438 research outputs found

    ADACOR: a holonic architecture for agile and adaptive manufacturing control

    Get PDF
    In the last decades significant changes in the manufacturing environment have been noticed: moving from a local economy towards a global economy, with markets asking for products with higher quality at lower costs, highly customised and with short life cycle. In these circumstances, the challenge is to develop manufacturing control systems with intelligence capabilities, fast adaptation to the environment changes and more robustness against the occurrence of disturbances. This paper presents an agile and adaptive manufacturing control architecture that addresses the need for the fast reaction to disturbances at the shop floor level, increasing the agility and flexibility of the enterprise, when it works in volatile environments. The proposed architecture introduces an adaptive control that balances dynamically between a more centralised structure and a more decentralised one, allowing combining the global production optimisation with agile reaction to unexpected disturbances

    Agent-based distributed manufacturing control: a state-of-the-art survey

    Get PDF
    Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life cycles. In this environment, manufacturing enterprises, to remain competitive, must respond closely to customer demands by improving their flexibility and agility, while maintaining their productivity and quality. Dynamic response to emergence is becoming a key issue in manufacturing field because traditional manufacturing control systems are built upon rigid control architectures, which cannot respond efficiently and effectively to dynamic change. In these circumstances, the current challenge is to develop manufacturing control systems that exhibit intelligence, robustness and adaptation to the environment changes and disturbances. The introduction of multi-agent systems and holonic manufacturing systems paradigms addresses these requirements, bringing the advantages of modularity, decentralization, autonomy, scalability and re- usability. This paper surveys the literature in manufacturing control systems using distributed artificial intelligence techniques, namely multi-agent systems and holonic manufacturing systems principles. The paper also discusses the reasons for the weak adoption of these approaches by industry and points out the challenges and research opportunities for the future

    Holonic multi-agent systems

    Get PDF
    A holonic multi-agent paradigm is proposed, where agents give up parts of their autonomy and merge into a super-agent"(a holon), that acts - when seen from the outside - just as a single agent again. We explore the spectrum of this new paradigm, ranging from definitorial issues over classification of possible application domains, an algebraic characterization of the merge operation, to implementational aspects: We propose algorithms for holon formation and on-line re-configuration. Based on some general criteria for the distinction between holonic and non-holonic domains, we examine domains suitable for holonic agents and sketch the implementation of holonic agents in these scenarios. Finally, a case study of a holonic agent system is presented in detail: TELETRUCK system is a fleet management system in the transportation domain

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    A formal validation approach for holonic control system specifications

    Get PDF
    The holonic manufacturing paradigm allows a new approach to the emergent requirements faced by the manufacturing world, through the concepts of modularity, decentralisation, autonomy, re-use of control software components. The formal modelling and validation of the structural and behavioural specifications of holonic control systems assumes a critical role. This paper discusses the formal validation of the Petri Net models designed to represent the behaviour and specifications of the holon classes defined at ADACOR architecture

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    3TZ collaborative team environments incorporating the hybrid holonic architecture

    Full text link
    The paper describes a business reengineering process (BPR) approach to address multi-timezone (3-timezone or 3TZ) collaborative teamwork environments by combining the Holonic architecture with the Zachman Metamodel Framework. While the use of collaborative project systems is not new, the methodology to share time resources from different timezones seeks to address pedagogical and engineering process concerns in team-based project development. The benefits of collaborative project management tools go beyond a uniform platform to deploy project resources, but to also enhance systemic processes and engineering practice. This facilitates team members to dedicate their time towards common work tasks, delineates individual and shared work packages, and improves student-tutor feedback techniques as teachers can actively monitor progress of development throughout the project lifecycle. © 2010 IEEE

    A holonic manufacturing architecture for line-less mobile assembly systems operations planning and control

