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Abstract

In recent years the considerable interest in the biologically inspired computational paradigm
of artificial neural networks has led to a drive to realise these structures as VLSI hardware. At
Edinburgh University research has focused on pulse stream neural networks in which neural
states are encoded in the time domain as a stream of digital pulses. To date research centred on
developing analog CMOS circuits to implement neural functions. In this thesis these circuits
are developed and higher, system level issues addressed in order to produce a neural network
system suited to use in real-world applications.

To discover the key requirements for use in real-world applications, examples of application
based hardware systems are reviewed, as is the field of pulse stream neural networks. These
requirements led to the design of a VLSI chip, EPSILON II; a pulse stream neural chip
optimised for use on the boundary of the analog domain of the real-world and the digital
domain of conventional computing. The EPSILON processor card (EPC) places this chip in a
system level framework that oversees chip operation and provides interfaces to analog signals,
a standard digital bus and other EPCs. The system level approach taken provides a versatile
platform for prototyping applications while operating with minimal host supervision.

‘To demonstrate the versatility of this approach several applications were developed that
utilised this hardware. Foremost amongst these was an autonomous mobile robot that utilises
the analog nature of the hardware to provide a direct interface to real-world sensors. Also
presented are a series of experiments investigating back-propagation learning on a variety of
MLP problems. This study reveals the limits and practicalities of training hardware neural
networks, in particular the effects of limited weight dynamic range were found to be of primary
importance.

From this work conclusions are drawn as to the effectiveness and future development of
hardware neural computation; specifically the ability to interface to the analog domain and the
issues involved in interfacing to conventional computing devices are highlighted.
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Chapter 1

Introduction

This chapter discusses the basic concepts of neural networks and the motivation for their
implementation in hardware. It moves on to introduce the work of this thesis; developing
hardware neural networks in such a way as to facilitate their use in applications. The chapter
concludes with a formal statement of the aim of the thesis and an overview of the thesis
structure.

1.1 Background and Motivation

It is self-evident that biological systems routinely carry out computational tasks, such as vision
and speech, that are beyond the scope of present artificial systems. Fields of science, such
as neurobiology and neurophysiology, evolved to investigate the structure and mechanics of
biological nervous systems. These fields revealed that the processing techniques employed by
biological systems consist of massively parallel and highly interconnected networks of relatively
simple processing elements — neurons. Neural networks are a computational paradigm inspired
by these processing techniques observed in biological systems. The field can be traced back to
the early 1940’s when McCulloch and Pitts first proposed a model for the biological neuron[77].
The development of a mathematical model, and the later advent of serial computers capable of
simulating networks of neurons, formed the backbone of neural network development.

[(x) (x)
x
0 I
X X
x T
! Heaviside threshald logic
[£3]
X X
n
sigmoid
(a) Neuron Model (b) Various Thresholding Functions

Figure 1-1: McCulloch-Pitts Model of a Neuron
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Figure 1-1(a) demonstrates the basic McCulloch-Pitts model of a neuron where inputs x;
are weighted by a variable weight w,;, summed together then undergo a thresholding function f,
to produce an output y;. The thresholding function takes a variety of forms dependent on the
neural model and learning algorithm employed, some examples are shown in figure 1-1{(b).

The early 1960’s saw methods introduced to adapt the weights of the McCulloch-Pitts
neuron to perform useful functions:

e Rosenblatt introduced the Perceptron[99], a neural structure with a heaviside non-
linearity. Training of the Perceptron was based on Hebb’s Law [48] which relates
the biological principle that a synaptic junction is reinforced if repeatedly excited.

e Widrow and Hoff with the ADALINE! introduced the concept of adapting weights
proportional to an error term with their learning rule known as the Widrow—Hoff deltarule.
This structure was able to perform such tasks as adaptive filtering and equalisation[116].

Interest in the field was diminished temporarily when Minsky and Papert showed that the
single layered neural structures of the day could only solve linearly separable problems[80]. The
field remained virtually dormant until the 1980’s when Rumelhart, Hinton and Williams[100]
demonstrated the gradient descent back-propagation algorithm for training the Multi-layer
Perceptron (MLP), a structure consisting of multiple layers of neurons where outputs of the
preceding layer feed the next. The ability of this architecture to form arbitrary mappings
between input and output re-kindled interest in neural networks.

Since this time other network structures and training methods have emerged such as
Kohonen’s self-organising feature maps [62], Radial Basis Functions[10] and Adaptive Reson-
ance Theory (ART)[20].

A study of recent literature shows examples of neural networks providing solutions, often
superior to conventional methods, to problems such as:

¢ Image analysis, for example optical character recognition[66,94], medical image analysis[74,
101].

e Optimisation and control, for example the travelling salesman problem[8], the inverted
pendulum problem[6,107], job scheduling[28] and robotic control and navigation[105,
95].

e Speech recognition or analysis systems[59,75].

¢ Classification, for example classification of sleep patterns [104], aircraft identity from
radar signals [21] or cardiac arrhythmia [58].

! ADAptive Linear NEurons
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It is these types of successes that provide ample motivation for further development of the
neural network field.

1.2 Hardware and Implementation

The fact that neural networks are parallel architectures implies a large computational overhead
when they are implemented on a conventional serial machine. For this reason much research
has been conducted into developing dedicated VLSI hardware to assist in neural computation.
Two major techniques are available to do this: digital and analog.

Digital technology has preduced examples of neural architectures such as the CNAPS(2]
and HANNIBAL[87] chips. The advantages of digital technology are:

o High speed operation.

e Conventional technology.

¢ Predictable precision.

e High noise immunity.
The disadvantages are that:

e The technology is suited to a predominately serial architecture. Large bus sizes are
difficult to distribute in a parallel manner.

¢ Operational blocks such as multipliers require considerable silicon area and consume
significant power.

e No direct interface to the real-world, thus A/D conversion is required to interface to
real-world data.

Analog technology provides the possibility of compact, low power multiplier circuits, parallel
operation and direct analog interfacing. These reasons make analog implementation the pre-
ferred technology for the applications area studied in this thesis. A variety of techniques have
been used for analog neural network implementation, for example:

e Fully analog designs using Gilbert multipliers and EEPROM weight storage[51].
e Designs based around multiplying digital-to-analog converters[27].

e Designs using MOS sub-threshold techniques[7,112].
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e Designs using CCD structures{22].

e Switched capacitor implementations[98,110].

e Designs encoding neural states as pulses (pulse stream)[43,84].

e Designs emulating biological structures such as the retina[71,78] and cochlea[72].

Yet despite this wealth of hardware research few practical applications have emerged into
general use. Going back to 1988 a DARPA? study of neural networks revealed that of the
77 neural network applications investigated only 4 had resulted in field tested systems[115].
Furthermore, none of these used dedicated neural network hardware. The situation at present
has progressed little. Is this a failure to address the issues of blending conventional computing
technology with neural networks to produce practical solutions? It is the author’s belief that
this is a major factor. This thesis takes the pulse stream methodology, an implementation
scheme whereby analog neural states are encoded in the time domain as a digital pulse stream,
and develops this methodology with the aim of integration into conventional systems for use in
applications.

1.3 Applications and Practicalities of Neural Networks.

Defining the type of applications to be studied is important as neural network technology must
compete with more conventional digital techniques in solving real-world problems. Neural
networks must concentrate on areas where their advantages:

e Parallelism.
e Speed.
e Analog nature.
e Adaptability.
outweigh their disadvantages:
¢ The inability to interrogate a solution fully.
e Unproven technology.

e Specialist nature.

Defence Advanced Research Projects Agency
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Such an area is the boundary of the real, analog worid and digital processing, such as pre-
processing/interpretation of analog sensor data or control problems involving real-time analog
sensor signals. Here a modest neural network can act as an intelligent analog-to-digital
converter presenting preprocessed information to its host. The key requirements of this tech-
nological development are that a device must:

e Work directly with analog signals.

Accept digital information from its host.

Act autonomously from, and interface simply to, the host system,

Provide a moderate size network to process data.

Have the potential for a highly integrated, low cost solution.

Examining the pulse stream methodology employed in this thesis, its areas of strength can be
summarised as:

e Analog or digital inputs.

Digital compatible outputs.

Compact, low power.

Cheap CMOS implementation.

Modest size.

Scalable and cascadable design.

The pulse stream methodology has many of the requirements for the type of applications use
described earlier, such as the advantage of working on the boundaries of the analog and digital
domains. That it lacks some of the other requirements, as do all implementation methodologies,
calls for the necessity of addressing these areas at system level. The EPSILON chip, the
predecessor of this work, demonstrated this as the lack of several of the requirements listed
above made its use in practical systems difficult. This thesis evolves strategies and hardware
to address these requirements to produce a pulse stream neural network implementation that
operates on this interface between the analog real-world and the digital domain of conventional
computing. It then investigates the practicalities of such an approach through development of
simple applications.
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1.4 Aims of the Project

Having introduced the field to which it contributes, the aim of this project can be summarised
as: '

Aim: To study the practical ramifications and issues involved in the devel-
opment of pulsed analog hardware neural networks for use in real-world
applications.

This study was approached via a four pronged strategy:

1. A study of existing hardware neural network applications was made, examining their
strengths and weaknesses.

2. A development of existing pulse stream VLSI was undertaken to provide a base for
system level development.

3. Major issues raised by the study resulted in system level development to satisfy the
requirements of applications use. Issues particularly focussed on were; interfaces to
analog and digital domains and autonomous operation.

