3,024 research outputs found

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Learning the Structure of Continuous Markov Decision Processes

    Get PDF
    There is growing interest in artificial, intelligent agents which can operate autonomously for an extended period of time in complex environments and fulfill a variety of different tasks. Such agents will face different problems during their lifetime which may not be foreseeable at the time of their deployment. Thus, the capacity for lifelong learning of new behaviors is an essential prerequisite for this kind of agents as it enables them to deal with unforeseen situations. However, learning every complex behavior anew from scratch would be cumbersome for the agent. It is more plausible to consider behavior to be modular and let the agent acquire a set of reusable building blocks for behavior, the so-called skills. These skills might, once acquired, facilitate fast learning and adaptation of behavior to new situations. This work focuses on computational approaches for skill acquisition, namely which kind of skills shall be acquired and how to acquire them. The former is commonly denoted as skill discovery and the latter as skill learning . The main contribution of this thesis is a novel incremental skill acquisition approach which is suited for lifelong learning. In this approach, the agent learns incrementally a graph-based representation of a domain and exploits certain properties of this graph such as its bottlenecks for skill discovery. This thesis proposes a novel approach for learning a graph-based representation of continuous domains based on formalizing the problem as a probabilistic generative model. Furthermore, a new incremental agglomerative clustering approach for identifying bottlenecks of such graphs is presented. Thereupon, the thesis proposes a novel intrinsic motivation system which enables an agent to intelligently allocate time between skill discovery and skill learning in developmental settings, where the agent is not constrained by external tasks. The results of this thesis show that the resulting skill acquisition approach is suited for continuous domains and can deal with domain stochasticity and different explorative behavior of the agent. The acquired skills are reusable and versatile and can be used in multi-task and lifelong learning settings in high-dimensional problems

    Scaling Ant Colony Optimization with Hierarchical Reinforcement Learning Partitioning

    Get PDF
    This research merges the hierarchical reinforcement learning (HRL) domain and the ant colony optimization (ACO) domain. The merger produces a HRL ACO algorithm capable of generating solutions for both domains. This research also provides two specific implementations of the new algorithm: the first a modification to Dietterich\u27s MAXQ-Q HRL algorithm, the second a hierarchical ACO algorithm. These implementations generate faster results, with little to no significant change in the quality of solutions for the tested problem domains. The application of ACO to the MAXQ-Q algorithm replaces the reinforcement learning, Q-learning and SARSA, with the modified ant colony optimization method, Ant-Q. This algorithm, MAXQ-AntQ, converges to solutions not significantly different from MAXQ-Q in 88% of the time. This research then transfers HRL techniques to the ACO domain and traveling salesman problem (TSP). To apply HRL to ACO, a hierarchy must be created for the TSP. A data clustering algorithm creates these subtasks, with an ACO algorithm to solve the individual and complete problems. This research tests two clustering algorithms, k-means and G-means. The results demonstrate the algorithm with data clustering produces solutions 85-95% faster but with 5-10% decrease in solution quality

    A Refinement-Based Heuristic Method for Decision Making in the Context of Ayo Game

