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Abstract

Modern decision neuroscience offers a powerful and broad account of human behaviour using 

computational techniques that link psychological and neuroscientific approaches to the ways that 

individuals can generate near-optimal choices in complex controlled environments. However, until 

recently, relatively little attention has been paid to the extent to which the structure of experimental 

environments relates to natural scenarios, and the survival problems that individuals have evolved 

to solve. This situation not only risks leaving decision-theoretic accounts ungrounded but also 

makes various aspects of the solutions, such as hard-wired or Pavlovian policies, difficult to 

interpret in the natural world. Here, we suggest importing concepts, paradigms and approaches 

from the fields of ethology and behavioural ecology, which concentrate on the contextual and 

functional correlates of decisions made about foraging and escape and address these lacunae.

It begins to be difficult, and even in some cases impossible, to say where ethology 
stops and neurophysiology begins. Tinbergen, 1963

Ethology, the scientific study of animal behaviour under natural conditions, and its offspring, 

behavioural ecology, which studies how behaviour may vary adaptively in response to 

environmental variation, have provided valuable insights into animal decision-making in the 

natural world. The paradigms used by ethologists and behavioural ecologists examine 

decisions relating to the exploitation of resources and optimal foraging, the ways that 

predators can be avoided and deterred, the reduction of competition and the maximization of 
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reproductive success1. Such decisions are often complex because individuals need to balance 

energy costs with other survival needs; a central lesson from behavioural ecology is that 

trade-offs are ubiquitous. In addition, the computations that characterize these decisions are 

described in formal mathematical accounts — such as optimal escape theory2, foraging 

theories3 including the marginal value theorem (MVT)4, ideal free distribution (IFD) theory5 

and state-dependent valuation6 — using methods such as stochastic dynamic programming7. 

These theories fall into the global frameworks of Huxley, Mayr and Tinbergen (BOX 1), 

which seek to answer wider questions of the proximate (for example, physiological) and 

ultimate (for example, adaptive or Darwinian fitness-increasing) repercussions of an 

animal’s decisions.

By contrast, decision neuroscience has built accounts of the proximate causes of behaviour 

that tie optimizing theories such as dynamic programming and Bayesian decision theory to 

their psychological and neurobiological substrates. Such optimizing theories are shared with 

ethology and behavioural ecology, along with other fields such as economics, operations 

research and control theory. However, the bulk of the work in decision neuroscience focuses 

on building and understanding process models, such as models of inference (for example, 

diffusion-to-bound decision-making8, realized in neural substrates such as the parietal and 

prefrontal cortex9) and learning models (for example, rules based on prediction error, such 

as the Rescorla–Wagner rule10, or temporal-difference learning11, which is realized in 

substrates such as the phasic activity of dopamine neurons12). Data from a wealth of 

anatomical, pharmacological, neurophysiological, optogenetic and neuroimaging paradigms 

are regularly integrated in decision neuroscience.

Central features of most work in decision neuroscience are carefully controlled and 

structured environments that rigorously specify the costs and benefits of behaviours — that 

is, what needs to be optimized and under what constraints. This has led to many functional 

MRI (fMRI) studies making use of only a relatively modest collection of tasks that reflect 

aspects of the structural and functional implementation of choice. However, whether these 

tasks are ethologically credible and comprehensive is not always clear. These two questions 

are of particular importance given the influential observation in decision theory that 

completely optimal behaviour is uncommon because of its computational and mnestic 

complexity, implying that approximations must be ubiquitous. Such approximations are 

presumably tailored to work well in common and relevant environments at the expense of 

rare ones; thus, it is vital to consider problems that are ethologically well founded and thus 

functionally relevant.

In this Opinion article, we lay out a blueprint for a closer integration of ethological and 

behavioural ecological approaches with work on the neural basis of decision-making. The 

objective is to build biological realism into decision neuroscience with a focus on translating 

the extensive work that has been conducted on non-human animals to the study of humans. 

We concentrate on foraging, which is an early harbinger of this approach13–17. We consider 

three constraints on foraging that are of interest for human decision neuroscience: first, 

energy-based decisions in which metabolic needs, including energy consumption and 

fuelling, need to be balanced; second, competitive foraging; and, third, foraging under the 

risk of predation, when the requirement is to be strategic about averting threats and 
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facilitating the possibility of escape. Along with these examples, we discuss formal tools 

developed by behavioural ecologists to examine various decisions that are made by animals. 

