5,720 research outputs found

    Next-Generation EU DataGrid Data Management Services

    Full text link
    We describe the architecture and initial implementation of the next-generation of Grid Data Management Middleware in the EU DataGrid (EDG) project. The new architecture stems out of our experience and the users requirements gathered during the two years of running our initial set of Grid Data Management Services. All of our new services are based on the Web Service technology paradigm, very much in line with the emerging Open Grid Services Architecture (OGSA). We have modularized our components and invested a great amount of effort towards a secure, extensible and robust service, starting from the design but also using a streamlined build and testing framework. Our service components are: Replica Location Service, Replica Metadata Service, Replica Optimization Service, Replica Subscription and high-level replica management. The service security infrastructure is fully GSI-enabled, hence compatible with the existing Globus Toolkit 2-based services; moreover, it allows for fine-grained authorization mechanisms that can be adjusted depending on the service semantics.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla,Ca, USA, March 2003 8 pages, LaTeX, the file contains all LaTeX sources - figures are in the directory "figures

    Replica Selection in the Globus Data Grid

    Get PDF
    The Globus Data Grid architecture provides a scalable infrastructure for the management of storage resources and data that are distributed across Grid environments. These services are designed to support a variety of scientific applications, ranging from high-energy physics to computational genomics, that require access to large amounts of data (terabytes or even petabytes) with varied quality of service requirements. By layering on a set of core services, such as data transport, security, and replica cataloging, one can construct various higher-level services. In this paper, we discuss the design and implementation of a high-level replica selection service that uses information regarding replica location and user preferences to guide selection from among storage replica alternatives. We first present a basic replica selection service design, then show how dynamic information collected using Globus information service capabilities concerning storage system properties can help improve and optimize the selection process. We demonstrate the use of Condor's ClassAds resource description and matchmaking mechanism as an efficient tool for representing and matching storage resource capabilities and policies against application requirements.Comment: 8 pages, 6 figure

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    High Energy Physics Forum for Computational Excellence: Working Group Reports (I. Applications Software II. Software Libraries and Tools III. Systems)

    Full text link
    Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3) Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.Comment: 72 page

    Critique of Architectures for Long-Term Digital Preservation

    Get PDF
    Evolving technology and fading human memory threaten the long-term intelligibility of many kinds of documents. Furthermore, some records are susceptible to improper alterations that make them untrustworthy. Trusted Digital Repositories (TDRs) and Trustworthy Digital Objects (TDOs) seem to be the only broadly applicable digital preservation methodologies proposed. We argue that the TDR approach has shortfalls as a method for long-term digital preservation of sensitive information. Comparison of TDR and TDO methodologies suggests differentiating near-term preservation measures from what is needed for the long term. TDO methodology addresses these needs, providing for making digital documents durably intelligible. It uses EDP standards for a few file formats and XML structures for text documents. For other information formats, intelligibility is assured by using a virtual computer. To protect sensitive information—content whose inappropriate alteration might mislead its readers, the integrity and authenticity of each TDO is made testable by embedded public-key cryptographic message digests and signatures. Key authenticity is protected recursively in a social hierarchy. The proper focus for long-term preservation technology is signed packages that each combine a record collection with its metadata and that also bind context—Trustworthy Digital Objects.

    Hierarchical progressive surveys. Multi-resolution HEALPix data structures for astronomical images, catalogues, and 3-dimensional data cubes

    Full text link
    Scientific exploitation of the ever increasing volumes of astronomical data requires efficient and practical methods for data access, visualisation, and analysis. Hierarchical sky tessellation techniques enable a multi-resolution approach to organising data on angular scales from the full sky down to the individual image pixels. Aims. We aim to show that the Hierarchical progressive survey (HiPS) scheme for describing astronomical images, source catalogues, and three-dimensional data cubes is a practical solution to managing large volumes of heterogeneous data and that it enables a new level of scientific interoperability across large collections of data of these different data types. Methods. HiPS uses the HEALPix tessellation of the sphere to define a hierarchical tile and pixel structure to describe and organise astronomical data. HiPS is designed to conserve the scientific properties of the data alongside both visualisation considerations and emphasis on the ease of implementation. We describe the development of HiPS to manage a large number of diverse image surveys, as well as the extension of hierarchical image systems to cube and catalogue data. We demonstrate the interoperability of HiPS and Multi-Order Coverage (MOC) maps and highlight the HiPS mechanism to provide links to the original data. Results. Hierarchical progressive surveys have been generated by various data centres and groups for ~200 data collections including many wide area sky surveys, and archives of pointed observations. These can be accessed and visualised in Aladin, Aladin Lite, and other applications. HiPS provides a basis for further innovations in the use of hierarchical data structures to facilitate the description and statistical analysis of large astronomical data sets.Comment: 21 pages, 6 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore