22 research outputs found

    A Hybrid Approach for Aspect-Based Sentiment Analysis Using Deep Contextual Word Embeddings and Hierarchical Attention

    Full text link
    The Web has become the main platform where people express their opinions about entities of interest and their associated aspects. Aspect-Based Sentiment Analysis (ABSA) aims to automatically compute the sentiment towards these aspects from opinionated text. In this paper we extend the state-of-the-art Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA) method in two directions. First we replace the non-contextual word embeddings with deep contextual word embeddings in order to better cope with the word semantics in a given text. Second, we use hierarchical attention by adding an extra attention layer to the HAABSA high-level representations in order to increase the method flexibility in modeling the input data. Using two standard datasets (SemEval 2015 and SemEval 2016) we show that the proposed extensions improve the accuracy of the built model for ABSA.Comment: Accepted for publication in the 20th International Conference on Web Engineering (ICWE 2020), Helsinki Finland, 9-12 June 202

    Does BERT understand sentiment? Leveraging comparisons between contextual and non-contextual embeddings to improve aspect-based sentiment models

    Get PDF
    When performing Polarity Detection for different words in a sentence, we need to look at the words around to understand the sentiment. Massively pretrained language models like BERT can encode not only just the words in a document but also the context around the words along with them. This begs the questions, "Does a pretrain language model also automatically encode sentiment information about each word?" and "Can it be used to infer polarity towards different aspects?". In this work we try to answer this question by showing that training a comparison of a contextual embedding from BERT and a generic word embedding can be used to infer sentiment. We also show that if we finetune a subset of weights the model built on comparison of BERT and generic word embedding, it can get state of the art results for Polarity Detection in Aspect Based Sentiment Classification datasets

    Does BERT Understand Sentiment? Leveraging Comparisons Between Contextual and Non-Contextual Embeddings to Improve Aspect-Based Sentiment Models

    Get PDF
    When performing Polarity Detection for different words in a sentence, we need to look at the words around to understand the sentiment. Massively pretrained language models like BERT can encode not only just the words in a document but also the context around the words along with them. This begs the questions, "Does a pretrain language model also automatically encode sentiment information about each word?" and "Can it be used to infer polarity towards different aspects?". In this work we try to answer this question by showing that training a comparison of a contextual embedding from BERT and a generic word embedding can be used to infer sentiment. We also show that if we finetune a subset of weights the model built on comparison of BERT and generic word embedding, it can get state of the art results for Polarity Detection in Aspect Based Sentiment Classification datasets

    CL-XABSA: Contrastive Learning for Cross-lingual Aspect-based Sentiment Analysis

    Full text link
    As an extensive research in the field of Natural language processing (NLP), aspect-based sentiment analysis (ABSA) is the task of predicting the sentiment expressed in a text relative to the corresponding aspect. Unfortunately, most languages lack of sufficient annotation resources, thus more and more recent researchers focus on cross-lingual aspect-based sentiment analysis (XABSA). However, most recent researches only concentrate on cross-lingual data alignment instead of model alignment. To this end, we propose a novel framework, CL-XABSA: Contrastive Learning for Cross-lingual Aspect-Based Sentiment Analysis. Specifically, we design two contrastive strategies, token level contrastive learning of token embeddings (TL-CTE) and sentiment level contrastive learning of token embeddings (SL-CTE), to regularize the semantic space of source and target language to be more uniform. Since our framework can receive datasets in multiple languages during training, our framework can be adapted not only for XABSA task, but also for multilingual aspect-based sentiment analysis (MABSA). To further improve the performance of our model, we perform knowledge distillation technology leveraging data from unlabeled target language. In the distillation XABSA task, we further explore the comparative effectiveness of different data (source dataset, translated dataset, and code-switched dataset). The results demonstrate that the proposed method has a certain improvement in the three tasks of XABSA, distillation XABSA and MABSA. For reproducibility, our code for this paper is available at https://github.com/GKLMIP/CL-XABSA

    Recolha, extração e classificação de opiniões sobre aplicações lúdicas para saúde e bem-estar