Taken together, these constraints and tools provide new insights and help integrate human 

decision-making into the guiding frameworks (BOX 1). Indeed, we note that this form of 

integration is already becoming popular in comparative neuroscience13,18,19.

Decision neuroscience

Human decision neuroscience has drawn upon a set of experimental decision paradigms 

from the fields of economics and psychology. These approaches have been highly successful 

because they carefully control the variables of interest and constrain computational models 

that fit the data. One stalwart of human decision neuroscience is the bandit modelling 

approach, which involves binary (or multiple) choice static or restless ‘bandits’ that deliver 

rewards and punishments. This approach is used to measure value-based and explore-or-

exploit decision processes20. Other paradigms have been used to measure other aspects of 

the decision processes, including working memory (for example, the AX-continuous 

performance task21), sequential information integration and diffusion-to-bound decision-

making (for example, motion discrimination using random dot kinematograms9), 

retrospective and prospective planning (for example, the two-step task22), social decision-

making (for example, trust games23) and intertemporal choice24,25. This relatively limited in 

number set of paradigms, together with their offshoots, has provided us with our current set 

of potentially oversimplified tests of how the brain computes decisions. Crucially, most 

realizations of the aforementioned paradigms leave substantial gaps in our understanding of 

the ways that decisions are made in the real world, or indeed of solutions to “The problems 

that the brain evolved to solve” (REF.26).

More broadly, ecologically important, fitness-determining decisions relate to core problems 

that all animals face. These decisions include rules underlying fighting, foraging, fleeing and 

reproduction. Such rules are under strong selection pressures and probably underpin all 

decision processes26. Although it is widely understood that the brain contains a set of 

heuristic mechanisms that evolved to make fast and accurate decisions with as little effort as 

possible, there has been less work in decision neuroscience paying due heed to the selection 

pressures or the bounds on their use (when one task paradigm transitions to another). 

Ethologically inspired theorists have begun to consider the evolutionary roots of human 

decision-making to explain how we systematically deviate from rational-choice models27 

and the extent to which these biases are uniquely human. However, such ethological thinking 

remains rather rare in human decision neuroscience, which, in most cases, has yet to 

embrace fully the synthesis that ethological and behavioural ecological approaches offer 

between theory, mathematical modelling and natural observation.

Some contemporary researchers have started to exploit ethological insights when designing 

and interpreting more conventional decision-making problems. For instance, binary decision 

tasks are being adapted to address foraging concerns such as the average value of the 

environment or the cost of changing choices14–17. Equally, impulsivity, in the form of a 

preference for smaller rewards sooner rather than larger ones later, can be studied in the light 

of changing natural environments or threats27. In particular, because it may be 
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computationally difficult to make the right decisions, adopting an ethological perspective 

will tell us the types of environment to which the necessary heuristics will have been 

tailored28. Here, we argue that a more comprehensive synthesis of the two traditions, 

marrying the approaches used by decision neuroscientists (but see REF.29) with the 

naturalistic importance of ethology and behavioural ecology, is an important but, as yet, 

incompletely realized goal. We also offer some prospects for the future.

Foraging

Behavioural ecologists and ethologists have used value-based decision-making to study 

foraging decisions and the management of food resources (and of other contributors to 

homeostatic well-being), raising at least two sets of unanswered questions in human decision 

neuroscience. One of these sets concerns the external environment: the spatiotemporal 

arrangement of different sorts of resources; the explorative, energetic and other costs 

required to find and extract them; and the risk of predation while doing so. There have been 

numerous studies focusing on how variation in the foraging environment and temporal 

variation in predation risk influence decisions30,31. The second set of questions concerns the 

subjects themselves — notably state dependence, which arises from the frequent propinquity 

of catastrophic boundaries whereby animals run out of reserves and starve to death32. This 

scenario creates an inevitable trade-off between dying from lack of resources and death from 

predation6,30,31,33.

Behavioural neuroscientists such as LeDoux34 have also proposed that energy management 

exerts a critical influence over survival-based decision-making. Indeed, adaptive behaviour 

system theory outlines how foraging may be triggered by neural systems that monitor energy 

reserves (for example, fat)35. This theory is proposed to result in animals attempting to 

maximize net energy intake rate (a proposal we qualify later) by measuring various key 

quantities: the average success in acquiring prey, the cost of time travel between foraging 

patches and the time since the last capture of the prey. A related model characterizing the 

optimal diet also includes consideration of the energy or caloric value of the prey, the time 

that is required to prepare and consume it and its ease of discovery3.

Net rate maximization.

