 http://knuth.luther.edu/~bmiller/multilens.html

http://knuth.luther.edu/~bmiller/multilens.html

value<<0.01. The random policy was also plotted to see if our HAUM approach does actually improve something;
and with an MAE of ~1.09, it is clear that it does.

What is interesting is to consider whether or not our utility estimation algorithm and frequency count is better than
just using random values. The graph clearly illustrates that HAUM performs better than randFunc and statistical
analysis showed that the improvement is significant when we had at least 10 ratings in the learning set (t-test: t-obs=
2.99, p-value=0.0016). This behavior makes sense and implies that a minimum of knowledge on some of the values
must be known in order to estimate the rest of the utility values. Concerning the utility of the multiple regression to
estimate the weights, we cannot assert anything as we obtained a p-value~0.1. However, the graph shows that
HAUM performs slightly better than randWeights whatever the size of the learning set. Finally, it is worth pointing
out that with only 4 ratings in the learning set, the HAUM model is able to perform reasonable well. The optimal
accuracy is obtained with 60 ratings in the learning set, which is 10% better that CF. Moreover, this experiment
shows that HAUM is quite robust as the accuracy hardly changes with varying size of the learning set.

4.3 Discussion
Many researchers have tried to boost the accuracy of Collaborative Filtering. Melvielle et al [10] is probably the
most famous work in this domain. They use a content-based approach to try to fill up the CF’s matrix in order to
avoid the sparsity problem and new-item problem. They performed experiments on the EachMovie data set and
obtained an improvement of 4% over classical CF when they have 25% of the ratings in the test set. With this
configuration, HAUM generates an improvement of over 10%. However, MovieLens is a subset of the EachMovie
data so we cannot draw any clear conclusion. Mobasher et al in [11] improved CF by adding semantic context to the
problem. They extracted the attribute values of each movie and from it created a semantic matrix. This matrix is
exploited in order to compute the similarity between two movies. Finally, they predict the rating using a weighted
combination of the semantic matrix result and CF. Their method shows very good performance with up to 22%
improvement on the MAE when data sparsity is high. The best improvement is achieved when the ratio of the
learning / test set is around 0.3. At very low ratio, the improvement is around 15% which is 60% less than our
HAUM approach.

Those results tend to show that we could improve our HAUM by combining it in some form with CF. By doing that,
we could improve the accuracy but we would then violate the user’s privacy and make it vulnerable to schilling
attacks. This would have to be a trade-off that has to be studied.

5 CONCLUSIONS
Existing recommendation techniques include insufficient inductive bias to obtain an accurate user model from the
amount of data that is typically available. We have shown how ontologies can provide the right inductive bias so that
accurate recommendations are possible even with very little data about the user’s preferences. On experiments using
the MovieLens data, they consistently outperform collaborative filtering even when every little data is available.

Note that our HAUM technique does not use any information about other user’s preferences as it the case in
collaborative filtering. Instead, knowledge of what is common behavior is brought in through the ontology. The next
step is now to apply ontology learning techniques to automatically construct reasonable ontologies for a given
attribute model of the items. This should allow to better fine-tune the ontology to actual user preferences, and
achieves further significant performance gains. We also consider using collaborative approach, as well as learning
technique, to try to better estimate the generalization coefficient rather than arbitrary value.

6 References
[1] T. Andreasen, H. Bulskov, and R. Knappe, From Ontology over Similarity to Query Evaluation, In 2nd

International Conference on Ontologies, Databases, and Applications of Semantics for Large Scale Information
Systems (ODBASE), Catania, Sicily, Italy, November 2003

[2] J. Blythe, Visual Exploration and Incremental Utility Elicitation, In Eighteenth national conference on

Artificial intelligence, Edmonton, Alberta, Canada , pp. 526 - 532, 2002.

[3] K. Bradley, R. Rafter, and B. Smyth, Cased-Based User Profiling for Content Personalization, In Proceedings

of the International Conference on Adaptive Hypermedia and Adaptive Web-based Systems, 2000.

