20 research outputs found

    Machine learning for flow field measurements: a perspective

    Get PDF
    Advancements in machine-learning (ML) techniques are driving a paradigm shift in image processing. Flow diagnostics with optical techniques is not an exception. Considering the existing and foreseeable disruptive developments in flow field measurement techniques, we elaborate this perspective, particularly focused to the field of particle image velocimetry. The driving forces for the advancements in ML methods for flow field measurements in recent years are reviewed in terms of image preprocessing, data treatment and conditioning. Finally, possible routes for further developments are highlighted.Stefano Discetti acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 949085). Yingzheng Liu acknowledges financial support from the National Natural Science Foundation of China (11725209)

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Measurement of two-phase flow using particle image velocimetry

    Get PDF

    Quantitative digital image processing in fringe analysis and particle image velocimetry (PIV)

    Get PDF
    This thesis concerns the application of Quantitative Digital Image Pro­cessing to some problems in the domain of Optical Engineering. The applications addressed are those of automatic two dimensional phase unwrapping and the analysis of images from high speed particle image displacement velocimetry. The first application involves subdivision of the two dimensional image of a wrapped phase map into small two dimensional areas or tiles, which are unwrapped individually, in order that discontinuities may be localised to small areas. In this case the discontinuities have a contained effect on the unwrapped phase solution. The concept of minimum spanning trees, from Graph Theory, is employed to minimise the effect of such local discontinuities by computation of an un­wrapping path which avoids areas likely to be discontinuous in a probabilistic manner. This approach is implemented over two hierarchical levels, the first level identifying pixel level discontinuities such as spike noise, the second ad­dressing larger scale discontinuities which may not be detected by pixel level comparisons, but which can be detected by comparison of the local solutions of image areas larger than the pixel. The second application is in the area of Particle Image Displacement Velocimetry (PIDV). A digital processing method is developed for high speed PIDV. In high speed PIDV the seeding is sparsely distributed. This method attempts to pair individual particle images, rather than statistically average the positions of a large number of particle images as is the case with other analysis methods. The digital processing method is suitable for use with Video PIDV whose feasibility has recently been demonstrated

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science

    Autonomous Vehicles

    Get PDF
    This edited volume, Autonomous Vehicles, is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of vehicle autonomy. The book comprises nine chapters authored by various researchers and edited by an expert active in the field of study. All chapters are complete in itself but united under a common research study topic. This publication aims to provide a thorough overview of the latest research efforts by international authors, open new possible research paths for further novel developments, and to inspire the younger generations into pursuing relevant academic studies and professional careers within the autonomous vehicle field

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data
    corecore