If we temporarily ignore predation risk and state dependence, then the obvious approach to 

understanding foraging is provided by the principle of rate maximization, which optimizes 

the difference between the benefits and the costs per unit time. In this context, the elements 

influencing decisions include energy, various forms of opportunity costs and time. Rate 

maximization has ramifications for what food type to choose (and how to handle it) and the 

choice of a foraging location. Given a choice between different food types, an individual 

should choose the one with the most energy (if everything else is equal; for example, see 

REF.36) and, when the energy content of the food options is equal, they should choose the 

option that requires the least energy to acquire it, taking time into appropriate account. For 

example, classic work with starlings has shown that they attempt to maximize the rate of net 

energy gain for themselves as well as their (energetically expensive) begging offspring when 

hunting for leatherjackets37; it is also known that gulls and crows modify the heights at 
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which they drop crabs and walnuts, respectively, to minimize energetic costs and avoid 

kleptoparasitism38.

In decision neuroscience, there are a wealth of experiments manipulating the amount of 

work that subjects have to do to get outcomes, showing, for instance, a complex and crucial 

role for dopamine in overcoming subjective effort costs39. It has been suggested that the 

dorsal anterior cingulate cortex (dACC) is involved in the cost–benefit analysis of control-

demanding situations and that it is engaged in energizing behaviour40. This proposed 

function would account for the dACC’s entanglement in decisions associated with energy 

consumption. Indeed, human imaging work has begun to examine the role of physical41 and 

cognitive42 effort in decision-making processes. Several groups have shown that anticipation 

of high-effort investment is associated with activity in the dACC43,44. Supporting these 

claims, comparative research has shown that when the dACC region is damaged, it impairs 

effort-based decisions45,46. In the healthy human brain, such impairments in decision-

making are often mitigated by a set of systems that increase vigour when the payoff is 

high41, yet persistent effort can result in decision impairments47.

Together, these ethologically inspired studies are consistent with human lesion studies 

showing that damage to the dACC can result in impairments in motivation, whereas 

electrical stimulation of this region elicits perseverance and vigour48. Foraging tasks show 

that anticipation and exertion of effort are key components of representation, valuation and 

action selection. These components will allow us to probe the dACC and its functional role 

further; this can be done by testing for the effects of how depleting resources, time and effort 

influence engagement of this region. A different sort of potential cost comes from the 

possibility of predation. We discuss aspects of this later in the article.

The marginal value theorem.

Another important issue for rate maximization concerns a property of many environments — 

that is, resources deplete over time as they are exploited. The MVT identifies an optimal 

foraging strategy in this context4,49. Consider a notional apple-picking task (FIG. 1). When 

an agent reaches a new apple tree, the number of apples that can be acquired every minute is 

high; however, over time, this depletes as the easy-to-pick, low-hanging fruits become 

scarce. The agent must repeatedly choose between two options: remaining at the same tree 

and trying to obtain more apples or spending time (and/or energy) travelling to another tree 

with its own low-hanging fruits. The MVT calculates the policy that maximizes the rate of 

energy intake using these two options and includes an opportunity cost for the passage of 

time to help make the comparison. The MVT is an important theory because it extends 

classic cost–benefit behavioural economic tools and makes testable predictions about the 

effect on this choice of the time needed to transit between patches and the dynamics of 

resource depletion.

Of course, it is possible to mimic MVT-relevant conditions in controlled studies on humans 

(for examples, see refs50,51). For instance, in one study, the authors designed a version of the 

apple-picking task mentioned above and administered it to humans16. They analysed leaving 

decisions by comparing the classic MVT with temporal-difference learning models, which 

focus on the learning of values for different options. The authors performed two ‘apple-tree-
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picking’ experiments in which they varied opportunity cost across blocks, thereby making 

the subject adjust their behaviour to the changing profitabilities in their environment (FIG. 

1). By comparing the predictions made by MVT and temporal-difference learning, they 

found that the MVT was a better model when subjects adjusted their decisions on the basis 

of environmental profitability. This study16 and another investigation15 were among the first 

to compare models used in decision neuroscience directly with those used in ethology and 

behavioural ecology, and they show how these models may be fruitfully adopted for use in 

human decision-making studies.

Given the popularity of MVT in ethology, it is perhaps surprising that it has very rarely been 

used in neurophysiological experiments. One important exception is a study of the neural 

basis of MVT in non-human primates (Macaca mulatta)13. In this investigation, monkeys 

were presented with two options, with one being a stay option in which individuals were 

given juice at a specific patch. With time, the amount of juice would reduce, thereby leading 

to less and less reward. The other option was to leave, which provided no reward and a 

delay. However, once an individual switched, the juice would be replenished. Therefore, 

monkeys had to balance the trade-off of the immediate reward against the long-term benefits 

of switching to a new patch.