4. Finally experiments are conducted on demonstration applications to verify and test the
system and further investigate the practical ramifications of the issues raised.

The basic premise on which this work depends is:

Neural networks should be applied at a system level and act on the boundary
between information domains; specifically the analog “real-world” and digital
systems. This can be achieved with networks of modest size imbedded in a
system architecture that allows efficient data interaction with the real world and
conventional digital processors.

The approach is summarised in figure 1-2 where the pulse stream based neural system that
was developed provides an interface between the analog input domain and the digital domain
of conventional computing.
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Figure 1-2: Project Overview.

1.5 Thesis Outline

Part I contains the principal literature review sections of the thesis. Chapter 2 investigates the
hardware implementation of neural networks using pulse stream techniques, the methodology
used in the hardware design of the project.

Chapter 3 examines the use of hardware neural networks in an applications environment by
reviewing some of the most successful of recent applications directed implementations.

In Chapter 4 issues raised by the review are discussed and the design methodology presented
for the hardware specification.

Part 11 of the thesis details the design of the hardware constructed; Chapter 5 presents the
work done at a VLSI design level for this thesis — the EPSILON II chip. The design of the
chip is presented along with characterisation results. Chapter 6 is devoted to the system level
development of the EPSILON processor card (EPC). This work embeds the EPSILON II chip
in system with interfaces to analog data, other EPSILON II chips and a conventional digital
bus.

Part I1I discusses the use of the EPSILON processor card system for applications develop-
ment. Chapter 7 configures two EPCs as a multi-layer perceptron. This is used to investigate
the practicalities of training the hardware network in the presence of analog hardware non-
idealities. A variety of problems were used in this investigation:

1. An artificial character recognition problem which allowed a graded problem complexity
to aid initial investigation and model development.
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2. A more complex real-world problem of a link admission controller for ATM communic-
ations networks. This problem was used to study the performance of the hardware as a
function approximator.

3. The final set of experiments examined the performance of the EPC in solving three
real-world 1-of-N classification problems.

Chapter 8 presents an autonomous mobile robot named Kryton which utilises the analog input
capabilities of the EPC to map analog sensor input to motor control outputs.

Finally Chapter 9 discusses the issues raised by the thesis and draws conclusions as to the
success of the work. '

1.6 Areas of Contribution

The work of this thesis focuses on a study of the issues and practicalities of placing pulse stream
neural networks into an applications context. As part of this study, design and fabrication of a
VLSI chip was undertaken to meet the requirements revealed for the intended use on boundary
of the analog and digital domains. The VLSI section utilises proven circuit structures for
synaptic and neural functions, however improvements have been made over previous use of
these circuits through architecture changes and judicious circuit and layout modifications. This
is described in Chapter 5.

The key result of this thesis was the system level philosophy whereby the needs of neural
hardware were addressed in the context of applications. The research revealed the necessity
to embed neural VLSI in a system framework that is capable of interfacing to larger digital
systems along with the input domain of the analog real-world.

The thesis concludes with a series of demonstration applications. These were designed to
test and evaluate the hardware and study the issues involved with practical application of the
hardware.

Chapter 7 studied issues involved in training the hardware under practical conditions. The
principal issues raised here were the effects that limited dynamic range in the hardware weight
set had on network performance and problem solving ability. Chapter 8 demonstrated the
hardware in a situation closely matched to the perceived primary applications area: a direct
analog interface to real-world data with neural processing, interacting with a higher-level digital
system. From the success of this the validity of the philosophy developed was confirmed.
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1.7 Summary

This chapter has introduced the field of neural network study and discussed the motivation
of hardware implementation. It concludes that applications best served by hardware neural
network technology lie on the interface between the analog and digital domains and that
hardware development should reflect this. Consistent with this the aim of the thesis was
presented and structure of the thesis summarised.
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Chapter 2

Pulse Stream Neural Computation

2.1 Introduction.

This chapter introduces the principles of pulse stream neural computation as a hardware imple-
mentation methodology. It examines the development of the field and reviews the strengths of
different methods when compared to other techniques. Following this the EPSILON design
will be discussed as this forms the basis of the chip-level design of this thesis.

2.2 Background and Implementation Issues

Drawing inspiration from the pulse based nature of biological systems together with the engin-
eering practicalities of utilising cheap and available digital VLSI processes, the pulse-stream
methodology has evolved rapidly since its inception by Murray and Smith in 1987[85]. Pulse-
stream techniques are characterised by their encoding (modulation) of neural states {or occa-
sionally weights) as pulses. There are several techniques used for this:

Pulse frequency Here the neural state is encoded as the frequency of the pulse

modulation (PFM) stream. It may be done by varying the duty cycle of the signal (as

L UL shown to the left), or by keeping a constant duty cycle. Modula-
tion of this form is normally achieved with the use of a voitage
controlled oscillator (VCO).

Pulse Width In this scheme the neural state is encoded in the width (on-time)
Modulation of a pulse. It is generally a synchronous scheme where pulses are
(PWM) guaranteed to be present in a fixed maximum time interval.

4L

11
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Pulse Density The value of the PDM signal is defined by the relation between the
Modulation number of high pulses (V, ) and low pulses (NV_). For example for
(PDM) the coding
TR R g _ (Ni—N)
N+ N

when NV, = N_, S; = 0 and the scheme encodes values between

+1and —1.
Stochastic Pulse A stochastic pulse train encodes the value of 5; in the density of
Trains stochastic (that is randomly distributed) pulses. This scheme is

g LIl used mainly in digital pulse stream implementations.

Encoding neural states as pulses offers several advantages when compared to the use of
analog voltages or currents:

¢ Information is encoded in the time domain and signal levels are digital. This enables
easy regeneration and distribution of signals by conventional digital methods, such as
invertor chains. This form of communication is thus much less susceptible to noise than
analog voltages or currents, providing an efficient method of communication between
neural chips.

o Combining analog techniques on-chip with these digital signals, compact analog multi-
pliers can be constructed. This combines the advantages of compact analog computation

with the ease of digital signal distribution.

e Although conversion (demodulation) is necessary to interface pulse-stream neural chips
to digital hosts; this can be done with conventional digital techniques without the need
for A/D converters. This can make demands at system level easier to realise.

However there are also disadvantages in using pulse streams:

e Switching noise introduced by high frequency digital signals can couple with sensitive
analog circuitry.

e In all but the PDM scheme multiplication is generally restricted to two quadrants. Four-
quadrant multiplication is considerably more difficult to implement.

+ To interface to analog signals a pulse modulator is needed.
Different implementations address these strengths and weaknesses differently. Pulse stream
implementations fall into three broad categories depending upon the method used to perform

synaptic multiplication, these are:

1. Digital implementations.
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2. Switched-capacitor implementations.
3. Analog implementations.

The remainder of this section will present examples of these implementation techniques and
discuss their advantages and disadvantages before moving on to discuss the EPSILON chip
and the pulise stream methodology employed on it.

2.2.1 Digital Implementations
Figure 2-1 shows a scheme for digital pulse stream implementation. Here the weight S,

Excitation Inhibition
1

| '
1 1

Tij sign bit

B
v

Ly

Integrator

Figure 2-1: Digital Pulse Stream Scheme.

along with the input S; are encoded as a stochastic or asynchronous PFM pulse stream. If the
weight and the input pulse stream have a probability of a pulse being present such that:

P(A) = Sr,; and P(B) = 5,
and if P(A} and P(B) are statistically independent, then:

Thus a simple AND gate provides multiplication. Summation is similarly achieved with an OR
gate and bipolar weights can be implemented with a sign bit switching the result to separate
excitatory and inhibitory summation lines. Examples of this type of scheme can be found
in [32,86,109].
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Another digital example from Murray and Smith[86] uses local digital storage and global
chopping clocks to represent the weight value as shown in figure 2-2. Here the input is gated
for a fraction of the time 7" proportional to the weight magnitude with the aid of the global
chopping clocks.

Tij mm — |lnhibition !Excilation
“ J—I—_%_ 1 "
E —i 11111
o —
& LOGIC
g IM—
5 n—
T

Figure 2-2: Digital Pulse Stream Scheme.

All these digital implementations suffer from inaccuracies introduced by coding noise due
to collisions of pulses: that is when two pulses arrive at a summing OR gate at the same
time an error is introduced. This is minimised by using a sparse coding of signals and a long
integration time. Also despite the use of compact AND and OR gates to carry out the synaptic
multiplication the synapse area is large due to the presence of digital RAM to store the weight
values.

2.2.2 Switched Capacitor Implementations

Switched capacitor circuits are based on transferring packets of charge stored on a capacitor.
The idea of using switched capacitor techniques for neural networks was first proposed by
Tsividis in 1989 [110], others have developed implementations such as Brownlow et al[14,15]
and Jackson[60]. Figure 2-3 shows the basic idea: The weight is stored as a voltage, V7, and
for each period of the input pulse stream S; a packet of charge proportional to (Vr,, — Vi)
is transferred to the summation line. Thus if S; is pulse-frequency modulated; multiplication
of T;;.5; is achieved. The advantage of this implementation is that the transfer function is
determined by the capacitor ratio 5‘:; which is well defined and process tolerant.
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Figure 2-3: Switched Capacitor Pulse Stream Scheme.

