3,286 research outputs found

    A class of second-order geometric quasilinear hyperbolic PDEs and their application in imaging science

    Get PDF
    In this paper, we study damped second-order dynamics, which are quasilinear hyperbolic partial differential equations (PDEs). This is inspired by the recent development of second-order damping systems for accelerating energy decay of gradient flows. We concentrate on two equations: one is a damped second-order total variation flow, which is primarily motivated by the application of image denoising; the other is a damped second-order mean curvature flow for level sets of scalar functions, which is related to a non-convex variational model capable of correcting displacement errors in image data (e.g. dejittering). For the former equation, we prove the existence and uniqueness of the solution. For the latter, we draw a connection between the equation and some second-order geometric PDEs evolving the hypersurfaces which are described by level sets of scalar functions, and show the existence and uniqueness of the solution for a regularized version of the equation. The latter is used in our algorithmic development. A general algorithm for numerical discretization of the two nonlinear PDEs is proposed and analyzed. Its efficiency is demonstrated by various numerical examples, where simulations on the behavior of solutions of the new equations and comparisons with first-order flows are also documented

    A numerical comparison between degenerate parabolic and quasilinear hyperbolic models of cell movements under chemotaxis

    Full text link
    We consider two models which were both designed to describe the movement of eukaryotic cells responding to chemical signals. Besides a common standard parabolic equation for the diffusion of a chemoattractant, like chemokines or growth factors, the two models differ for the equations describing the movement of cells. The first model is based on a quasilinear hyperbolic system with damping, the other one on a degenerate parabolic equation. The two models have the same stationary solutions, which may contain some regions with vacuum. We first explain in details how to discretize the quasilinear hyperbolic system through an upwinding technique, which uses an adapted reconstruction, which is able to deal with the transitions to vacuum. Then we concentrate on the analysis of asymptotic preserving properties of the scheme towards a discretization of the parabolic equation, obtained in the large time and large damping limit, in order to present a numerical comparison between the asymptotic behavior of these two models. Finally we perform an accurate numerical comparison of the two models in the time asymptotic regime, which shows that the respective solutions have a quite different behavior for large times.Comment: One sentence modified at the end of Section 4, p. 1

    Cloaking for a quasi-linear elliptic partial differential equation

    Full text link
    In this article we consider cloaking for a quasi-linear elliptic partial differential equation of divergence type defined on a bounded domain in RN\mathbb{R}^N for N=2,3N=2,3. We show that a perfect cloak can be obtained via a singular change of variables scheme and an approximate cloak can be achieved via a regular change of variables scheme. These approximate cloaks though non-degenerate are anisotropic. We also show, within the framework of homogenization, that it is possible to get isotropic regular approximate cloaks. This work generalizes to quasi-linear settings previous work on cloaking in the context of Electrical Impedance Tomography for the conductivity equation
    corecore