The results showed that monkeys made near-optimal decisions in all experimental 

conditions, leading the authors to conclude that the context of foraging reduces biases in 

time preferences, a finding that is inconsistent with classic intertemporal choice findings13. 

While individuals performed the task, the authors also recorded neuronal activity in the 

dACC. The dACC was chosen because, as discussed above, it is a region that is thought to 

integrate reward and cost signals with action selection. The results showed that as the patch 

gradually depleted in juice, neurons in the dACC would increase their firing rates to the 

point where, at a specific threshold, monkeys would switch patches. The dACC neuronal 

signals rose more slowly when the travel time increased, suggesting that multiple control 

signals work in harmony to regulate patch leaving. This finding supports a large body of 

work from the field of behavioural ecology. For example, one study showed both 

experimentally and theoretically that myopic ‘short-term’ rules can be favoured over feeding 

because they have adaptive ‘long-term’ consequences52.

Recent work suggests that the MVT foraging framework can be generalized to intangible 

resources beyond money and other primary-value domains that are central to traditional 

decision-making research. Indeed, one study used foraging models to examine how humans 

allocate limited attention53, and in a different study, the MVT framework was applied to 

rhesus macaques’ quests for social information54. The latter involved an environment in 

which social information (pictures of other monkeys) was available for up to a fixed time 

following a choice (in an abstraction of a ‘patch’). However, having looked at a picture, the 

subjects had to wait until a waiting time had elapsed before making another choice 

(abstracting the travel cost between patches). Monkeys duly spent more time ‘foraging’ for 

social information when the travel cost was greater54. Equally, in a study of the recall of 

items from semantic memory by humans, individuals generated a whole collection of 

answers from one set of overlapping subcategories (the informational equivalent of a patch) 
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and then moved to another set as recall of items in the first one ‘dried up’. The choice of 

when to switch was consistent with MVT-like processes55.

Exploration versus exploitation in foraging.

The analysis in the MVT is based on a simplifying assumption about the regularity of 

finding a new patch (or tree). In a study on humans, the authors15 designed a task that made 

the trade-off between exploration (search) and exploitation (encounter) more explicit, as in 

an optimal diet model56. They used simple binary decision-making tasks in which 

participants were presented with two stimuli that represented the encounter values; above 

these two stimuli, there were six additional shapes that represented the ‘search value’, drawn 

from a set of 12 objects that the subjects had learned about on a previous session. Each 

individual’s goal was to decide whether to engage with (and ultimately to choose between) 

the encounter options or search for an alternative. Searching resulted in a cost (or loss of 

money); note further that, unlike our previous discussion of exploration, searching did not 

result in the acquisition of information that could be useful over the long run and instead 

merely led to a potentially better alternative. The results showed that the dACC encoded 

both the average value of the foraging environment and the costs of foraging. Furthermore, 

the authors integrated their results with those from REF.13 and proposed that the dACC is 

also involved in searching for alternatives, whereas the ventromedial prefrontal cortex 

(vmPFC) is involved in well-defined ‘economic’ values of options (but see the subsequent 

debate elewhere57,58).

State dependence.

Despite the power of rate maximization in explaining some foraging choices, it does not 

address certain important factors. In particular, when reserves are tight and homeostatic 

challenges become critical, the variance of outcomes is important3. Subjects can become 

more risk-seeking in terms of patch choice and predation risk30. With a few important 

exceptions (for examples, see refs59,60), most behavioural neuroscience decision-making 

studies have taken the view, typically implicitly, that individuals are not constrained by 

energy or homeostatic challenges. Indeed, it is rare for subjects even to be able to run out of 

experimentally provided money. Given the ubiquity of energetic constraints in nature, this 

seems an unfortunate assumption when the brain may often process the acquisition of money 

(an exogenous resource) in a similar manner to the acquisition of food resources (that is, 

primary reinforcers that influence one’s endogenous abilities61,62). Furthermore, research 

shows that social rewards also modulate activity in overlapping rewards circuits63. Perhaps 

some of the debates about neural structures such as the dACC, the involvement of which in 

conventional decision-theoretic tasks is complex and confusing57, might be resolved by 

adopting a more naturalistic stance in which crucial resources are limiting.