2.2.3 Analog Implementation

The basic technique of most analog pulse stream implementations is summarised in figure 2—
4. Here a current source, I, proportional to the weight, T3;, is gated by S; which may be
pulse-width or pulse-frequency modulated or stochastic. Summation is achieved free by virtue
of Kirchoff’s current law. There are several examples of such schemes [97,96,108] including
the EPSILON methodology, the topic of the next section. These implementations have the
potential for compact synapse cells but unlike the switched capacitor implementations are not
inherently process tolerant. The challenge of design is to use analog circuit design techniques
to produce process tolerant designs.
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Figure 2-4: Analog Pulse Stream Scheme.

2.3 EPSILON Pulse Stream Neural Computation

The philosophy behind the development of the EPSILON! chip was to design a set of process
invariant cells for pulse stream neural computation[23,45)]. The analog approach was chosen
over digital or switched capacitor techniques because:

e Digital implementations are large due to digital weight storage needed and can be inac-
curate due to coding collisions, a problem that increases with network size.

e Switched capacitor circuits are process tolerant due to the reliance only on capacitor
ratios but are not scalable without redesign of integrator. Switched capacitor techniques
are also only suited to pulse-frequency modulation schemes.

* Analog techniques offered the possibility of compact design, process tolerance with

design effort and operation under both pulse-frequency and pulse-width modulation
schemes.

This section presents the EPSILON cells and the EPSILON chip a 120 input, 32 neuron pulse
stream neural network chip. As shown in figure 2—4 the primary building blocks of an artificial

neural network are the synapse and neuron. These will now be considered in turn for the
EPSILON design.

"Edinburgh Pulse Stream Implemenation of a Learning Oriented Network.
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Figure 2-5: Transconductance Multiplier.

2.3.1 Distributed Feedback Synapse

The distributed feedback synapse forms the basis of EPSILON and also EPSILON I, the
chip fabricated in conjunction with this thesis. To analyse the performance of EPSILON 11
an understanding of the building blocks of EPSILON is required. This section presents the
EPSILLON distributed feedback synapse which consists of:

e Synaptic transconductance multipliers.

* A voltage integrator, which integrates the voltage output of the synapse array to produce
the net activity.

e and a bias generation scheme.

Synaptic Transconductance Multiplier

The basis of the EPSILON synapse design is the transconductance multiplier shown in figure 2

5. This circuit was first proposed for use in filtering applications. [29]. The circuit operates

the MOSFET transistors in their linear region where the characteristic drain-source current is

given by:

Vbs®
2

Ips = B |(Ves — Vi) Vps — (2.1)
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where 3 = W, Cox is the oxide capacitance/area, jio the surface carrier mobility, W and
L the transistor width and length respectively. By clamping Vps; = Vpsz and ensuring M1
and M2 are well matched, the non-linear terms in equation 2.1 can be cancelled, that is:

I =1Ipsi —Ipsr = BVes1 — Vas2) Vosi (2.2)

The above analysis ignores the effect of substrate bias (body effect), that is the threshold voltage,
Vr, of M1 and M2 will be different due to unequal bulk-source voltages. Including this effect
by defining:

AVT = VTMz — VTM[ (23)

the transconductance expression becomes:
I = Ipgsi — Ipss = B(Vgs1 = Vas2.+ AVr) Vs (2.4)

This expression is proportional to the weight voltage (Vgs2) as wanted, however it is also
dependent upon 3, a process dependent parameter that will vary across the chip. To make
the synapse more process tolerant the scheme of figure 2-6 was developed. Here a second

mE

Syn

Vo @—1[3«2

Ves

Figure 2—6: EPSILON Distributed Feedback Synapse.

transconductance stage (M4,M5) has been added as a buffer and is placed in a feedback loop
with an operational amplifier located at the foot of each synaptic column. This feedback loop
ensures that the current sourced from the synapse transconductance stages (I5yn), equals the
current sunk by the buffer stage (Zpye). Solving this equation (Jyyn + Iyer = 0), an expression
for the output voltage, V,,, can be found:

1 Boyn "~
Vou, = - Pom 5~ (Vi — (Via = Viet — AVD)) + Voias + Vees + AV (2.5)
Nﬂbuf §=0
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where NV is the number of synapses, Beyn = Sar1 = Far2 and Four = Bars = Bus. Note that for
the EPSILON synapse Vy; = 1.5V, V,, = 0.5V and V;; = 1.0V

Distributing the buffer stages throughout the synapse array ensures close matching between
M1, M2, M4 and M5, thus gi’"; simplifies to a ratio of transistor W/L ratios - a process invariant
it
quantity, more details of this can be found in Baxter[9]. .

Voltage Integrator

The voltage output V,,,, represents the sum of instantaneous synaptic activity. To produce the
net synaptic activity, this voltage is integrated over time by the voltage integrator of figure 2-7.
Here the voltage is converted to a current by a differential transconductance amplifier. This

enable reset

Vreset

outj

P Vnet =

Figure 2-7: EPSILON Voltage Integrator.

current is integrated on the capacitor Ciy, to produce the net synaptic activity, Vie;;. Switches
to enable the integration and reset the initial value of the output are also provided.

Two global references, V;, and V,;, determine the operating point of the synapse column.
Setting these as:

Ve = Vg, + Vier -+ AV (2.6)
1/oz = ‘/bias + Vref + AVp (2.7)

Gives an expression for the net activity as:

1% 1o
net; — Cim .[l IOllljdt
1 ta
- Cint '/tl Im (Vz)utj - V;)z) dt
1 gm Boyn
= (t2—t) = 2= 283 [(Vpyy - Viyg.) x DCs; (2.8)
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N—]

where Vry;, is the weight voltage representing a zero value weight, g, is the gain of the
transconductance amplifier and DCfg, is the duty cycle of the input pulse stream which encodes
the input value. Thus Vi, is the sum of weights, Tj; = (Vy; — Vipy;, ) times inputs, S; = DC;.

Bias Generation

The distributed feedback synapse minimises the operational reliance on process parameters,
however the two global references, V,, and V,, are dependent on AV, itself a process dependent
parameter. Thus the value required of these references will vary from chip to chip. To remove
this problem an on-chip generation scheme was devised as shown in figure 2-8. A dummy

oy

Vsz
- (Voz)
Vi M2
(MS5)
( Vibias )
VSS

Figure 2-8: EPSILON Bias Generation Scheme.

column of synapses is used to provide transistors closely matched to those in the synaptic array.
Solving the characteristic equations of these circuits the reference values generated are those
of equations 2.6 and 2.7.

2.3.2 EPSILON Neurons

The second principal building block is the neuron. The distributed feedback synapse column
produces a net output activity voltage, Vie,, which is converted by the output neurons to a pulse
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Figure 2-10: EPSILON PWM Neuron Ramps and Transfer Functions.

modulated signal. Two pulse modulation schemes were included on EPSILON; a pulse-width
modulation scheme for use when fast computation time is important and a pulse-frequency
scheme to be used when asynchronous computation is the prime consideration.

Pulse-Width Neuron

The pulse-width modulating (PWM) neuron is used to modulate both analog inputs to the
network and to produce pulse-width outputs. The neuron itself consists of a conventional
comparator which compares net synaptic activity (or the analog input in the case of an input
neuron) to a reference ramp waveform (figure 2-9). It is this reference ramp waveform that
determines the shape of the neuron transfer function. Shown in figure 2-10 are ramp waveforms
for a linear (blue) and sigmoidal (red) transfer function. The ramp waveforms used are double-
sided to minimise switching noise which would otherwise be increased by all neurons switching
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together if the ramp was single-sided. The comparator is a process invariant device and the
ramp wavéform is produced off-chip from values stored in digital RAM, this makes the pulse-
width neuron largely invariant to process variations. This flexibility and invariance is achieved
with a trade-off to added complexity off-chip in terms of RAM and DAC circuitry for ramp
generation.

Pulse-Frequency Neuron

The basic principle of the operation of the pulse-frequency neuron design is shown in figure 2—
11. The high time of the output pulse is constant and determined by the current [ charging

Vid

1=

’é@l
L

Figure 2-11: Basic Principles of EPSILON PFM Neuron.

Vnetj

the capacitor C\e,. The low time of a pulse is determined by the voltage controlled current
sink, I, discharging Cy,. This current sink is formed by a differential stage to give a sigmoidal
transfer function with respect to the net synaptic activity, Vaer, » with a maximum current equal
to I. This in effect varies the duty cycle of the resulting pulse stream between 0% (I, = 0)
and 50% (I = I'y). The actual voltage controlled current sink is considerably more complex
than this as it incorporates techniques to vary the sigmoid gain or temperature, for more details
on this see Hamilton [44]. Also to promote process tolerance a reference generation scheme
using phase-locked-loops (PLL) is used to set the maximum current J;; and the reference to
vary the sigmoid gain[44].
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2.4 EPSILON Chip Results

Table 2—1 summarises the features and specifications of the EPSILON chip. All modes of

EPSILON Chip Specifications

No. of state input pins 30

No. of actual state inputs 120, MUX"d in banks of 30
No. of State outputs 30 Directly pinned out
Input mode programmability ~ All analog/All digital
Input Modes analog, PW or PF
Output modes PW or PF

No. of synapses 3600

No. of weight load channels 2

Weight load time 3.6ms

Weight storage Dynamic

Maximum speed (cps) 360Mcps

Technology 1.5pm CMOS

Die size 9.5mm x 10.1mm
Packaging 144 pin PGA

Maximum power dissipation 350mW

Table 2-1. Comparison of EPSILON Chip Specifications

operation performed satisfactorily, though design imperfections resulted in a degradation from
expected results. The most serious problem was in power supply distribution to the synapse
array which led to offsets in the synapse characteristic[9]. This can be seen in figure 2—12 which
shows the synaptic multiplication characteristic in the PWM output mode. The characteristic
in the PFM output mode shows similar behaviour (figure 2—13) though this mode experienced
more noise variations due to the many edges inherent in a pulse-frequency modulated signal
coupling with analog references. These problems are discussed further in Chapter 5 when the
development of the VLSI component of this thesis is presented.

