614 research outputs found

    An accurate, trimless, high PSRR, low-voltage, CMOS bandgap reference IC

    Get PDF
    Bandgap reference circuits are used in a host of analog, digital, and mixed-signal systems to establish an accurate voltage standard for the entire IC. The accuracy of the bandgap reference voltage under steady-state (dc) and transient (ac) conditions is critical to obtain high system performance. In this work, the impact of process, power-supply, load, and temperature variations and package stresses on the dc and ac accuracy of bandgap reference circuits has been analyzed. Based on this analysis, the a bandgap reference that 1. has high dc accuracy despite process and temperature variations and package stresses, without resorting to expensive trimming or noisy switching schemes, 2. has high dc and ac accuracy despite power-supply variations, without using large off-chip capacitors that increase bill-of-material costs, 3. has high dc and ac accuracy despite load variations, without resorting to error-inducing buffers, 4. is capable of producing a sub-bandgap reference voltage with a low power-supply, to enable it to operate in modern, battery-operated portable applications, 5. utilizes a standard CMOS process, to lower manufacturing costs, and 6. is integrated, to consume less board space has been proposed. The functionality of critical components of the system has been verified through prototypes after which the performance of the complete system has been evaluated by integrating all the individual components on an IC. The proposed CMOS bandgap reference can withstand 5mA of load variations while generating a reference voltage of 890mV that is accurate with respect to temperature to the first order. It exhibits a trimless, dc 3-sigma accuracy performance of 0.84% over a temperature range of -40°C to 125°C and has a worst case ac power-supply ripple rejection (PSRR) performance of 30dB up to 50MHz using 60pF of on-chip capacitance. All the proposed techniques lead to the development of a CMOS bandgap reference that meets the low-cost, high-accuracy demands of state-of-the-art System-on-Chip environments.Ph.D.Committee Chair: Rincon-Mora, Gabriel; Committee Member: Ayazi, Farrokh; Committee Member: Bhatti, Pamela; Committee Member: Leach, W. Marshall; Committee Member: Morley, Thoma

    Curvature-compensated BiCMOS bandgap with 1-V supply voltage

    Full text link

    A Low-Power Low-Voltage Bandgap Reference in CMOS

    Get PDF
    Bandgap reference plays a substantial role in integrated circuit. Traditionally, it provides a constant reference voltage of 1.2051/ for other blocks in the circuit while itself is independent of temperature and power supply. However, the development of CMOS technology has brought us into a new era of high integration and ultra-low power consumption. As the gate length scales down, it is crucial to build circuits that are able to work under a very low voltage power supply, for instance, lower than the bandgap voltage of 1.205V. Building bandgap circuits to generate the conven­ tional bandgap voltage under a low voltage power supply such as 1.2V or IV is no longer practical nor useful. Thus, bandgap references working under low-voltage and consuming low-power is becoming the trend of research and development nowadays. In this thesis work, the potential structure of a low-voltage low-power bandgap reference is proposed, which is based on extracting a current that is a fraction of the traditional bandgap voltage. All the necessary blocks are designed to achieve the high accuracy bandgap reference, including bandgap core circuit, op-amp, start-up circuit and output stage. As a result, the designed bandgap reference is able to work under 1.2V power supply and provides an output reference voltage of 584.7mV. It has a variation of only 244.38fiV for the temperature range of 0°C ~ 125°C and has a variation of only 1.1mV for a power supply range of 1.08V ~ 1.32V. The layout design for the bandgap reference structure is also done carefully at the late stage, with an area of 100fj,m x 85¡xm

    A sub-1 V, 26 μw, low-output-impedance CMOS bandgap reference with a low dropout or source follower mode

    Get PDF
    We present a low-power bandgap reference (BGR), functional from sub-1 V to 5 V supply voltage with either a low dropout (LDO) regulator or source follower (SF) output stage, denoted as the LDO or SF mode, in a 0.5-μm standard digital CMOS process with V tn≈ 0.6 V and |V tp| ≈ 0.7 V at 27 °C. Both modes operate at sub-1 V under zero load with a power consumption of around 26 μW. At 1 V (1.1 V) supply, the LDO (SF) mode provides an output current up to 1.1 mA (0.35 mA), a load regulation of ±8.5 mV/mA (±33 mV/mA) with approximately 10 μ s transient, a line regulation of ±4.2 mV/V (±50μV/V), and a temperature compensated reference voltage of 0.228 V (0.235 V) with a temperature coefficient around 34 ppm/° C from -20°C to 120 °C. At 1.5 V supply, the LDO (SF) mode can further drive up to 9.6 mA (3.2 mA) before the reference voltage falls to 90% of its nominal value. Such low-supply-voltage and high-current-driving BGR in standard digital CMOS processes is highly useful in portable and switching applications. © 2010 IEEE.published_or_final_versio

    Analog integrated circuit design in ultra-thin oxide CMOS technologies with significant direct tunneling-induced gate current