Competitive foraging

When the best choice by (and payoff to) one individual is influenced by the actions of 

another, the appropriate modelling framework is game theory64,65. In nature, the context of 

such decisions may occur when making territorial decisions to avoid despotic (for example, 

dominant) individuals, or when studying parasitic behaviours as captured in the producer–
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scrounger game model66. One goal of game theory, particularly when it is applied to non-

human animals, is to predict behaviours that, in conjunction with one another type of 

behaviour, are evolutionarily stable strategies (a particular type of Nash equilibrium67).

Ideal free distribution.

One useful concept is captured by the theory of IFD, which proposes that foragers 

geographically distribute themselves in relation to the proportion of food available and to the 

density of competition5. The IFD assumes that the forager has perfect information about 

patch quality and the density of competition (the ideal aspect of IFD) and can move freely 

among patches without time delay (the free aspect of IFD). In a very simple form, this 

distribution is expressed by the input-matching rule in which, if habitat A contains more 

food and less competition than habitat B, habitat A will be the preferred location. Although 

despotic distributions have also been modelled (for example, dominance and territoriality), 

theorists have suggested that the input-matching rule is an evolutionarily stable strategy67, 

and pioneering work from behavioural ecology has shown it to be pervasive across various 

species from invertebrates to humans5,68.

One notable study relating to the IFD examined foraging behaviours in mallard ducks (Anas 
platyrhynchos)69 — specifically, how mallards distributed themselves when researchers 

dropped bread into a lake at fixed locations approximately 20 m apart. This approach 

mimicked a patch foraging task, and the researcher could keep track of the movement of the 

mallards while altering the amount of bread being dropped on either side of the lake. The 

study showed that mallards generally followed the assumptions of the IFD, but it also found 

that some individuals exhibited despotic behaviour (dominance), resulting in some mallards 

receiving unequal amounts of food. These findings suggest that the behaviour of these birds 

depends on two types of information: the supply rate in each patch and the competitive value 

of the other birds69.

In one application of the IFD in decision neuroscience, fMRI was used to examine the 

human brain during the sort of competitive foraging that underlies the IFD14. The authors 

created a foraging task in which the available reward and competition varied across two 

patches. The competition was manipulated by telling the participants that they were 

performing the task live online with real competitors (represented as red dots), allowing the 

experimenters to manipulate the number of competitors in each patch. The subject’s goal 

was to acquire as many tokens as possible by pressing a response key as soon as a token 

appeared, before any of their competitors. They could switch between two habitats to 

minimize competition and compete for tokens in the patch with the highest supply rate. At a 

small cost of time, subjects could switch patches as the rewards and competition increased 

or decreased in each patch. The increased drive to switch patches resulted in increased 

activity in several regions, including the dACC, the supplementary motor area and the 

insula; the authors speculated that all three regions might be involved in the urge to switch 

habitats. By contrast, staying put in an advantageous habitat was associated with activity in 

the reward-related areas — namely, the striatum and medial prefrontal cortex. Moreover, the 

level of amygdala activity steered individual preferences in competition avoidance (for 

example, high amygdala activity was associated with high levels of avoidance). This study 
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suggests that input-matching decisions are made through the medium of a distributed set of 

neural circuits.

Foraging under predation risk

Behavioural ecologists have shown the importance of predation risk in understanding 

foraging decisions3,70. The near-ubiquitous importance of predation risk suggests a 

deficiency in decision-making paradigms that ignore it. An early example examined how 

risk of predation affected rate maximization in grey squirrels (Sciurus carolinensis)71. Like 

other animals, squirrels leave their safety refuge to reach food patches, a phenomenon 

referred to as central-place foraging72. Once a squirrel reaches the food patch, it must make 

a decision to eat in the patch or to use the energy to take the food back to the safety of its 

refuge. Going back to the refuge makes sense only if there is a cost to staying in the food 

patch (for example, predation risk). Empirical observations confirm the predictions of 

mathematical models as to what happens: the squirrels acquire more food if it is close and 

therefore can be taken back to the refuge cheaply. Similar trade-offs affect the portion sizes 

they pick. Together, these behaviours reduce the chance of being eaten by a predator.

Common currency.