2.4.1 FENICS - EPSILON at System Level

Despite the shortcomings present in the EPSILON device, the performance was still sufficient
to warrant development of a system level test bed to use the chip for neural computation.
This system, named FENICS?, performed support functions to enable a neural network to be

2FENICS: Fast Electronic Neural Information Computing System
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Figure 2-12: EPSILON PWM Characterisation Results.
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Figure 2-13: EPSILON PFM Characterisation Results.
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Figure 2-14: FENICS: EPSILON System Level Board.

implemented using the EPSILON chip. The general system architecture is shown in figure 2-14.
The pulse RAM is a bank of memory used to store pulse streams, either sampled from EPSILON
outputs for later processing, or generated by the system to apply as inputs to EPSILON. Sub-
systems for ramp generation and weight refresh were also included. Control of the system is
carried out by a microcontroller which transfers data around the system using an 8 bit data bus.
Communication with the host system is over the microcontroller’s serial link for commands
and a 30 bit parallel bus for data. The overall system performance was restricted by the slow
speed of the microcontroller and the serial nature of generation and processing of pulse streams
over the 8 bit microcontroller bus. These issues are further discussed in Chapter 6.

Three test problems were implemented on the FENICS system:

1. An image classification task to label scenes as roads or not roads was performed on a
45:12:2 MLP trained with the back-propagation algorithm[24].

2. A speech processing task involving classification of 11 vowel sounds from a database of
33 speakers. This was performed on a 54:27:11 MLP trained using the virtual targets
algorithm([44].

3. The travelling salesman problem (TSP) using a Kohonen network[9).

For the first two problems the hardware network was trained chip-in-loop (CIL), a technique
whereby inaccuracies present in the hardware can be partially compensated for by training with
these non-idealities present. The Kohonen network was trained off-line in software and the
weight set downloaded and used on hardware.
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Hardware Software
Problem results Results
% Correct (% Std. Dev.)

Image 63.57 (4.86) | 67.56 (8.33)
classificationf24]
Vowel 65.34 (N/A) | 58.21 (4.25)

classification[44]

Variation between

Kohonen TSP[9] Correct Solution? hardware and
software

5 city pass pass —16.2% - 0%

9 city pass pass ~5.4% — 6.6%

10 city fail pass

Table 2-2. Summary of Problems Implemented on EPSILON.

Table 2-2 shows the results of these experiments. It demonstrates the potential performance
of EPSILON style pulse stream processing for CIL training as results from hardware compare
well with software networks. For the case of the Kohonen TSP; hardware non-idealities caused
the network to fail for problem greater than 10 cities. The large variations seen between
software and hardware networks indicates that weights evolved for an ideal software network
are not suitable for use on hardware.

2.5 Summary

This chapter has introduced pulse stream neural computation. It has shown that pulse stream
techniques offer advantages for system integration in that network outputs are digitai signals
that can be buffered, transferred and processed with digital technology rather than requiring
an A/D conversion overhead. The EPSILON distributed feedback synapse was examined as
a process tolerant synapse design with the flexibility of operation with either PWM or PFM
pulse streams. The PWM output neuron scheme was shown as a very accurate and flexible
synchronous modulation method and the results of problems implemented on EPSILON showed
promise of effective solutions in a chip-in-loop training situation.



Chapter 3

Neural Networks for Practical
Applications

3.1 Introduction

The aim of this thesis is to develop pulse stream neural hardware suitable for implementing
solutions to real world applications. To illustrate some of the issues associated with this
objective, this chapter focuses on other hardware neurai network implementations.

To gauge the need for specialist neural hardware, a brief outline of hardware implementation
using conventional technology is first discussed. Following this, to focus on application issues,
four implementations have been selected for study. While not an exhaustive examination
of the available implementations, these represent the most successful of applications—oriented
hardware implementations. The chapter is structured around case studies of these four hardware
neural network implementations:

1. The Adaptive Solutions CNAPS system.
2. The Intel ETANN chip, a generic' neural processor chip.
3. The Synaptics Inc cheque reader system.

4. The Kakadu project in which a hardware neural network was developed for detection of
cardiac arrythmia.

The objective of this review is to determine how the examples above interact with larger
systems, in order to provide a focus three areas are addressed for each case study:

Target application: The target application is discussed to define the context in which the
example was developed.

Neural structure: The neural structure defines in what way neural network interacts with
larger systems. Three factors define this structure:

27
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1. Synaptic multiplication determines the input characteristics (e.g. analog/digital
single-ended/differential) along with internal data representation of the neural net-
work.

2. The weight storage technique used determines how the neural network is adapted;
this is done most often under control of an outside system.

3. The neuron structure determines the output characteristics of the neural network.

The choice and design of these three elements have a strong influence on such metrics as
speed, area and power consumption of the network.

System Performance: The performance of the neural architecture in use gives an indication
of the success of the implementation. Key factors here are:

e System support required for chip operation.
¢ Training methods suitable for network use.

e Success of the implementation for the target application.

After presentation of the four case studies the issues raised by the comparative methodo-
logies are discussed. It is these that play an important role in Chapter 4 which deals with the
specification of the hardware content of this thesis.

3.2 Using Conventional Technology to Implement Neural
Networks

To assess the need for dedicated neural hardware, this section outlines the effectiveness of
how conventional off the shelf hardware can be used to implement neural networks. The
obvious technology to accomplish this is DSP! technology as a neural network requires fast
numerical operations to implement the multiply and accumulate functions of the synapses. For
example, the TMS320 series can perform such multiply—accumulates at a rate of 40MHz, this
is equivalent to neural performance of 0.040 billion connections per second. As wil} be seen
in the following case studies, this is at least an order of magnitude less than all but one of
the implementations reviewed. The throughput of such a hardware implementation would be
dependent on network size as the parallel neural structure is being implemented on a serial
processing device. Though this lower throughput in itself is perhaps justification for dedicated
hardware development, further justification derives from the nature of the application areas
the neural technology targets. That is, the defined application area lies on the boundary of
the analog and digital domains. To interface a DSP to analog signals a large A/D hardware
overhead is required.

'Digital Signal Processing
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3.3 Case Study: Adaptive Solution’s CNAPS

The Adaptive Solutions CNAPS? chip-set is a fully digital parallel processing system designed
primarily for neural network implementation. The system is based on two custom chips:

1. The CNAPS chip, an array of parallel processors.
2. The CNAPS Sequencer Chip (CSC) that controls one or more CNAPS chips.

Together the processor and sequencer form a single-instruction, multiple-data (SIMD) computer
where each processor from the CNAPS chip(s) executes the same instruction on multiple data.
This maps neatly to the neural network structure of each neuron (processor) performing multiply
and accumulate operations in parallel (multiple) streams of input data.

3.3.1 CNAPS Structure

The powerhouse of the CNAPS system is the parallel processor chip the CNAPS-1064 which
has an array of 64 integer processors called Processor Nodes (PN’s). Figure 3—1 shows how

Output . CNAPS
o Bus 8 CNAPS11064 Chip 1064 Chip
2 - 7
S -+ 1 b1yt
ot
-]
(¥ .
g Igter PN fonoHpna PN| | A g}f -
5 Bus 63
& Command ‘T ‘f ‘? ‘T
- ,8 -
Input ’
Bus

Figure 3—1: A CNAPS System Consisting of CSC Controller and Multiple CNAPS Chip

CNAPS chips connect under control of the CSC chip to form a parallel system[82]. Each
CNAPS chip has 64 PN's. The structure of individual PN’s is shown in figure 3-2. Each
PN has a multiplier (up to 16 bit x 16 bit) a 32 bit adder/accumulator, a logic/shifter block, a
32 word register and a 12 bit address unit accessing 4K Bytes of local (e.g. weight) memory.
The data representation is fixed-point, two’s complement arithmetic. This generally has 16 bit

2Co-processing Node Architecture for Parallel Systems.
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Figure 3-2: Internal Block Diagram if a CNAPS Processor Node.

internal resolution with extra head-room given to multiply/accumulates. Two broadcast busses
supply data (8 bit) and instructions (32 bit) to all PNs on the chip. Qutput busses are also 8 bits
and PNs place data onto it via one of several arbitration schemes. Most operations take only
one clock cycle, exceptions are 16 bit I/O and high resolution multiplications which take two.
PNs communicate with their nearest neighbours via a 4 bit bus used amongst other things for
arbitration and winner-take-all evaluations[3,2,46].