[4] M. Claypool, A. Gokhale, and T. Miranda, Combining Content-Based and Collaborative Filters in an Online

Newspaper, In ACM SIGIR Workshop on Recommender Systems, 1999.

[5] V. Ha, and P. Haddawys, Problem-focused incremental elicitation of multi-attribute utility model. In Besnard,

P., and Hanks, S., eds., Proc. 13th Conference on Uncertainty in Artificial Intelligence, pp. 215-222, 1997.

[6] V. Ha, and P. Haddawys, A Hybrid Approach to Reasoning with Partially Elicited Preference Models, In 15th

Conference in Uncertainty in Artificial Intelligence,UAI-99, pp. 263-270, Stockholm, Sweden, July 1999

[7] J.L. Herlocker, J.A. Konstan, L. G. Terven, and J.T. Riedl, Evaluating Collaborative Filtering Recommender

Systems, In ACM Transactions on Information Systems, 22(1):5-53, January 2004.

[8] R. Keeney, and H. Raiffa. Decisions with Multiple Objectives: Preference and Value Tradeoffs, Cambridge

University Press, 1993.

[9] G. Linden, B. Smith, and J. York, Amazon.com Item-to-Item Collaborative Filtering, IEEE Internet Computing,

January-February 2003.

[10] P. Melville, R. J. Mooney, and R. Nagarajan, Content-Boosted Collaborative Filtering, In Proceeding of the

SIGIR-2001, Workshop on Recommender Systems, New Orleans, LA, 2001.

[11] B. Mobasher, X. Jin, and Y. Zhou, Semantically Enhanced Collaborative Filtering on the Web, in Web Mining:

From Web to Semantic Web, EWMF04, LNAI Volume 3209, Springer, 2004.

[12] P. Resnik, Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems

of Ambiguity in Natural Language, in Journal of Artificial Intelligence Research, pp 95-130, 1999.

[13] S. L. Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, In Data Mining

and Knowledge Discovery, Volume 1, Issue 3, pp 317-327, 1997.

[14] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, Analysis of Recommendation Algorithms for E-Commerce, In

the ACM Conference on Electronic Commerce, EC2000, October 2000.

[15] A.L. Schein, A. Popesucl, L.H. Ungar and D. M. Pennock, Methods and Metrics for Cold-Start

Recommendations, In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, August 2002.

[16] M. Stolze, Soft navigation in electronic product catalogs, In International Journal on Digital Libraries, 3(1):60-

66, July 200.

[17] D.O. Sullivan, B. Smyth, D.C. Wilson, K. McDonald, and A. Smeaton, Improving the Quality of the

Personalized Electronic Program Guide, In User Modeling and User-Adapted Interaction, 14(1), 2004.

[18] G. Villard, Computation of the Inverse and Determinant of a Matrix, In Algorithms Seminar INRIA, pp. 29-32,

2003.

[19] J. Von Neumann, and O. Morgenstern, The Theory of Games and Economic Behavior. Princeton University

Press, Princeton, 1944.

[20] J. Yang, L. Wenyin, H. Zhang, and Y. Zhuang, Thesaurus-Aided Approach For Image Browsing and Retrieval,

In IEEE International Conference on Multimedia and Expo, Tokyo, August 2001.

[21] J. Zhang, and P. Pu, Effort and Accuracy Analysis of Choice Strategies for Electronic Product Catalogs, In

Proceedings of the 2005 ACM Symposium on Applied computing, SAC-2005, pp. 808- 814, 2005.

	Introduction
	Existing techniques
	Collaborative filtering
	Multi-attribute utility theory
	Ontology reasoning

	Heterogeneous attribute utility model
	Basic idea
	Definitions
	Reasoning with the ontology
	HAUM process
	Preference elicitation
	Parameter estimation
	Top-N selection
	Refinement process

	EXPERIMENTAL RESULTS
	HAUM model analysis
	Overall performance analysis
	Discussion

	CONCLUSIONS
	References