To understand, at a functional level, how decisions should trade off different benefits (or 

risks), such as the worth of foraging, versus avoiding predation risk or attempting to court a 

mate, a common currency is required73. By comparing the expected future reproductive 

success of an individual (often referred to as ‘reproductive value’ (REF.74)) under different 

strategies, the choice that maximizes reproductive value can be identified as the normative 

expectation under natural selection. How the value of decisions alters with environmental 

conditions and an individual’s internal state has been studied extensively from a theoretical 

perspective29,75. We suggest that these ethologically inspired insights about optimal 

behaviour can help to ground expectations about conditions under which particular trade-off 

paradigms should come into play under the guiding principle that mental processes are likely 

to produce outcomes that approximate the behaviours that maximize the reproductive value. 

Consequently, this approach may help to define and understand the boundaries of particular 

experimental paradigms and to understand the apparent ‘boundaries’ (or framing effects) of 

different mental processes. As a very simple example, if an individual is close to starvation, 

then their reproductive value will approach zero if they do not soon find food. Therefore, the 

normative perspective suggests that their mental processes should take relatively less 

account of predation risk when their reserves are low.

Escape theory.

Ydenberg and Dill76 theorized that when a predator approaches, prey make economic 

decisions in terms of the cost–benefit ratio of remaining compared with fleeing. Studies of 

flight initiation distance in hundreds of species of birds, mammals, lizards and other taxa 

have shown that prey are remarkably adept at escape, making decisions on the basis of prior 

experience with the predator and the predator’s relative position and bearing, lethality and 

velocity2,77. This well-understood natural paradigm offers substantial opportunities for 

decision neuroscience (FIG. 2).
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Flight initiation distance and the neural basis of escape.

In humans, fMRI has been employed during ‘active escape’ paradigms in which the goal 

was to escape from a virtual predator that possessed the capacity to chase, capture and shock 

the participant. In this experiment, the vmPFC was preferentially active when the virtual 

predator was distant, but this activity switched to the midbrain periaqueductal grey (PAG) as 

the threat moved closer78. This finding was replicated79 and extended by showing that 

panic-related motor errors correlated with activity in the midbrain encompassing the PAG 

and the dorsal raphe nucleus80. Other researchers have shown that evading virtual predators 

is also associated with greater connectivity between the amygdala, the anterior cingulate 

cortex and the vmPFC81, and that the hippocampus is activated when individuals engage in 

threat engagement, a finding supported by investigations of patients with hippocampal82 or 

amygdala lesions83 as well as animal and theoretical models79,84–87. Together, these findings 

support a network of survival circuits that are involved in ecologically defined threats.

More recently, a flight initiation distance task was developed to investigate how survival 

circuits facilitate escape decisions when subjects encounter fast-attacking or slow-attacking 

threats88. Fast-attacking predators were characterized by the virtual predator quickly 

switching from a slow-approach to a fast-attack velocity, thereby requiring the subject to 

make quick escape decisions. By contrast, slow-attacking predators slowly approached for 

longer time periods, resulting in larger buffer zones and more time to strategize escape. 

When subjects were faced with quick decisions to flee virtual predators with far attack 

distances, regions associated with reactive fear including the midbrain PAG and 

midcingulate cortex (MCC) were activated. Conversely, the close-attacking virtual predators 

with larger buffer zones elicited the activation of brain regions that are presumed to be 

involved in cognitive fear and strategic planning, including the vmPFC, hippocampus, 

posterior cingulate cortex and retrosplenial cortex. The authors then investigated how close 

each subject was to adopting the optimal escape strategy by applying a Bayesian decision-

theory model. The model revealed the MCC as a candidate region for optimal escape from 

fast-attacking predators, consistent with the known role for this area in adaptive motor 

learning89. Hippocampal activity was associated with optimal escape from slower-attacking 

threats, supporting a role for this region in escape only when the subject is not under time 

pressure. This study provides one example of how models from the field of ethology and 

behavioural ecology can be applied to decision neuroscience and demonstrates a previously 

unknown link between defensive survival circuits and their role in adaptive escape decisions.

Future directions

The development of a new decision neuroscience framework that is based on ethology and 

behavioural ecology provides a new set of paradigms that can be adapted to understand 

(human) decision-making. Such a framework links the guiding frameworks of evolutionary 

biology (BOX 1) with the formal tools used by ethologists and behavioural ecologists (FIG. 

2). Moreover, it specifies experimental protocols and mathematical models that characterize 

the mechanistic and dynamic signals that support moment-to-moment decisions and 

highlights the role of state dependence in decision-making. Furthermore, it provides 
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information about the environments in which priors and heuristics, which are necessary to 

cope with the complexity of natural decision-making tasks, evolved and developed.