    Get PDF
    Games of strategy, such as chess have served as a convenient test of skills at devising efficient search algorithms, formalizing knowledge, and bringing the power of computation to bear on “intractable” problems. Generally, minimax search has been the fundamental concept of obtaining solution to game problems. However, there are a number of limitations associated with using minimax search in order to offer solution to Ayo game. Among these limitations are: (i.) improper design of a suitable evaluator for moves before the moves are made, and (ii.) inability to select a correct move without assuming that players will play optimally. This study investigated the extent to which the knowledge of minimax search technique could be enhanced with a refinement-based heuristic method for playing Ayo game. This is complemented by the CDG (an end game strategy) for generating procedures such that only good moves are generated at any instance of playing Ayo game by taking cognizance of the opponent strategy of play. The study was motivated by the need to advance the African board game – Ayo – to see how it could be made to be played by humans across the globe, by creating both theoretical and product-oriented framework. This framework provides local Ayo game promotion initiatives in accordance with state-of-the-art practices in the global game playing domain. In order to accomplish this arduous task, both theoretical and empirical approaches were used. The theoretical approach reveals some mathematical properties of Ayo game with specific emphasis on the CDG as an end game strategy and means of obtaining the minimal and maximal CDG configurations. Similarly, a theoretical analysis of the minimax search was given and was enhanced with the Refinement-based heuristics. For the empirical approach, we simulated Ayo game playing on a digital viii computer and studied the behaviour of the various heuristic metrics used and compared the play strategies of the simulation with AWALE (the world known Ayo game playing standard software). Furthermore, empirical judgment was carried out on how experts play Ayo game as a means of evaluating the performance of the heuristics used to evolve the Ayo player in the simulation which gives room for statistical interpretation. This projects novel means of solving the problem of decision making in move selections in computer game playing of Ayo game. The study shows how an indigenous game like Ayo can generate integer sequence, and consequently obtain some self-replicating patterns that repeat themselves at different iterations. More importantly, the study gives an efficient and usable operation support tools in the prototype simulation of Ayo game playing that has improvement over Awal

    Foraging for foundations in decision neuroscience: insights from ethology

    Get PDF
    Modern decision neuroscience offers a powerful and broad account of human behaviour using computational techniques that link psychological and neuroscientific approaches to the ways that individuals can generate near-optimal choices in complex controlled environments. However, until recently, relatively little attention has been paid to the extent to which the structure of experimental environments relates to natural scenarios, and the survival problems that individuals have evolved to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches from the fields of ethology and behavioural ecology, which concentrate on the contextual and functional correlates of decisions made about foraging and escape and address these lacunae

    Efficient planning under uncertainty with macro-actions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 163-168).Planning in large, partially observable domains is challenging, especially when good performance requires considering situations far in the future. Existing planners typically construct a policy by performing fully conditional planning, where each future action is conditioned on a set of possible observations that could be obtained at every timestep. Unfortunately, fully-conditional planning can be computationally expensive, and state-of-the-art solvers are either limited in the size of problems that can be solved, or can only plan out to a limited horizon. We propose that for a large class of real-world, planning under uncertainty problems, it is necessary to perform far-lookahead decision-making, but unnecessary to construct policies that condition all actions on observations obtained at the previous timestep. Instead, these problems can be solved by performing semi conditional planning, where the constructed policy only conditions actions on observations at certain key points. Between these key points, the policy assumes that a macro-action - a temporally-extended, fixed length, open-loop action sequence, comprising a series of primitive actions, is executed. These macro-actions are evaluated within a forward-search framework, which only considers beliefs that are reachable from the agent's current belief under different actions and observations; a belief summarizes an agent's past history of actions and observations. Together, semi-conditional planning in a forward search manner restricts the policy space in exchange for conditional planning out to a longer-horizon. Two technical challenges have to be overcome in order to perform semi-conditional planning efficiently - how the macro-actions can be automatically generated, as well as how to efficiently incorporate the macro action into the forward search framework. We propose an algorithm which automatically constructs the macro-actions that are evaluated within a forward search planning framework, iteratively refining the macro actions as more computation time is made available for planning. In addition, we show that for a subset of problem domains, it is possible to analytically compute the distribution over posterior beliefs that result from a single macro-action. This ability to directly compute a distribution over posterior beliefs enables us to enjoy computational savings when performing macro-action forward search. Performance and computational analysis for the algorithms proposed in this thesis are presented, as well as simulation experiments that demonstrate superior performance relative to existing state-of-the-art solvers on large planning under uncertainty domains. We also demonstrate our planning under uncertainty algorithms on target-tracking applications for an actual autonomous helicopter, highlighting the practical potential for planning in real-world, long-horizon, partially observable domains.by Ruijie He.Ph.D
    • …
    corecore