3.3.2 CNAPS System Performance

Adaptive Solutions manufacture CNAPS boards for PCs and VMEbus as well as a dedicated
server system. Extensive software is also available including a dedicated ‘C’ compiler, binary
libraries, an assembler and applications development packages. At board level, the VMEbus
board for example, allows the up to 8 CNAPS chips (512 PNs) and the addition of an application
specific mezzanine board for custom I/0. Neural network algorithms such as backpropagation
have been demonstrated on CNAPS systems to be up to 69 x 10? times faster during learning
and 38 x 107 times faster in feedforward mode than a SUN 3 workstation[76].
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There are several reported applications running on CNAPS systems{42,47,54,79,75,82].
Gruber et al[42] describe a neural network classifier that is used as a trigger in a physics
particle collision experiment. Here VMEbus based CNAPS computers take input data from
a 20MH7z bus carrying data from various detectors involved in the experiment. The CNAPS
systern was able to process this data in the required 20us.

Holt et al[54] describe a speech recognition system for antomated telephone operator
systems. Here the CNAPS computer performs other parallel operations such as Fourier analysis
as well as a neural network classifier with 128 PNs to achieve classification in 1100ms.

Matsuura et al[75] describe a speech recognition system based on phoneme extraction.
The system utilises a CNAPS processor to do spectral feature extraction followed by phoneme
recognition using a 135:220:23 MLP trained by back-propagation then word recognition by
DTW matching. It achieves a 97% recognition rate on test set data for a vocabulary of 100
words.

3.3.3 CNAPS Summary

The CNAPS system offers neural network processing within a conventional digital systems
environment. It is an expandable system where extra chips can be easily added to increase
network size. Each processing node stores multiple weights locally and acts as a column of
synapses. The network architecture is also variable, but for sparsely connected networks, due
to the nature of the SIMD architecture, efficiency of processor use decreases substantially[47].
The CNAPS architecture offers little possibility of a highly integrated solution but rather is used
as a parallel accelerator. As CNAPS has no fixed architecture it is not limited to any particular
neural network architecture; it can also be used to implement other functions that benefit from
parallel operation such as Fourier anaiysis[54] and image processing[2].
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3.4 Case Study: Intel ETANN

Intel’s Electrically Trainable Artificial Neural Network was the first serious commercial attempt
at providing hardware for generic neural computation. As such there is no specific target
application associated with its design. The chip utilises analog EEPROM cells for weight
storage and fully analog representations for input and output. The chip has two 80x64 synapse
arrays consisting of 64 inputs plus 16 bias synapses fully connected to 64 outputs. One array
takes inputs from 64 external analog inputs while the other is a feedback network fed from the
analog network outputs. This feedback array can also be used as a second layer.

3.4.1 Neural Structure

The basic ETANN neural structure is shown in figure 3-3. The design utilises fully differential
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Figure 3-3: ETANN Neural Structure.

signals to enhance noise immunity and temperature invariance. A NMOS Gilbert-multiplier
produces an output current Al,,; proportional to a multiplication between the weight stored on
the floating gates AV}, and the input signal AV},,. The stored weight is changed by adding or
removing electrons from the floating gate by Fowler-Nordheim tunnelling between the gates
and diffusion. The resolution of this weight is dependent on how accurately this floating gate
voltage can be set and how well the weight is retained. Results from [51] show that for long term
(= 15 year) storage 4 bits of resolution is possible. Using “bake-train” techniques, whereby
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the chip is baked at high temperatures after training to promote the relaxation of the weights
then re-trained[103], up to 7 bits of long term resolution is possible.

Figure 3—4 shows the block diagram of the Intel ETANN chip highlighting the input, output
and weight storage channels along with the references and controls needed by these functions.
Input and output to the chip is in the form of individually pinned, single ended analog voltages.

80 x 04

WcighllConu'oI
I |
, . Single weight
Mode inputs § Progrom voltagesfl Address inputs. -a outgul. &
— E e crestna HV Address :
' logie switching buflers
Hold
Reseti M9 Bias
Input H
64 analog Input
inputs. 0 yrapse ey

Vrefi BBt

Row decode

Bias

Clock W

Resetf H ™ Single summing
i mode output/

perturb input (x2)

. Single
i sigmoid
output

veefo B Vgain 64 analog D b Neuron enable
outputs
1 ]
|

OQutput

Figure 3—4: Block diagram of the Intel 80170NX ETANN

Internally, representation is differential with respect to the reference voltages Vi and Viero»
for input and output respectively. The input synapse array takes inputs from the 64 analog
voltage inputs. The network architecture can be varied by using the feedback array of synapses
in one of three ways:

1. Network output can be fed-back under control of the clock signal allowing implementa-
tion of Hopfield networks.

2. Two layer operation is possible: The first layer is evaluated with the feedback layer
disabled and the input array active. The outputs are then sampled and held while the
feedback array evaluates the second layer with the input array disabled.
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3. Up To 128 inputs to a single layer are possible by disabling the neurons via the neuron
disable pin and the 64 output pins can be used as an additional 64 inputs.

Weight Adaptation

The ETANN chip is addressed by 14 address lines to access all 10240 weights. The present
state of the addressed EEPROM cell can be monitored via the single weight output pin of
figure 3—4. The host processor must decide on the pulse-width and heights necessary to change
the weight to the new desired value. These will be in the range of 12-20V and 10us—1ms. After
a weight change pulse is applied the weight can be sampled again and an iterative process used
to fine tune the weight. Obviously this can entail a lengthy process if learning is over thousands
of epochs. Thus, normal procedure would be to train a software simulation, download the
weights and tune the weights with the ETANN chip in loop.

3.4.2 System Performance

Several papers describe use of the ETANN chip in systems [50,61,69,102,103]. One that
demonstrates potential difficulties (or inappropriate use) of ETANN is from the Naval Air
Warfare Centre in California[61]. Here the goal was to embed ETANN into a digital system
for real-time use; primarily for local area processing on 2-dimensional images. To achieve
this, 128 channels of D/A conversion and 64 channels of A/D conversion are needed. It was
found that with this overhead it was very hard to run the system at ETANN's full speed and it
presented a very large hardware overhead. An analog communications bus was ruled out due
to low drive capability of the ETANN output buffers (0.375m A) and unavailability of suitable
analog memories for storing data[61].

The application of Lindsey et af[69] in drift chamber tracking is more appropriate. Here
analog sensor readings from a drift chamber experiment are fed directly to ETANN. Training
was carried out chip-in-loop (CIL) using Intel’s PC based ETANN board and development
system.

Tam et al[102] demonstrate the multi-chip ability of ETANN using an analog bus. They used
the ETANN Multi-chip prototyping Board (EMB) from Intel, along with supporting software
which develops a set of weights for ETANN off-line then trains in loop to adjust weights. To
gauge the complexity of training ETANN, an 8 ETANN system took over 12 hours to perform
4 CIL training epochs!

3.4.3 ETANN Summary

ETANN provides a solution to the vexing problem of on-chip non-volatile weight memory by
using analog EEPROM. It does this at a cost of a long and computationally intensive training
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time. The fully analog I/O preserves the parallel nature of the network and is ideal for problems
with analog data. However for digital data or interfacing to digital systems a high overhead
must be met in A/D and D/A conversion. Commercially the ETANN chip was unsuccessful;
Intel’s neural networks group has now been disbanded and the chip withdrawn from sale.

3.5 CaseStudy: Synaptics Corporation OCR Cheque Reader

The Synaptics Corporation has been developing neural network systems for commercial use for
nearly a decade. One product that illustrates technical success, though not commercial success,
is their OCR? system for hand swiped cheques. Table 3—1 shows the basic specifications of the
required system([34].

Table 3—1. OCR system for hand-swiped cheques

FONT: El3B

SPEED: < 1000 characters/second
ACCURACY: > 99.995% correct classification
COMPLEXITY: Custom chip plus micro-controller.
MANUFACTURING VOLUME: =2100,000 units/year.

MANUFACTURING COST: < $175 per system.

An engineering solution to this problem is quite difficult due to the presence of many free
parameters, such as:

Unknown X & Y position of character.

Unknown and variable velocity of cheque.

Unknown and variable reflectivity of cheque (brightness).
Unknown and variable ink density of cheque (contrast).
Presence of corrupt or damaged characters.

High input data rate, 23 megapixels/sec.

3.5.1 Neural Structure
System Architecture

The basic architecture of the system is shown in figure 3-5 consists of a neural network chip
(I1000 chip) which incorporates a photo-sensor array for direct optical input and a digital

30ptical Character Recognition
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Figure 3-5: Architecture of Synaptics OCR cheque reader system

interface to a micro-controller for output. The internal architecture of the neural network chip
is shown in figure 3-6. One neural network is used to locate the character to be classified which
triggers the scan control section to present the character to a second classification network. A
third neural architecture performs a winner-take-all (WTA) function along with a confidence
measure.

Circuitry to convert the network outputs into signals compatible with the micro—ontroller
bus is also included on the chip.

11000 Circuits

The 11000 was custom designed to provide a solution to the single fixed problem defined in
table 31, this allowed the use of fixed weights in the network as adaptability was not required.
The weights are encoded as the width-to-length ratios of the synaptic connection transistors
shown in figure 3-7(a).

