16,682 research outputs found

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ā€˜Autonomic Computingā€™ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Detection of advanced persistent threat using machine-learning correlation analysis

    Get PDF
    As one of the most serious types of cyber attack, Advanced Persistent Threats (APT) have caused major concerns on a global scale. APT refers to a persistent, multi-stage attack with the intention to compromise the system and gain information from the targeted system, which has the potential to cause significant damage and substantial financial loss. The accurate detection and prediction of APT is an ongoing challenge. This work proposes a novel machine learning-based system entitled MLAPT, which can accurately and rapidly detect and predict APT attacks in a systematic way. The MLAPT runs through three main phases: (1) Threat detection, in which eight methods have been developed to detect different techniques used during the various APT steps. The implementation and validation of these methods with real traffic is a significant contribution to the current body of research; (2) Alert correlation, in which a correlation framework is designed to link the outputs of the detection methods, aims to identify alerts that could be related and belong to a single APT scenario; and (3) Attack prediction, in which a machine learning-based prediction module is proposed based on the correlation framework output, to be used by the network security team to determine the probability of the early alerts to develop a complete APT attack. MLAPT is experimentally evaluated and the presented sy

    The Intersection of Law and Ethics in Cyberwar: Some Reflections

    Get PDF
    The purpose of this short essay is to reflect upon a few issues that illustrate how legal and ethical issues intersect in the cyber realm. Such an intersection should not be especially surprising., Historian Geoffrey Best insists, ā€œ[I]t must never be forgotten that the law of war, wherever it began at all, began mainly as a matter of religion and ethics . . . ā€œIt began in ethicsā€ Best says ā€œand it has kept one foot in ethics ever since.ā€ Understanding that relationship is vital to appreciating the full scope of the responsibilities of a cyber-warrior in the 21st century

    Machine-assisted Cyber Threat Analysis using Conceptual Knowledge Discovery

    Get PDF
    Over the last years, computer networks have evolved into highly dynamic and interconnected environments, involving multiple heterogeneous devices and providing a myriad of services on top of them. This complex landscape has made it extremely difficult for security administrators to keep accurate and be effective in protecting their systems against cyber threats. In this paper, we describe our vision and scientific posture on how artificial intelligence techniques and a smart use of security knowledge may assist system administrators in better defending their networks. To that end, we put forward a research roadmap involving three complimentary axes, namely, (I) the use of FCA-based mechanisms for managing configuration vulnerabilities, (II) the exploitation of knowledge representation techniques for automated security reasoning, and (III) the design of a cyber threat intelligence mechanism as a CKDD process. Then, we describe a machine-assisted process for cyber threat analysis which provides a holistic perspective of how these three research axes are integrated together

    Science Hackathons for Cyberphysical System Security Research: Putting CPS testbed platforms to good use

    Full text link
    A challenge is to develop cyber-physical system scenarios that reflect the diversity and complexity of real-life cyber-physical systems in the research questions that they address. Time-bounded collaborative events, such as hackathons, jams and sprints, are increasingly used as a means of bringing groups of individuals together, in order to explore challenges and develop solutions. This paper describes our experiences, using a science hackathon to bring individual researchers together, in order to develop a common use-case implemented on a shared CPS testbed platform that embodies the diversity in their own security research questions. A qualitative study of the event was conducted, in order to evaluate the success of the process, with a view to improving future similar events
    • ā€¦
    corecore