42 research outputs found

    The Design of a single chip 8x8 ATM switch in 0.5 micrometers CMOS VLSI

    Get PDF
    This thesis illustrates the design of a single chip Asynchronous Transfer Mode (ATM) protocol switch using Very Large Scale Integration (VLSI). The ATM protocol is the data communications protocol used in the implementation of the Broadband Integrated Services Digital Network (B-ISDN), A number of switch architecture are first studied and a new architecture is developed based on optimizing performance and practicality of implementation in VLSI. A fully interconnected switch architecture is implemented by permanently connecting every input port to all the output ports. An output buffering scheme is used to handle cells that cannot be routed right away. This new architecture is caned the High Performance (HiPer) Switch Architecture. The performance of the architecture is simulated using a C++ model. Simulation results for a randomly distributed traffic pattern with a 90% probability of cells arriving in a time slot produces a Cell Loss Ratio of 1.Ox 10^-8 with output buffers that can hold 64 cells. The device is then modeled in VHDL to verify its functionality. Finally the layout of an 8x8 switch is produced using a 0.5 micrometer CMOS VLSI process and simulations of that circuit show that a peak throughput of 200 Mbps per output port can be achieve

    An Aggregate Scalable Scheme for Expanding the Crossbar Switch Network; Design and Performance Analysis

    Get PDF
    New computer network topology, called Penta-S, is simulated. This network is built of cross bar switch modules. Each module connects 32 computer nodes. Each node has two ports, one connects the node to the crossbar switch module and the other connects the node to a correspondent client node in another module through a shuffle link. The performance of this network is simulated under various network sizes, packet lengths and loads. The results are compared with those obtained from Macramé project for Clos multistage interconnection network and 2D-Grid network. The throughput of Penta-S falls between the throughput of Clos and the throughput of 2D-Grid networks. The maximum throughput of Penta-S was obtained at packet length of 128 bytes. Also the throughput grows linearly with the network size. On the opposite of Clos and 2D-Grid networks, the per-node throughput of Penta-S improves as the network size grows. The per-packet latency proved to be better than that of Clos network for large packet lengths and high loads. Also the packet latency proved to be nearly constant against various loads. The cost-efficiency of Penta-S proved to be better than those of 2D-Grid and Clos networks for large number of nodes (>200 nodes in the case of 2D-Grid and >350 nodes in the case of Clos).On the opposite of other networks, the cost-efficiency of Penta-S grows as its size grows. So this topology suits large networks and high traffic loads

    On packet switch design

    Get PDF

    Hardware neural systems for applications: a pulsed analog approach

    Get PDF

    Low-complexity and high-quality frame-skipping transcoder for continuous presence multipoint video conferencing

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Concurrent cell rate simulation of ATM telecommunications network.

    Get PDF
    PhDAbstract not availabl

    The patterns of interorganizational networks in the development of data communication technologies

    Get PDF
    Title from cover. "February, 1998."Includes bibliographical references (p. 69-75).Pek H. Soh, Edward B. Roberts

    Architecture, Design, Simulation and Performance Evaluation for Implementing ALAX -- The ATM LAN Access Switch Integrating the IEEE 1355 Serial Bus

    Get PDF
    IEEE 1355 is a serial bus standard for Heterogeneous Inter Connect (HIC) developed for "enabling high-performance, scalable, modular and parallel systems to be built with low system integration cost." However to date, few systems have been built around this standard specification. In this thesis, we propose ALAX -- an internetworking switching device based on IEEE 1355. The aim of the thesis is two-fold. First, we discuss and summarize research works leading to the architecture, design and simulation development for ALAX; we synthesize and analyze relevant data collected from the simulation experiments of the 4- port model of ALAX (i.e., 4-by-4 with four input and output queues) -- these activities were conducted during the 2-year length of the project. Secondly, we expand the original 4-by-4 size of the ALAX simulation model into 8-, 12- and 16-port models and present and interpret the outcomes. Thus, overall we establish a performance assessment of the ALAX switch, and also identify several critical design measurements to support the ALAX prototype implementation. We review progresses made in Local Area Networks (LANs) where traditional software-enabled bridges or routers are being replaced in many instances by hardware-enabled switches to enhance network performance. Within that context, ATM (Asynchronous Transfer Mode) technology emerges as an alternative for the next generation of high-speed LANs. Hence, ALAX incarnates our effective approach to build an ATM-LAN interface using a suitable switching platform. ALAX currently provides the capability to conveniently interconnect legacy Ethernet and ATM- based networks. Its distributed architecture features a multi- processor environment of T9000 transputers with parallel processing capability, a 32-by-32 way non-blocking crossbar fabric (C104 chipset) partitioned into Transport (i.e., Data) and Control planes, and many other modules interlaced with IEEE 1355- based connectors. It also employs existing and emerging protocols such as LANE (LAN Emulation), IEEE 802.3 and SNMP (Simple Network Management Protocol). We provide the component breakdown of the ALAX simulation model based on Optimized Network Engineering Tools (OPNET). The critical parameters for the study are acceptable processor speeds and queuing sizes of shared memory buffer at each switch port. The performance metric used is the end-to-end packet delay. Finally, we end the thesis with conclusive recommendations pertaining to performance and design measurement, and a brief summary of areas for further research study
    corecore