The winner-take-all circuit of figure 3-7(b) consists of a series of commoned current
conveyors[7,65,112] and operates on the following principle: The bias voltage V,;,, produces
a reference current, Jy;,s. All the lower NMOS transistors are controlled by a common gate
voltage V. Atequilibrium, in the case where one input current is significantly higher than all
the others (1,;,4.), V. will stabilise such that the lower transistor conducts I,,,o. in saturation. As
all other currents are less than 7,,,.,, all other lower transistors must leave saturation, drastically
reducing their output voltages V;, and shutting off the upper NMOS transistors. Consequently
virtually all of Iy;,, is sourced from the upper NMOS transistor of the winning input. Thus
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Figure 3-6: Neural network configuration on 11000 chip.

the output voltage V.. associated with I, is much greater than all other outputs which
are approximately zero. Also, for operation in the sub-threshold region, Vi, logarithmically
encodes I,,,.[65].

If two inputs are approximately equal (say Iy = I;), more comparison of V, and the
output voltages produces a confidence measure for the decision — if they are very close, a low
confidence is implied.

Figure 3-7(c) shows a pixel of the silicon retina. This circuit, derived from Carver Mead’s
work at Caltech[78], has a very fast response time to cope with the up to 40 thousand frames
per second input rate. The logarithmic characteristic of a MOSFET in sub-threshold is useful
for compression of the input and an adaptive element is added to account for device mismatch
and variations in optics, illumination and temperature[34].

3.5.2 System Performance and Success

Despite the technical success of the Synaptics OCR the product did not meet with commercial
success. According to Faggin[33], the director of Synaptics, reduction of the unit cost after
the contract was finalised made the product uneconomical. Other Synaptics projects have
also had considerable technical success but little commercial success, such as address locator
systems for the US postal service. The current product which the company is hoping will find
commercial success is a touch pad mouse for portable computers which uses neural techniques
to convert C/V* characteristics of a touch pad into mouse movement signals.

This lack of success shows the difficulty in bringing neural products to the marketplace,

4Capacitance/voltage characteristic
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Figure 3-7: Circuit Blocks of OCR system

for despite high technical quality and even cost competitiveness, proven technology is usually
adopted in preference to unproven neural technology.

3.5.3 Synaptics Summary

The Synaptics 11000 demonstrates that neural network hardware can be custom designed for
applications solutions. The static nature of the problem allows for a fixed weight solution
leading to very compact synapse layout. The chip also incorporates direct optical input and
bus compatible digital output and control leading to a highly integrated solution with high
throughput.
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3.6 Case Study: Kakadu - A low power neural network for
tachycardia detection

The Kakadu design was developed by the SEDAL group at Sydney University, Australia in
order to classify intracardiac electrogram (ICEG) waveforms in the context of implantable
cardiac defibrillators. The need to ensure long battery life and the limited size of implantable
defibrillators means there are strict power and area requirements on the chip. A very low
power analog/digital hybrid CMOS design, operating in the sub-threshold region, was evolved
to solve this problem.

Classification of ICEG involves monitoring a time varying signal that represents the func-
tioning of the heart. The goal is to detect a dangerous situation (ventricular taéhycardia) and
trigger the defibrillator to correct this. Conventional digital time series analysis techniques are
too power and area intensive for an implantable device and the present solution which classifies
tachycardia on timing information alone fails to classify all situations correctly.

3.6.1 Neural Structure

The basic neural structure of the Kakadu chips is shown in figure 3-8. In this design synaptic
multiplication is performed between the differential input voltage Av; = (V} — V_) and the
current /pac Which represents the weight.
+Ipactanh (D) ifB5=1
Alout = Touts = Lot = 3.1
—Ipactanh (24ZY) if BS=0

The current Ipac is generated by the binary weighted currents [7-/4 that originate from a
current reference block on-chip. Six bits of local storage in the form of static flip-flops hold
the weight in a digital form, B5 being a sign bit switching the output current. The differential
output currents /,,;, and /,,, are commoned with other synapses and fed to a resistive neuron.
Network non-linearity is distributed across the proceeding layer of synapses by virtue of the
tanh non-linearity of the synapse transfer function equation 3.1. Several circuits to implement
the resistive neuron have been fabricated and tested[26] culminating in a design utilising
common-mode feedback to provide the necessary range for large fan-in networks[27].

The latest chip of the family includes a bucket brigade device (BBD) to sample and present
the continuous time ICEG to the network. It also includes a variable gain neuron and winner-
take-all circuitry as well as the necessary reference generation and decoding circuitry[27].

Power consumption of the chip is kept extremely low by cycling the current references of
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Figure 3-8: Kakadu synapse design

the bias circuitry achieving a total chip power dissipation of 186nW from a 3V supply for a
nominal heart (i.e. classification) rate of 120bpm.

3.6.2 System Performance of Kakadu

A range of benchmarking test problems, such as XOR, four bit parity and a simple character
recognition were successfully trained on Kakadu test chips{67,68] demonstrating its viability as
a general neural network architecture. Several learning techniques were used to train Kakadu
including modified backpropagation and weight perturbation. The most successful method
was the combined search algorithm (CSA). The CSA uses the twin minimisation strategy of a
modified weight perturbation combined with a random search[67,117].

The functional blocks of the final chip are highlighted in the floorplan of figure 3-9. Note that
with the BBD input device the ICEG waveform is sampled directly into the chip. The winner-
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take-all network produces a digital output which allows direct interfacing to the defibrillator.
This chip has been trained on the individual morphology data of seven patients. In six cases
the chip was able to correctly classify dangerous tachycardia in the test set. Interestingly, the
seventh patient, in which the network was not successful, proved to have a morphology of
ventricular tachycardia that even a human expert had trouble distinguishing[27].

3.6.3 Kakadu Summary

Kakadu demonstrates a medium sized network (9 neurons and 78 synapses) successfully solving
a rather complex classification problem. The low power, fully integrated design approach has
led to a hybrid scheme of digital weight storage and analog state representation. With the
addition of the BBD input structure, continuous time analog input is fed directly to the chip.
Output from the WTA circuitry is essentially digital.

3.7 Discussion

The four examples described in the previous sections were chosen to illustrate neural net-
works designed for real-world applications. Table 3-2 summarises salient features for each

implementation.

Included also are the figures for EPSILON, reviewed in Chapter 2, the starting point for
hardware developed in this thesis. These case studies have been chosen to be representative,
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Synaptics ETANN Kakadu CNAPS EPSILON
OCR
Connections
persecond | = 1 2.5 0.0013 1.2 0.36
x 10°
Neurons not known 64 9 64 processor | 30
nodes
Synaptic ~ 20,000 10,240 78 3,600
connections
Weight fixed by Analog Digital Digital Dynamically
storage transistor EEPROM refreshed
geometry capacitor
Technology | 1.6um lum CMOS | 1.2pum 0.8um L.Sum
and Size CMOS EEPROM CMOS CMOS CMOS
5x4.6mm 11.6x7.6mm | 2.2x2.2mm | 26.2x27.5mm| 9.5x10.1mm
Weight not known < 7.5 bits 6 bits 8 or 16 bit 8 bit
Resolution fixed point
Synapse
Density ~800 500 83.5 11.26 100
(per mm?)
Power 10mW 184 200nW TW 350mwW
Consumption ;

Table 3-2. Summary of features of chips reviewed

though the best of, other designs presented in the literature. Interpreting the data from table 3-2
some generalisations on implementation of hardware neural networks can be extrapolated.

3.7.1 Neural Structure
Analog v Digital

Taking the CNAPS system as being representative of digital architectures we can see that it
offers a high degree of flexibility in terms of network architecture as well as the ability of
implementing learning algorithms. It also interfaces directly to conventional digital systems
but requires extra sub-systems to interface to analog signals. In terms of power and silicon
usage it is the least efficient of the cases studied.

Design is optimised for a low power consumption, for higher bias, thus faster settling times, greater
speed can be achieved.
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Analog/Hybrid Architectures

The analog/hybrid architectures all have lower power, greater chip density and, in general,
lower resolution than their digital counterparts. Resolution of multiply—accumulates is often
hard to judge and dependent upon the noise floor of internal or even support circuitry[41].
Other factors delineating various designs include weight storage and interface ability.

Weight Storage

The four most common forms of weight storage are represented in the designs of table 3-2.
The geometrically fixed weight storage of the Synaptics design is a specialised case where we
can achieve very high space and power efficiencies at the expense of losing the adaptability
often sought in neural solutions. Other fixed weight schemes include resistive arrays of binary
valued amorphous silicon resistors[40,56], resistors in thin film technology[16], or use of fixed
ratio capacitors[25].

EEPROM offers analog storage in a slightly more expensive process than standard CMOS.
It is compact and essentially non-volatile but comes at the expense of slow programming.
Other EEPROM schemes have been demonstrated apart from ETANN such as the compact two
transistor cell of Kramer et al[63].

Kakadu and EPSILON both use digital techniqucs for primary weight storage. Kakadu
incorporates this on-chip while EPSILON uses external memory to dynamically refresh on-
chip capacitors.

It is fair to say that neural implementations are still waiting for technology to provide a
better solution to analog weight storage. Some possibilities under development such as SONOS
devices which offer lower programming voltages than EEPROM in smaller cells[114]. Another
technology that shows promise is amorphous silicon (a-Si:H) structures. These devices may
offer much faster programming times in a very compact size[53].

