47 research outputs found

    Computer-Assisted Electroanatomical Guidance for Cardiac Electrophysiology Procedures

    Get PDF
    Cardiac arrhythmias are serious life-threatening episodes aļ¬€ecting both the aging population and younger patients with pre-existing heart conditions. One of the most eļ¬€ective therapeutic procedures is the minimally-invasive catheter-driven endovascular electrophysiology study, whereby electrical potentials and activation patterns in the aļ¬€ected cardiac chambers are measured and subsequent ablation of arrhythmogenic tissue is performed. Despite emerging technologies such as electroanatomical mapping and remote intraoperative navigation systems for improved catheter manipulation and stability, successful ablation of arrhythmias is still highly-dependent on the operatorā€™s skills and experience. This thesis proposes a framework towards standardisation in the electroanatomical mapping and ablation planning by merging knowledge transfer from previous cases and patient-speciļ¬c data. In particular, contributions towards four diļ¬€erent procedural aspects were made: optimal electroanatomical mapping, arrhythmia path computation, catheter tip stability analysis, and ablation simulation and optimisation. In order to improve the intraoperative electroanatomical map, anatomical areas of high mapping interest were proposed, as learned from previous electrophysiology studies. Subsequently, the arrhythmic wave propagation on the endocardial surface and potential ablation points were computed. The ablation planning is further enhanced, ļ¬rstly by the analysis of the catheter tip stability and the probability of slippage at sparse locations on the endocardium and, secondly, by the simulation of the ablation result from the computation of convolutional matrices which model mathematically the ablation process. The methods proposed by this thesis were validated on data from patients with complex congenital heart disease, who present unusual cardiac anatomy and consequently atypical arrhythmias. The proposed methods also build a generic framework for computer guidance of electrophysiology, with results showing complementary information that can be easily integrated into the clinical workļ¬‚ow.Open Acces

    Nonlinear data utilization: direct data look-up to behavioural modelling

    Get PDF
    Newly developed communication systems put strict requirements on the performance of RF power amplifiers. A key issue for the development of RF PA is the inherent nonlinearity of power amplifiers hindering its integration with the well established small-signal development infrastructure which forms a closely interlinked chain of measurement systems, small-signal models and CAD based simulation and design software. The linkage between these components is provided by common small-signal data import and export file formats ensuring a bidirectional data exchange without any loss of the small-signal information. However, no equivalent infrastructure exists for a large-signal design process inhibiting the development of RF power amplifiers and other nonlinear components. This work demonstrates a coherent methodology aiming to provide equivalent infrastructure for large signal design process as already exists in small signal design process. As first part of the methodology, a new approach is proposed to directly import measured current and voltage waveforms, obtained from a typical Large Signal Network Analyser (LSNA) system recently developed in Cardiff University, into nonlinear CAD simulator for power amplifier design. This approach offers an efficient solution for using large signal characteristic data in CAD-based simulation and PA design as the simulation/design accuracy is guaranteed by measurement and the no lengthy data processing is required. The approach is implemented in Agilent ADS simulator and its validity is comprehensively verified on different devices and device technologies. Moreover, the potential of it in predicting device large signal performance when interpolation or extrapolation is needed is explored. As second part of the methodology, a new large signal nonlinear behavioural approach is proposed from behavioural modelling perspective as a complementation to the direct waveform utilization approach. The proposed modelling approach features in impressive simulation speed while maintaining excellent simulation accuracy. The modelling approach is developed on the basis of polynomial approximation and theoretical analysis shows that the approach can be considered as reasonable extension of S parameter design tool in large signal environment. It's demonstrated in this work that the model is extracted from large signal waveform data with specially designed parameter extraction procedure. The extracted model is verified on several devices and repeatable accuracy can be obtained even on high power devices such as 100w LDMOS. It's illustrated in this work that the above two distinctive approaches can be combined and nicely considered as parts of an integrated nonlinear measurement data utilization strategy. Such a strategy provides a fast and time efficient path to accurate CAD-based nonlinear design even at power levels relevant for base station applications

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    Literature review of the remote sensing of natural resources

    Get PDF
    Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

    Get PDF
    The final volume in this tripartite series on Brain Augmentation is entitled ā€œFrom Clinical Applications to Ethical Issues and Futuristic Ideasā€. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinsonā€™s disease, Huntingtonā€™s disease, epilepsy, dementia, Alzheimerā€™s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinsonā€™s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subjectā€™s age, gender, hormonal levels may affect an individualā€™s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of ā€œmind controlā€ with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches
    corecore