2,616 research outputs found

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Visual Localisation of Quadruped Walking Robots

    Get PDF

    Advances towards behaviour-based indoor robotic exploration

    Get PDF
    215 p.The main contributions of this research work remain in object recognition by computer vision, by one side, and in robot localisation and mapping by the other. The first contribution area of the research address object recognition in mobile robots. In this area, door handle recognition is of great importance, as it help the robot to identify doors in places where the camera is not able to view the whole door. In this research, a new two step algorithm is presented based on feature extraction that aimed at improving the extracted features to reduce the superfluous keypoints to be compared at the same time that it increased its efficiency by improving accuracy and reducing the computational time. Opposite to segmentation based paradigms, the feature extraction based two-step method can easily be generalized to other types of handles or even more, to other type of objects such as road signals. Experiments have shown very good accuracy when tested in real environments with different kind of door handles. With respect to the second contribution, a new technique to construct a topological map during the exploration phase a robot would perform on an unseen office-like environment is presented. Firstly a preliminary approach proposed to merge the Markovian localisation in a distributed system, which requires low storage and computational resources and is adequate to be applied in dynamic environments. In the same area, a second contribution to terrain inspection level behaviour based navigation concerned to the development of an automatic mapping method for acquiring the procedural topological map. The new approach is based on a typicality test called INCA to perform the so called loop-closing action. The method was integrated in a behaviour-based control architecture and tested in both, simulated and real robot/environment system. The developed system proved to be useful also for localisation purpose

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    A Robotic System for Volcano Exploration

    Get PDF

    GUARDIANS final report part 1 (draft): a robot swarm assisting a human fire fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire fighters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist re ghters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting re ghters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus the robot swarm is able to provide guidance information to the humans. Together with the fire fighters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore