114,506 research outputs found

    Integranting prosodic information into a speech recogniser

    Get PDF
    In the last decade there has been an increasing tendency to incorporate language engineering strategies into speech technology. This technique combines linguistic and mathematical information in different applications: machine translation, natural language processing, speech synthesis and automatic speech recognition (ASR). In the field of speech synthesis, this hybrid approach (linguistic and mathematical/statistical) has led to the design of efficient models for reproducing the acoustic features of natural language. However, the incorporation of language engineering strategies into ASR is only beginning. In this paper, we present a theoretical framework for the integration of linguistic information into an ASR system. The objective is to design a model which can detect the suprasegmental features of the speech input, mainly those related to the fundamental frequency (F0) that can clarify the functionality of pauses, intonation contour, and interruptions. This specification model has been designed in the framework of a dialogue syste

    Improving the quality of Gujarati-Hindi Machine Translation through part-of-speech tagging and stemmer-assisted transliteration

    Get PDF
    Machine Translation for Indian languages is an emerging research area. Transliteration is one such module that we design while designing a translation system. Transliteration means mapping of source language text into the target language. Simple mapping decreases the efficiency of overall translation system. We propose the use of stemming and part-of-speech tagging for transliteration. The effectiveness of translation can be improved if we use part-of-speech tagging and stemming assisted transliteration.We have shown that much of the content in Gujarati gets transliterated while being processed for translation to Hindi language

    Introduction to the special issue on cross-language algorithms and applications

    Get PDF
    With the increasingly global nature of our everyday interactions, the need for multilingual technologies to support efficient and efective information access and communication cannot be overemphasized. Computational modeling of language has been the focus of Natural Language Processing, a subdiscipline of Artificial Intelligence. One of the current challenges for this discipline is to design methodologies and algorithms that are cross-language in order to create multilingual technologies rapidly. The goal of this JAIR special issue on Cross-Language Algorithms and Applications (CLAA) is to present leading research in this area, with emphasis on developing unifying themes that could lead to the development of the science of multi- and cross-lingualism. In this introduction, we provide the reader with the motivation for this special issue and summarize the contributions of the papers that have been included. The selected papers cover a broad range of cross-lingual technologies including machine translation, domain and language adaptation for sentiment analysis, cross-language lexical resources, dependency parsing, information retrieval and knowledge representation. We anticipate that this special issue will serve as an invaluable resource for researchers interested in topics of cross-lingual natural language processing.Postprint (published version

    The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

    Full text link
    Computers continue to diversify with respect to system designs, emerging memory technologies, and application memory demands. Unfortunately, continually adapting the conventional virtual memory framework to each possible system configuration is challenging, and often results in performance loss or requires non-trivial workarounds. To address these challenges, we propose a new virtual memory framework, the Virtual Block Interface (VBI). We design VBI based on the key idea that delegating memory management duties to hardware can reduce the overheads and software complexity associated with virtual memory. VBI introduces a set of variable-sized virtual blocks (VBs) to applications. Each VB is a contiguous region of the globally-visible VBI address space, and an application can allocate each semantically meaningful unit of information (e.g., a data structure) in a separate VB. VBI decouples access protection from memory allocation and address translation. While the OS controls which programs have access to which VBs, dedicated hardware in the memory controller manages the physical memory allocation and address translation of the VBs. This approach enables several architectural optimizations to (1) efficiently and flexibly cater to different and increasingly diverse system configurations, and (2) eliminate key inefficiencies of conventional virtual memory. We demonstrate the benefits of VBI with two important use cases: (1) reducing the overheads of address translation (for both native execution and virtual machine environments), as VBI reduces the number of translation requests and associated memory accesses; and (2) two heterogeneous main memory architectures, where VBI increases the effectiveness of managing fast memory regions. For both cases, VBI significanttly improves performance over conventional virtual memory

    Evaluating syntax-driven approaches to phrase extraction for MT

    Get PDF
    In this paper, we examine a number of different phrase segmentation approaches for Machine Translation and how they perform when used to supplement the translation model of a phrase-based SMT system. This work represents a summary of a number of years of research carried out at Dublin City University in which it has been found that improvements can be made using hybrid translation models. However, the level of improvement achieved is dependent on the amount of training data used. We describe the various approaches to phrase segmentation and combination explored, and outline a series of experiments investigating the relative merits of each method

    Development of a Novel MultiBody Mechatronic Model for Five-Axis CNC Machine Tool

    Get PDF
    The paper presents the development of a mechatronic hybrid model for Geiss five-axis CNC machine tool using MultiBody-System (MBS) approach. The motion control systems comprising electrical and mechanical elements are analyzed and modeled. The 3D assembly of the machine tool is built in SolidWorks and exported into SimMechanics which interfaces seamlessly with SimPowerSystems, SimDriveline, and Simulink packages. CNC machine tools are mechatronic systems incorporating non-linearities so the proposed multibody mechatronic model (which considers the coupling of elastic mechanical structures with the control systems) represents accurately the dynamic behaviour of the actual machine by using only one simulation environment

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    A Nested Attention Neural Hybrid Model for Grammatical Error Correction

    Full text link
    Grammatical error correction (GEC) systems strive to correct both global errors in word order and usage, and local errors in spelling and inflection. Further developing upon recent work on neural machine translation, we propose a new hybrid neural model with nested attention layers for GEC. Experiments show that the new model can effectively correct errors of both types by incorporating word and character-level information,and that the model significantly outperforms previous neural models for GEC as measured on the standard CoNLL-14 benchmark dataset. Further analysis also shows that the superiority of the proposed model can be largely attributed to the use of the nested attention mechanism, which has proven particularly effective in correcting local errors that involve small edits in orthography

    RWTH ASR Systems for LibriSpeech: Hybrid vs Attention -- w/o Data Augmentation

    Full text link
    We present state-of-the-art automatic speech recognition (ASR) systems employing a standard hybrid DNN/HMM architecture compared to an attention-based encoder-decoder design for the LibriSpeech task. Detailed descriptions of the system development, including model design, pretraining schemes, training schedules, and optimization approaches are provided for both system architectures. Both hybrid DNN/HMM and attention-based systems employ bi-directional LSTMs for acoustic modeling/encoding. For language modeling, we employ both LSTM and Transformer based architectures. All our systems are built using RWTHs open-source toolkits RASR and RETURNN. To the best knowledge of the authors, the results obtained when training on the full LibriSpeech training set, are the best published currently, both for the hybrid DNN/HMM and the attention-based systems. Our single hybrid system even outperforms previous results obtained from combining eight single systems. Our comparison shows that on the LibriSpeech 960h task, the hybrid DNN/HMM system outperforms the attention-based system by 15% relative on the clean and 40% relative on the other test sets in terms of word error rate. Moreover, experiments on a reduced 100h-subset of the LibriSpeech training corpus even show a more pronounced margin between the hybrid DNN/HMM and attention-based architectures.Comment: Proceedings of INTERSPEECH 201
    • …
    corecore