    Get PDF
    The ability to do mixed-signal IC design in a CMOS technology has been a driving force for manufacturing personal mobile electronic products such as cellular phones, digital audio players, and personal digital assistants. As CMOS has moved to ultra-thin oxide technologies, where oxide thicknesses are less than 3 nm, this type of design has been threatened by the direct tunneling of carriers though the gate oxide. This type of tunneling, which increases exponentially with decreasing oxide thickness, is a source of MOSFET gate current. Its existence invalidates the simplifying design assumption of infinite gate resistance. Its problems are typically avoided by switching to a high-&kappa/metal gate technology or by including a second thick(er) oxide transistor. Both of these solutions come with undesirable increases in cost due to extra mask and processing steps. Furthermore, digital circuit solutions to the problems created by direct tunneling are available, while analog circuit solutions are not. Therefore, it is desirable that analog circuit solutions exist that allow the design of mixed-signal circuits with ultra-thin oxide MOSFETs. This work presents a methodology that develops these solutions as a less costly alternative to high-&kappa/metal gate technologies or thick(er) oxide transistors. The solutions focus on transistor sizing, DC biasing, and the design of current mirrors and differential amplifiers. They attempt to minimize, balance, and cancel the negative effects of direct tunneling on analog design in traditional (non-high-&kappa/metal gate) ultra-thin oxide CMOS technologies. They require only ultra-thin oxide devices and are investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. A sub-1 V bandgap voltage reference that requires only ultra-thin oxide MOSFETs is presented (TC = 251.0 ppm/°C). It utilizes the developed methodology and illustrates that it is capable of suppressing the negative effects of direct tunneling. Its performance is compared to a thick-oxide voltage reference as a means of demonstrating that ultra-thin oxide MOSFETs can be used to build the analog component of a mixed-signal system

    Analyses and design strategies for fundamental enabling building blocks: Dynamic comparators, voltage references and on-die temperature sensors

    Get PDF
    Dynamic comparators and voltage references are among the most widely used fundamental building blocks for various types of circuits and systems, such as data converters, PLLs, switching regulators, memories, and CPUs. As thermal constraints quickly emerged as a dominant performance limiter, on-die temperature sensors will be critical to the reliable operation of future integrated circuits. This dissertation investigates characteristics of these three enabling circuits and design strategies for improving their performances. One of the most critical specifications of a dynamic comparator is its input referred offset voltage, which is pivotal to achieving overall system performance requirements of many mixed-signal circuits and systems. Unlike offset voltages in other circuits such as amplifiers, the offset voltage in a dynamic comparator is extremely challenging to analyze and predict analytically due to its dependence on transient response and due to internal positive feedback and time-varying operating points in the comparator. In this work, a novel balanced method is proposed to facilitate the evaluation of time-varying operating points of transistors in a dynamic comparator. Two types of offsets are studied in the model: (1) static offset voltage caused by mismatches in mobilities, transistor sizes, and threshold voltages, and (2) dynamic offset voltage caused by mismatches in parasitic capacitors or loading capacitors. To validate the proposed method, dynamic comparators in two prevalent topologies are implemented in 0.25 μm and 40 nm CMOS technologies. Agreement between predicted results and simulated results verifies the effectiveness of the proposed method. The new method and the analytical models enable designers to identify the most dominant contributors to offset and to optimize the dynamic comparators\u27 performances. As an illustrating example, the Lewis-Gray dynamic comparator was analyzed using the balanced method and redesigned to minimize its offset voltage. Simulation results show that the offset voltage was easily reduced by 41% while maintaining the same silicon area. A bandgap voltage reference is one of the core functional blocks in both analog and digital systems. Despite the reported improvements in performance of voltage references, little attention has been focused on theoretical characterizations of non-ideal effects on the value of the output voltage, on the inflection point location and on the curvature of the reference voltage. In this work, a systematic approach is proposed to analytically determine the effects of two non-ideal elements: the temperature dependent gain-determining resistors and the amplifier offset voltage. The effectiveness of the analytical models is validated by comparing analytical results against Spectre simulation results. Research on on-die temperature sensor design has received rapidly increasing attention since component and power density induced thermal stress has become a critical factor in the reliable operation of integrated circuits. For effective power and thermal management of future multi-core systems, hundreds of sensors with sufficient accuracy, small area and low power are required on a single chip. This work introduces a new family of highly linear on chip temperature sensors. The proposed family of temperature sensors expresses CMOS threshold voltage as an output. The sensor output is independent of power supply voltage and independent of mobility values. It can achieve very high temperature linearity, with maximum nonlinearity around +/- 0.05oC over a temperature range of -20oC to 100oC. A sizing strategy based on combined analytical analysis and numerical optimization has been presented. Following this method, three circuits A, B and C have been designed in standard 0.18 ym CMOS technology, all achieving excellent linearity as demonstrated by Cadence Spectre simulations. Circuits B and C are the modified versions of circuit A, and have improved performance at the worst corner-low voltage supply and high threshold voltage corner. Finally, a direct temperature-to-digital converter architecture is proposed as a master-slave hybrid temperature-to-digital converter. It does not require any traditional constant reference voltage or reference current, it does not attempt to make any node voltage or branch current constant or precisely linear to temperature, yet it generates a digital output code that is very linear with temperature
    corecore