21 research outputs found

    Effect of Neural Network on Reduction of Noise for Edge Detection

    Get PDF
    Processing photographic images is important in many applications, among them the development of automated driver assistance systems (ADAS) and autonomous vehicles. Many techniques are used for processing images, including neural networks, other types of machine learning, and edge detection. One common issue with processing these photos is the presence of noise, whether caused by the camera itself or by physical conditions (e.g., weather conditions or dirt on road signs). In this paper, a neural network is used for noise reduction to improve edge detection results and tested with two kinds of noise, Gaussian and salt & pepper noise, and three different edge detection algorithms, Canny, Sobel, and Zhang. Results showed that the noise reduction process was effective in improving performance of the edge detection process, with the exception of conditions where the noise was originally very minimal

    High-ISO long-exposure image denoising based on quantitative blob characterization

    Get PDF
    Blob detection and image denoising are fundamental, sometimes related tasks in computer vision. In this paper, we present a computational method to quantitatively measure blob characteristics using normalized unilateral second-order Gaussian kernels. This method suppresses non-blob structures while yielding a quantitative measurement of the position, prominence and scale of blobs, which can facilitate the tasks of blob reconstruction and blob reduction. Subsequently, we propose a denoising scheme to address high-ISO long-exposure noise, which sometimes spatially shows a blob appearance, employing a blob reduction procedure as a cheap preprocessing for conventional denoising methods. We apply the proposed denoising methods to real-world noisy images as well as standard images that are corrupted by real noise. The experimental results demonstrate the superiority of the proposed methods over state-of-the-art denoising methods

    Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty

    Full text link
    Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.Comment: Accepted by AAAI202
    corecore