Neuroscience has made considerable progress in identifying the function of particular brain 

regions in relation to particular tasks and, in some cases, generalization across tasks (for 

example, reward functions of the basal ganglia90). Arguably, the next challenge is to 

understand the effect of trade-offs across tasks — how a particular mechanism is adapted for 

use on multiple tasks (thus being suboptimal on any one) and the more immediately 

tractable question of how coordination and control take place among different functions and 

the brain regions that support them (for example, in the case of self-control91–93). 

Behavioural ecology may be particularly helpful in identifying relevant trade-off situations.

This more biologically relevant framework, along with evolutionary approaches to 

medicine94, also sits well with the Research Domain Criteria (RDoC) framework advocated 

by the US National Institute of Mental Health, which aims to integrate disparate levels of 

information and provide a more foundational understanding of the neural and psychological 

dimensions that underpin healthy and abnormal brain function95. Homologous studies in 

humans can create dynamic virtual ecologies that provide new dimensions to investigate 

adaptive and affective decision-making in healthy humans and across a broad range of 

psychiatric disorders. For example, a recent study showed that subjects who gambled more 

showed increased exploration on an explore–exploit foraging task and earned less money on 

a patchy foraging task96,97. Moreover, other researchers have linked foraging behaviour to 

depression98. Shifts in neural activity that are associated with changing proximity to threat 

allow researchers to examine the dynamic relationship between anxiety and fear circuits in 

individuals with affective disorders. Studies are also possible into how decisions associated 

with effort are impaired in mood disorders such as depression, in which lethargy and fatigue 

are rampant99.

Finally, the approach we advocate is not a one-way street: it can be reciprocally illuminating. 

Ethological thinking by decision neuroscientists will in turn have an impact on ethologists 

and behavioural ecologists. The key issues of ethology are often based around ‘why’ 

questions; as Stephens and Krebs point out, “Asking what a machine is for helps the 

engineer understand how it works” (REF.31). Conversely, understanding relevant brain 

mechanisms might help ethologists understand what specific condition the mechanisms 

evolved for and will certainly help identify important constraints on information processing. 

There is evidence that decision science is having an impact on ethology, including the use of 

classic paradigms from behavioural economics such as risk aversion, delayed discounting 

and framing effect paradigms100–102. The question of the calculational complexity of 

decision-making, which informs much thinking about process models and heuristics28,103 in 

decision neuroscience, could offer relevant constraints for ethological paradigms. Following 

on from Tinbergen’s work, which identified different classes of biological questions (BOX 

1), McNamara and Houston29 have pushed for us to understand how function and 

mechanism have co-evolved; such ‘evo-mecho’ approaches are necessary for a 

comprehensive understanding of decision-making because it is not tenable to consider the 

evolution of just function or mechanism and to pretend that the other remained fixed. 

Gaining a deeper understanding of cognitive processes can help enable this integration and, 
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in turn, benefit the fields of ‘cognitive ecology’ (REF.104) and the study of social 

behaviour105,106.

Concluding remarks

Like Mayr and Huxley, Tinbergen107 suggested that we must take a multilevel approach to 

scientific questions in biology, writing, “If we do not continue to give thought to the problem 

of our overall aims, our field [ethology] will be in danger of becoming an isolated ‘ism’”. 

Likewise, Marr and Poggio opined that “Complex systems, like a nervous system … must be 

analysed and understood at several different levels” (REF.108). Although decision 

neuroscience largely abides by Marr and Poggio’s framework, we suggest that it is in some 

danger of isolating itself by, as Tinbergen put it, “Losing touch with the natural phenomena” 

(REF.107). We have attempted to address this problem by discussing three examples from the 

foraging literature that are central to studying decision-making in the natural environment 

and that bring together disparate fields to generate a multilevel approach to human decision-

making.

A small, but growing, band of researchers are adopting new approaches to task design and 

analysis that are inspired by ethology and behavioural ecology. These approaches have given 

rise to new information about how the brain computes decisions under various conditions. A 

more critical outcome of these approaches is that they move the laboratory closer to 

nature109, thereby allowing better understanding and prediction of how we make decisions 

in the real world. Crucially, the functional approach of ethology (and behavioural ecology) 

identifies fitness trade-offs that help us to understand how one set of approximately optimal 

rules (such as rate maximization when foraging) can, under different circumstances, conflict 

with rules that are approximately optimal in another task (such as predator avoidance). By 

understanding such trade-offs, we may better understand how to design neuroscientific 

studies to identify the (bounds on) conditional use of particular neural structures. Adopting 

this framework will thus enhance our understanding of natural diversity and likely improve 

applications for human health and well-being.
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Box 1 |

The overlapping frameworks of Huxley, Tinbergen, Mayr and Marr

It has long been recognized that there are two fundamentally different classes of 

questions that biologists can ask: why a behaviour or neural structure takes the form it 

does and how this comes to happen, with subtle and complex nuances within each class. 