    Get PDF
    Nowadays, mobile apps are part of the life of anyone who owns a smartphone. With technological evolution, new apps come with new features, which brings a greater demand from users when using an application. Moreover, at a time when health and well-being are a priority, more and more apps provide a better user experience, not only in terms of health monitoring but also a pleasant experience in terms of entertainment and well-being. However, there are still some limitations regarding user experience and usability. What can best translate user satisfaction and experience are application reviews. Therefore, to have a perception of the most relevant aspects of the current applications, a collection of reviews and respective classifications was performed. This thesis aims to develop a system that allows the presentation of the most relevant aspects of a given health and wellness application after collecting the reviews and later extracting the aspects and classifying them. In the reviews collection task, two Python libraries, one for the Google Play Store and one for the App Store, provide methods for extracting data about an application. For the extraction and classification of aspects, the LCF-ATEPC model was chosen given its performance in aspects-based sentiment analysis studies.Atualmente, as aplicações móveis fazem parte da vida de qualquer pessoa que possua um smartphone. Com a evolução tecnológica, novas aplicações surgem com novas funcionalidades, o que traz uma maior exigência por parte dos utilizadores quando usam uma aplicação. Numa altura em que a saúde e bem-estar são uma prioridade, existem cada vez mais aplicações com o intuito de providenciar uma melhor experiência ao utilizador, não só a nível de monitorização de saúde, mas também de uma experiência agradável em termos de entertenimento e bem estar. Contudo, existem ainda algumas limitações no que toca à experiência e usabilidade do utilizador. O que melhor pode traduzir a satisfação e experiência do utilizador são as reviews das aplicações. Assim sendo, para ter uma perceção dos aspetos mais relevantes das atuais aplicações, foi feita uma recolha das reviews e respetivas classificações. O objetivo desta tese consiste no desenvolvimento de um sistema que permita apresentar os aspetos mais relevantes de uma determinada aplicação de saúde e bem estar, após a recolha das reviews e posterior extração dos aspetos e classificação dos mesmos. No processo de recolha de reviews, foram usadas duas bibliotecas em Python, uma relativa à Google Play Store e outra à App Store, que providenciam métodos para extrair dados relativamente a uma aplicação. Para a extração e classificação dos aspetos, o modelo LCF-ATEPC foi o escolhido dada a sua performance em estudos de análise de sentimento baseada em aspectos.Mestrado em Engenharia de Computadores e Telemátic

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail

    Interpretable Architectures and Algorithms for Natural Language Processing

    Get PDF
    Paper V is excluded from the dissertation with respect to copyright.This thesis has two parts: Firstly, we introduce the human level-interpretable models using Tsetlin Machine (TM) for NLP tasks. Secondly, we present an interpretable model using DNNs. The first part combines several architectures of various NLP tasks using TM along with its robustness. We use this model to propose logic-based text classification. We start with basic Word Sense Disambiguation (WSD), where we employ TM to design novel interpretation techniques using the frequency of words in the clause. We then tackle a new problem in NLP, i.e., aspect-based text classification using a novel feature engineering for TM. Since TM operates on Boolean features, it relies on Bag-of-Words (BOW), making it difficult to use pre-trained word embedding like Glove, word2vec, and fasttext. Hence, we designed a Glove embedded TM to significantly enhance the model’s performance. In addition to this, NLP models are sensitive to distribution bias because of spurious correlations. Hence we employ TM to design a robust text classification against spurious correlations. The second part of the thesis consists interpretable model using DNN where we design a simple solution for complex position dependent NLP task. Since TM’s interpretability comes with the cost of performance, we propose an DNN-based architecture using a masking scheme on LSTM/GRU based models that ease the interpretation for humans using the attention mechanism. At last, we take the advantages of both models and design an ensemble model by integrating TM’s interpretable information into DNN for better visualization of attention weights. Our proposed model can be efficiently integrated to have a fully explainable model for NLP that assists trustable AI. Overall, our model shows excellent results and interpretation in several open-sourced NLP datasets. Thus, we believe that by combining the novel interpretation of TM, the masking technique in the neural network, and the integrated ensemble model, we can build a simple yet effective platform for explainable NLP applications wherever necessary.publishedVersio

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains
    corecore