3.7.2 System Performance
Interface Considerations

Other differences between the neural network architectures of the four case studies lie in how
they interface to both their target problems and systems. A dedicated solution such as the
Synaptics 11000 shows the most efficient situation. Here input is highly parallel in the form of
direct optical input. Output is a micro-controller compatible digital bus.

Kakadu also has an efficient analog front end where an input signal is captured in real-time
by a BBD obviating the need for expensive (in terms of area and power) A/D conversion.
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For generic usage, /O is not so readily defined. Two issues are important here: Firstly
the interfacing to target problems such as real-time analog signals or digital data and output
interfacing to conventional digital systems. The second issue concerns cascadability where it
is desirable for network outputs to be compatible with inputs.

Section 3.4.2 presented several examples of interface schemes to ETANN. It demonstrated
that using analog busses an efficient interface could be developed and the massive D/A overhead
needed to interface input to a digital bus. All ETANN applications required A/D conversion to
interface output to a digital system as would be expected.

EPSILON offers analog or pulse modulated input (but not a mixture). Advantages of
pulse modulated schemes is the digital signal levels obviate the need for A/D and D/A voltage
conversion. Magnitude of signals is encoded in time so digital processing is still needed to
convert values to and from integer values. If done by the host system this can be computationally
expensive.

Suitable Applications

In looking at the problems that all the architectures reviewed have been applied to, definite
trends emerge: Most are interfaced to real-world analog data. Even in most digital cases data is
generated from real-world sources (such as speech) through A/D conversion perhaps followed
by preprocessing (such as DFT analysis).

‘The most successful applications provide smooth interfaces between the neural component
and input and output domains. The I1000 and Kakadu are good examples of this. All
applications reviewed process data and pass it on to some conventional digital system for use
and/or further processing. These factors tend to suggest that suitable applications for neural
solutions are ones requiring processing of analog data and an interface to conventional digital
computing.

3.8 Summary

The case studies presented in this chapter demonstrate the non-trivial nature of designing neural
network hardware for applications usage. It was seen that analog/hybrid architectures offer
compact, low power, high speed solutions when compared to digital implementations. Interface
considerations were shown to be of primary importance as principal factor in the success of an
architecture was how easily and efficiently it interfaced to target problems and systems.

Other researchers such as Vittoz[113] also expound this view that compact, low power
circuits coupled with ease of interfacing to réal-world data make analog techniques the principal
choice for parallel neural computation.

The case studies also show neural networks are rarely used in a stand-alone fashion, but
rather perform as part of an overall system, often pre-processing analog data.



Chapter 4

A System Specification for Hardware
Neural Network Development

4.1 Introduction

This chapter presents the general specification for the hardware to be designed in this thesis.
This specification was arrived at by considering the issues raised in the last chapter as well
as experience gained from working with the original EPSILON chip. The specification was
further focused by an examination of potential applications. Finally these are combined to
outline a system specification that is realised in the subsequent hardware design work of the
thesis.

4.2 Issues Raised by Case Studies

In the previous chapter some recent examples of neural network hardware were reviewed. The
Kakadu chip and Synaptics cheque reader are examples of very application specific devices and
although they have proved successful in providing solutions to their tasks, have not met with
commercial success. The ETANN system had the goal of providing generic neural computation
support, however in searching the literature for proof of its effectiveness one finds few examples
of use to justify such a claim'.

The CNAPS system perhaps comes closest to generic neural computation support. It
achieves this with the cost of large silicon area and high power consumption. Its interface cap-
abilities to digital systems is transparent but to analog/real-world data it requires large hardware
overheads. Another disadvantage of this type of architecture with respect to applications is that
there is no possibility of a highly integrated solution.

To aid the specification, the following generalisations are drawn from the case studies:

'In a search through the BIDS ISI database from 1985 to 1995 only 10 publications, of which 3 were
from Intel claimed use of the system.
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o Large generic neural processors such as ETANN fail to interface effectively to problems
they might be used to solve. This lack of interface makes their advantages over con-
ventional digital signal processing techniques or software implemented neural networks
negligible; especially as their performance is static while the performance of software
solutions increases with digital processor speed. This means their desirability is limited
as little advantage is gained by providing a hardware solution.

e The modest size networks of the Kakadu and Synaptics class give an effective and efficient
solution to a fixed problem. They have the advantage of interfacing closely to their goal
tasks.

o Specialised hardware (such as the Synaptics cheque reader) fill a narrow niche that must
be chosen carefully if the application is to be successful. Other considerations than pure
technical merit may cause the implementation to be considered non-ideal.

e Successful implementations often appear in the area where we are dealing with real world
(analog) data.

e Neural networks are most attractive where the possibility of a highly integrated solution is
of great benefit. For example low power, single chip, small physical size for the Kakadu
chip and mass production for the Synaptics cheque reader.

e Examples have been shown of problems where modest size networks offer good solutions
for non-trivial problems.

e Analog based computation offers significant power and silicon density advantages over
comparable digital based architectures.

4.3 Search for Suitable Applications

As the primary aim of this thesis is to use hardware neural networks in applications, the scope
was not to limit the design to a particular application but keep the system generic so that it would
be useful for prototyping a variety of applications. The danger of designing neural networks for
the sake of themselves is that, while contributing significantly to our understanding of hardware
issues, they often become unusable in applications, EPSILON and ETANN support this.

Consequently, throughout the project, a vigorous search was conducted for suitable applic-
ations to demonstrate the hardware and ensure the hardware was useable and useful.

Several possible applications were researched and successful demonstrators are presented
later in the thesis. Defining a variety of target applications also assisted and focused a system
specification, the applications considered were: an autonomous mobile robot, a character
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recognition system, a link admission controller and inverted pendulum controller. These are
discussed in the remainder of this section.

Autonomous mobile robot

This application, one that was followed to completion involves a controller for an autonomous
mobile robot and is presented in Chapter 8. The control scheme is based on a software
exemplar developed by Nehmzow[88]. The neural network hardware requirements for this
controller are modest: a single layer network with four output neurons and 10’s of inputs.
Inputs consist of analog sensors along with generated digital data. Outputs must be available to
a microprocessor for further processing. Advantages of a hardware solution to this problem are
real-time operation and processing directly analog sensor signals on the limited power budget
of an autonomous vehicle.

Simple character recognition

In preliminary work to gain familiarity with the original EPSILON/FENICS system, a demon-
strator of a simple digit recognition MLP was implemented. While this problem is purely
artificial it served to extract valuable lessons at chip and system level from the previous EPSI-
LON work. The problem used purely digital YO and the major lesson learnt was that data
bottle-necks in transferring this digital data limited system speed and that these were all rooted
at system rather than chip level. This problem is useful for testing the system and as a
comparison to the original EPSILON system.

ATM routing

This function approximation and classification problem stems from work by Nordstrém and
Gillmo et al [92]. Tt uses a MLP to approximate the probability of data packet loss in an ISDN
network to facilitate the decision whether to accept new connections. A hardware solution
is advantageous for this problem as this function needs to be carried out in real time in each
network router.

Inverted pendulum controller

This was another real-time control problem considered. It again involves direct analog sensor
input along with digital sensor and historical data. A substantial amount of time was spent in
prototyping this problem but the mechanical difficulties of the system prevented completion of
a fully working demonstrator.
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4.4 System Specification

The generalisations made in Section 4.2, the experience extracted from the case studies of
Chapter 3 and the lessons gained from the original EPSILON device all merge to create the
following list of axioms around which the system specification evolves:

1. The system must have the ability to deal with analog inputs.

2. The system must have the ability to deal with digital data.

3. The system must interface with conventional serial machines.

4. The systemn can be of modest network size yet large enough to solve useful problems.
5. The system must be able operate independently without external control.

6. The system must be cascadable.

7. The system must have the potential for a highly integrated solution.

The remainder of the section expands these points.

1. Analog inputs

The most suitable niche for neural network technology is in interpreting or preprocessing real
world data. This data is, in general, inherently analog in nature. Thus to avoid an unnecessary
external hardware overhead, any system must be able to accept analog data inputs.

2. Digital inputs

If the system is to interface to a conventional computer, the network must be able to accept data
generated by its host. Also, the most effective means of data storage available to us is digital
so historical information is most likely to come in this form.

3. Interface considerations

Consider the neural network as a data preprocessor; the data must be freely available to the next
stage of computation. It is generally envisaged that the neural network will be a slave device
of a serial based host machine, thus a digital bus interface common to other I/O peripherals on
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the system seems sensible. The danger with highly parallel neural technology is that system
performance can be degraded by data-flow bottle necks.

4. Size

Examples of networks of modest size (10’s of neuron as against 100’s or more) were seern in
Chapter 3 performing useful tasks. Conversely, larger neural network chips become unwieldy
in terms of smoothly integrating with a digital system. It is these two factors along with a
restricted silicon budget for this work that the specification calls for a modest size networks
instead of “massive” one.