Many different authors in cognitive science18,108 and ethology107,110,111 have proposed 

versions of these questions. One of the first to offer guidelines for biobehavioural 

questioning was Julian Huxley, who proposed that one should attempt to address three 

issues. First, what are the behavioural and neurobiological mechanisms that facilitate 

ecological decision-making (the mechanistic-physiological question)? second, what is the 

functional or survival value of such decisions (the adaptive-function question)? Last, 

what is the evolutionary course of the physiology or behaviour that, for example, supports 

decision-making processes (the historic (palaeontological) question)? these three 

questions were extended and further refined by tinbergen107, who proposed that 

biologists should also answer questions of the ontogeny of the behaviour and biology 

(how does decision-making change over an individual’s lifespan?). Mayr combined these 

four questions to form two core questions. First, what are the proximate causes of the 

behaviour (short-term factors such as physiological mechanisms or development during a 

lifetime)? second, what are the ultimate causes of the behavior (long-term functional 

trade-offs in terms of natural selection or how phylogeny has developed as a series of 

small changes over ‘evolutionary time’)110?

Perhaps the most influential framework in decision neuroscience is that of Marr, which 

focuses particularly on information processing and the different levels at which such 

processing can be viewed. His computational level of investigation has a rough parallel 

with the adaptive-function question — except with a focus on the information processing 

aspects of the task and the logic of the (computational) strategy used to solve a problem. 

Marr then split the mechanistic-physiological question into two separate algorithmic and 

implementational levels of investigation that aim to answer questions concerning how 

problems are solved. there are, in principle, many algorithms that can realize a particular 

computation and many implementations in computational (biophysical) hardware that can 

run any particular algorithm. Biologists are typically aiming to understand the particular 

implementation at hand and therefore lack such freedom. there are various Marrian 

approaches to aspects of ontogeny112, although this framework does not appear to have 

been used to characterize evolutionary change (see REF.18 for a detailed discussion of the 

relationship between the theories of Huxley, tinbergen, Mayr and Marr). the figure shows 

how the questions of Huxley, tinbergen, Mayr and Marr map onto each other. 
aHypothesized levels of Marr’s theory as they apply to tinbergen’s theory.

Mobbs et al. Page 18

Nat Rev Neurosci. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mobbs et al. Page 19

Nat Rev Neurosci. Author manuscript; available in PMC 2019 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Example of classic apple-picking task.
Subjects forage in an unlimited orchard and have to decide whether to continue picking from 

their current tree or to switch to another one to maximize their harvest16. Switching is 

associated with a time penalty; however, if the subject decides to stay and pick apples from 

the tree, the rate of return will decrease. Thus, at some point, the subject should switch to a 

new tree. To maximize the long-term harvest rate of apples, the subject repeatedly decides 

between choosing to stay at a tree and switching to a new one.
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Fig. 2 |. Example of foraging and escape choice, and the cost-of-fleeing and cost-of-staying 
curves.
a | The solitary prey (for example, a zebra) must make a decision about whether to flee to 

safety when a predator is approaching (for example, a lion). The flight initiation distance 

(FID) is the measurable distance at which the prey makes the decision to flee from an 

approaching threat2. The FID is influenced by several factors, including the degree of threat 

posed by the predator (for example, whether it is a fast-moving or slow-moving predator) 

and the value of its current location (for example, there is an abundance of food or mates). b 
| The schematic represents the cost of fleeing versus remaining and is based on the model 

proposed by Ydenberg and Dill76. As the distance between the prey and the predator 

decreases, the cost of fleeing decreases (red line), whereas the cost of not fleeing increases 

(blue line). d* represents the optimal distance between the prey and the predator at which the 

prey should flee. c | In situations in which there are multiple benefits of remaining at a 

particular patch but a single cost of fleeing, d* is longer for the higher of the two cost-of-

not-fleeing curves. d | Conversely, d* is longer for the lower of the two cost-of-fleeing 

curves when there is a single cost-of-not-fleeing curve2. d*CH, high cost; d*CL, low cost; 

d*NH, not fleeing, high cost; d*NL, not fleeing, low cost. Adapted with permission from 

REF.2,Cambridge University Press.
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