4 research outputs found

    Learning Bodily and Temporal Attention in Protective Movement Behavior Detection

    Get PDF
    For people with chronic pain, the assessment of protective behavior during physical functioning is essential to understand their subjective pain-related experiences (e.g., fear and anxiety toward pain and injury) and how they deal with such experiences (avoidance or reliance on specific body joints), with the ultimate goal of guiding intervention. Advances in deep learning (DL) can enable the development of such intervention. Using the EmoPain MoCap dataset, we investigate how attention-based DL architectures can be used to improve the detection of protective behavior by capturing the most informative temporal and body configurational cues characterizing specific movements and the strategies used to perform them. We propose an end-to-end deep learning architecture named BodyAttentionNet (BANet). BANet is designed to learn temporal and bodily parts that are more informative to the detection of protective behavior. The approach addresses the variety of ways people execute a movement (including healthy people) independently of the type of movement analyzed. Through extensive comparison experiments with other state-of-the-art machine learning techniques used with motion capture data, we show statistically significant improvements achieved by using these attention mechanisms. In addition, the BANet architecture requires a much lower number of parameters than the state of the art for comparable if not higher performances.Comment: 7 pages, 3 figures, 2 tables, code available, accepted in ACII 201

    Context-Independent Task Knowledge for Neurosymbolic Reasoning in Cognitive Robotics

    Get PDF
    One of the current main goals of artificial intelligence and robotics research is the creation of an artificial assistant which can have flexible, human like behavior, in order to accomplish everyday tasks. A lot of what is context-independent task knowledge to the human is what enables this flexibility at multiple levels of cognition. In this scope the author analyzes how to acquire, represent and disambiguate symbolic knowledge representing context-independent task knowledge, abstracted from multiple instances: this thesis elaborates the incurred problems, implementation constraints, current state-of-the-art practices and ultimately the solutions newly introduced in this scope. The author specifically discusses acquisition of context-independent task knowledge from large amounts of human-written texts and their reusability in the robotics domain; the acquisition of knowledge on human musculoskeletal dependencies constraining motion which allows a better higher level representation of observed trajectories; the means of verbalization of partial contextual and instruction knowledge, increasing interaction possibilities with the human as well as contextual adaptation. All the aforementioned points are supported by evaluation in heterogeneous setups, to bring a view on how to make optimal use of statistical & symbolic applications (i.e. neurosymbolic reasoning) in cognitive robotics. This work has been performed to enable context-adaptable artificial assistants, by bringing together knowledge on what is usually regarded as context-independent task knowledge

    Organisation, Repräsentation und Analyse menschlicher Ganzkörperbewegung für die datengetriebene Bewegungsgenerierung bei humanoiden Robotern

    Get PDF
    Diese Arbeit präsentiert einen Ansatz zur datengetriebenen Bewegungsgenerierung für humanoide Roboter, der auf der Beobachtung und Analyse menschlicher Ganzkörperbewegungen beruht. Hierzu wird untersucht, wie erfasste Bewegungen repräsentiert, klassifiziert und in einer großskaligen Bewegungsdatenbank organisiert werden können. Die statistische Modellierung der Transitionen zwischen charakteristischen Ganzkörperposen ermöglicht im Anschluss die Generierung von Multi-Kontakt-Bewegungen

    A Human Action Descriptor based on Motion Coordination

    No full text
    In this paper, we present a descriptor for human whole-body actions based on motion coordination. We exploit the principle, well known in neuromechanics, that humans move their joints in a coordinated fashion. Our coordination-based descriptor (CODE) is computed by two main steps. The first step is to identify the most informative joints which characterize the motion. The second step enriches the descriptor considering minimum and maximum joint velocities and the correlations between the most informative joints. In order to compute the distances between action descriptors, we propose a novel correlation-based similarity measure. The performance of CODE is tested on two public datasets, namely HDM05 and Berkeley MHAD, and compared with state-of-the-art approaches, showing recognition results
    corecore