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2022.O Line-Less Mobile Assembly Systems (LMAS) é um paradigma de fabricação que visa maximizar a resposta às tendências do mercado através de configurações adaptáveis de fábrica utilizando recursos de montagem móvel. Tais sistemas podem ser caracterizados como holonic manufacturing systems (HMS), cujas chamadas holonic control architecture (HCA) são recentemente retratadas como abordagens habilitadoras da Indústria 4.0 devido a suas relações de entidades temporárias (hierárquicas e/ou heterárquicas). Embora as estruturas de referência HCA como PROSA ou ADACOR/ADACOR² tenham sido muito discutidas na literatura, nenhuma delas pode ser aplicada diretamente ao contexto LMAS. Assim, esta dissertação visa responder à pergunta \"Como uma arquitetura de produção e sistema de controle LMAS precisa ser projetada?\" apresentando os modelos de projeto de arquitetura desenvolvidos de acordo com as etapas da metodologia para desenvolvimento de sistemas holônicos multi-agentes ANEMONA. A fase de análise da ANEMONA resulta em uma especificação do caso de uso, requisitos, objetivos do sistema, simplificações e suposições. A fase de projeto resulta nos modelos de organização, interação e agentes, seguido de uma breve análise de sua cobertura comportamental. O resultado da fase de implementação é um protótipo (realizado com o Robot Operation System) que implementa os modelos ANEMONA e uma ontologia LMAS, que reutiliza elementos de ontologias de referência do domínio de manufatura. A fim de testar o protótipo, um algoritmo para geração de dados para teste baseado na complexidade dos produtos e na flexibilidade do chão de fábrica é apresentado. A validação qualitativa dos modelos HCA é baseada em como o HCA proposto atende a critérios específicos para avaliar sistemas HCA. A validação é complementada por uma análise quantitativa considerando o comportamento dos modelos implementados durante a execução normal e a execução interrompida (e.g. equipamento defeituoso) em um ambiente simulado. A validação da execução normal concentra-se no desvio de tempo entre as agendas planejadas e executadas, o que provou ser em média irrelevante dentro do caso simulado considerando a ordem de magnitude das operações típicas demandadas. Posteriormente, durante a execução do caso interrompido, o sistema é testado sob a simulação de uma falha, onde duas estratégias são aplicadas, LOCAL\_FIX e REORGANIZATION, e seu resultado é comparado para decidir qual é a opção apropriada quando o objetivo é reduzir o tempo total de execução. Finalmente, é apresentada uma análise sobre a cobertura desta dissertação culminando em diretrizes que podem ser vistas como uma resposta possível (entre muitas outras) para a questão de pesquisa apresentada. Além disso, são apresentados pontos fortes e fracos dos modelos desenvolvidos, e possíveis melhorias e idéias para futuras contribuições para a implementação de sistemas de controle holônico para LMAS.Abstract: The Line-Less Mobile Assembly Systems (LMAS) is a manufacturing paradigm aiming to maximize responsiveness to market trends (product-individualization and ever-shortening product lifecycles) by adaptive factory configurations utilizing mobile assembly resources. Such responsive systems can be characterized as holonic manufacturing systems (HMS), whose so-called holonic control architectures (HCA) are recently portrayed as Industry 4.0-enabling approaches due to their mixed-hierarchical and -heterarchical temporary entity relationships. They are particularly suitable for distributed and flexible systems as the Line-Less Mobile Assembly or Matrix-Production, as they meet reconfigurability capabilities. Though HCA reference structures as PROSA or ADACOR/ADACOR² have been heavily discussed in the literature, neither can directly be applied to the LMAS context. Methodologies such as ANEMONA provide guidelines and best practices for the development of holonic multi-agent systems. Accordingly, this dissertation aims to answer the question \"How does an LMAS production and control system architecture need to be designed?\" presenting the architecture design models developed according to the steps of the ANEMONA methodology. The ANEMONA analysis phase results in a use case specification, requirements, system goals, simplifications, and assumptions. The design phase results in an LMAS architecture design consisting of the organization, interaction, and agent models followed by a brief analysis of its behavioral coverage. The implementation phase result is an LMAS ontology, which reuses elements from the widespread manufacturing domain ontologies MAnufacturing's Semantics Ontology (MASON) and Manufacturing Resource Capability Ontology (MaRCO) enriched with essential holonic concepts. The architecture approach and ontology are implemented using the Robot Operating System (ROS) robotic framework. In order to create test data sets validation, an algorithm for test generation based on the complexity of products and the shopfloor flexibility is presented considering a maximum number of operations per work station and the maximum number of simultaneous stations. The validation phase presents a two-folded validation: qualitative and quantitative. The qualitative validation of the HCA models is based on how the proposed HCA attends specific criteria for evaluating HCA systems (e.g., modularity, integrability, diagnosability, fault tolerance, distributability, developer training requirements). The validation is complemented by a quantitative analysis considering the behavior of the implemented models during the normal execution and disrupted execution (e.g.; defective equipment) in a simulated environment (in the form of a software prototype). The normal execution validation focuses on the time drift between the planned and executed schedules, which has proved to be irrelevant within the simulated case considering the order of magnitude of the typical demanded operations. Subsequently, during the disrupted case execution, the system is tested under the simulation of a failure, where two strategies are applied, LOCAL\_FIX and REORGANIZATION, and their outcome is compared to decide which one is the appropriate option when the goal is to reduce the overall execution time. Ultimately, it is presented an analysis about the coverage of this dissertation culminating into guidelines that can be seen as one possible answer (among many others) for the presented research question. Furthermore, strong and weak points of the developed models are presented, and possible improvements and ideas for future contributions towards the implementation of holonic control systems for LMAS
    corecore