S. Autonomy

As an effective sub-system of an overall system a neural network processor must demand as
little computational overhead from its host as possible. Ideally the only functions a host should
provide are overall control signals and an interface to I/O data. To achieve this a neural network
must provide its own support functions such as weight storage and I/O control. '

6. Cascadability

As the goal of this work is to provide hardware support for prototyping neural network applic-
ations, it is highly likely that for some problems, network size will be greater than the physical
network on chip. For this reason it is important that chips can be cascaded to increase network
size or depth. The major requirement needed to meet this specification is compatible input and
output representations.

7. Integration

Chapter 3 demonstrated that many applications demand a highly integrated solution for success.
While not proposing to produce a fully integrated system designed for a specific application,
design choices leading to possibilities of further integration should be favoured.
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4.5 Summary

This chapter has drawn together the research conducted through literature survey, the first
hand experience and knowledge of the EPSILON system and the requisite needs of possible
applications to produce a coarse specification of the hardware to be developed. In the next two
chapters these specifications will be expanded and implemented in the design of the chip level
and system level hardware which underpins the work of this thesis.



Part II

Hardware Development




Chapter 5
The EPSILON II Chip

5.1 Introduction

In previous chapters we have introduced pulse stream methodology and circuits, examined how
and where to apply neural network hardware to applications and evolved a speciftcation on how
that may be achieved. This chapter presents the VLS hardware that forms the foundation for
later systemn level work. It will start by reviewing the original EPSILON design and detailing
improvements to the device. Following this the specifications of Chapter 4 will be addressed
and changes outlined to satisfy these. VLSI improvements occur either at a circuit level or
architectural level; these improvements are presented next. The final section will present
characterisation results from the chip, assess the success of the design and offers solutions to
the problems encountered.

5.2 EPSILON Background

The EPSILON chip represented a significant achievement in the evolution of pulse stream
neural networks. It realised a network of sufficient size for use on real world problems
and was demonstrated performing such tasks as vowel recognition with MLPs[44], image.
classification[24] and optimisation with Kohonen networks[9]. It did however have several
shortcomings that interfered with predicted operation, these are presented below along with the
solutions implemented:

1. Multiplier Error: Synaptic multiplication exhibited an anomaly in the characteristic close
to and at zero input (see figure 2—12). This was attributed by Baxter in [9] to a power
supply distribution problem arising from the non-zero sheet resistance of the long metal
power tracks that supplied the synaptic array.

Solution: Minimise power track length from pad to core and make distribution into core
symmetrical. Thicken power tracks through core.

2. Neuron Offset: Device matching problems caused a random offset that affected neurons
by producing variation in their zero reference level. The extent of this affect was hard
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to quantify due to the distortion of the neuron characteristic by the power distribution
problem.

Solution: For practical use of EPSILON a number of synapses were used as bias to alleviate this
effect reducing the total number of synapses available to the network. For EPSILON II
additional autobias synapses were added to remove neuron zero offsets. This is achieved
by adjusting the autobias synapse weights to produce a zero neuron output for zero input.

3. Ineffective On-chip Biases: Feedback bias generation circuitry (dummy synapses) failed
to produce the correct values of bias for operation.

Solution: With the power distribution problem it was difficult to assess the extent of this
problem; however bias array was located on the edge of the chip. To cancel edge effects
and get a better match to operational synapses dummy synapses should be placed in the
middle of the array.

4. Injected Digital Noise: Shift registers for the weight refresh operation caused large spikes
on the supply rails injecting noise into the synaptic array.

Solution: Design shift registers with smaller transistors to draw less transient current and
isolate power supplies.

5. Coupling of Pulses and Analog References: Routing problems on the chip led to excess-
ive coupling between digital pulse modulated signals and sensitive analog references.

Solution: Develop chip floorplan and architecture to minimise signal path length of analog
references and isolate digital signals form analog ones.

6. Incorrect Control Signal: Phase locked loop (PLL) circuitry for pulse frequency neurons
needed an extra inversion of signal for correct operation. '

Solution: Add an extra inversion to PLL.

The details of these solutions is presented in the architecture and circuit design sections of this
chapter.
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5.3 System Level Requirements

A number of the system level requirements outlined in Chapter 4 have a bearing on chip level
design. This section describes the areas that were addressed in the design:

1. Mixed signal inputs.
2. Recovery of analog tnputs.
3. Minimising control signals.

4. Access to neuron activity voltages.

5.3.1 Mixed Signal Inputs

The need to deal with both analog and digital inputs has been specified. EPSILON could be
configured to have all analog inputs or all pulse stream inputs. It has been noted that many
problems in the target application area lie on the boundary of real-world and digital systems
and require a mixed signal approach whereby analog and digital data is fused in neural network
processing. Forthis reason it was decided to re-design the input neuron structure of EPSILON 11
such that each input could be individually configured as an analog or pulse modulated signal.

5.3.2 Analog Recovery

Section 4.4 specified a high level of autonomy and integration. One requirement for operation
as an analog interface is a knowledge of inputs states as this is required for many leamning
schemes, for example backpropagation. This is obviously non-trivial in the case of analog
inputs as an extensive overhead of A/D conversion would be needed to extract this information.
To overcome this the facility of recovering analog inputs as a linearly pulse-width modulated
output was also designed into the chip. This is relatively trivial as input neurons carry out this
function to present data to the synaptic array. All that was required was to route this signal to
output pads.

5.3.3 Control Rationalisation

As highly parallel designs such as neural networks are essentially pad limited, a rationalisation
of control signals was undertaken to integrate control logic for the weight refresh operation,
mode selection and chip control.
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5.3.4 Activity Preset

Some potential applications examined used Hopfield networks[70], a fully fed-back architecture
where inputs are imposed at the output and the network allowed to settle in a stable state. To
allow this a facility to preset individual neuron activity voltages was added.

5.4 EPSILON II Specifications

EPSILON Chip Specifications

Major Design Changes
EPSILON EPSILON I

No. of state input pins 30 32
No. of actual state inputs 120, MUX’d in banks of 30 32
No. of State outputs 30 Directly pinned out 32 Directly pinned out
Input mode programmability All analog/All digital Bit programmable
Digital recovery of analog inputs No Yes - PW modulated
Additional autobias synapses None 4 per output neuron
Programmable activity voltage No Yes
Number of control signals 11 6

Secondary Specifications

No. of synapses 3600 1024

No. of weight load channels 2 1

Weight load time 3.6ms 2.3ms

Weight storage Dynamic Dynamic
Maximum speed {cps) 360Mcps 102.4Mcps
Maximum input sampling rate S50kHz 50kHz
Technology 1.5pm CMOS 1.5pm CMOS
Die size 9.5mm x 10.1mm 6.9mm x Tmm
Maximum power dissipation 350mW 320mW

Table 5-1. Comparison of EPSILON and EPSILON II Specifications

The previous sections outlined the majority of the circuit changes required to meet the
specifications of EPSILON II. What remains is the choice of network architecture. The silicon
area available for the design was 49mm? which formed the major constraint on the design.
It was decided that for efficient interfacing to digital systems IO dimensions should be a
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multiple of eight. This, together with the area available, led to a 32x32! network architecture.
Table 5-1 summarises the specifications of the EPSILON II device and highlights the major
changes between it and its predecessor EPSILON. The details of how these specifications were
implemented is the topic of the next two sections; the first presents architectural details while
the second presents circuit level design.

5.5 EPSILONII Architecture

Results from Baxter[9] and studies undertaken by the author point to many of the EPSILON
shortcomings being attributed to layout level architecture. This section examines the archi-
tecture of the original EPSILON chip then presents the architecture of the EPSILON II chip
discussing the improvements made.

Figure 5-1 shows the general architecture of the EPSILON device and highlights signal
flow through the chip. The following points can be derived from this figure:

¢ Routing of analog references is very long and crosses all pulse stream inputs or outputs
contributing greatly to unwanted signal coupling.

e Power routing is long and asymmetric.

» Many routing paths are unnecessarily lengthened by poor pad placements. For instance
analog references are padded onto the chip from the opposite side from which they are
used.

e Bias generation dummy synapses are on the edge of the array: For more representative
operation under conditions of a systematic variation in threshold voltage across the die,
these should be in a central location.

¢ Some digital control signals have long signal paths that cross analog references promoting
coupling to these sensitive analog signals.

* Routing of synaptic input signals (green) proceeds to the top left hand corner before
being distributed back down the chip to input neurons. This forms unnecessarily long
signal paths (these can be a mixture of analog or digital signals) and leads to coupling
with analog references (this was demonstrated in Hamilton [44]).

o Neuron outputs (dark blue) originate from the bottom of the core and are routed to the
right hand edge pads. Again signal paths are long and this leads to coupling with analog
references.

"When stating network size in this manner we are referring to input dimension x output dimension.
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Figure 5-1: Signal flow through EPSILON

Figure 5-2 shows how these architectural points were addressed in the design of EPSILON II.

e The 32x32 synaptic matrix is split into four 32x8 arrays and placed symmetrically about
the chip centre.

e Input neurons, routing, as well as input pads are all along the left hand side of the chip
minimising signal paths from pad to input neurons.

e Dummy bias synapses are located in a vertical column through the centre of the chip to
obtain a better match to synapse array.

e Output neurons are located and padded out, sixteen each, on the top and bottom edges
of the chip. This minimises routing distance and isolates pulse outputs from the noise
sensitive analog references.
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e Analog references for the synaptic arrays along with synapse power supplies all originate
along the right-hand side of the chip well away from and digital signal routing.

e ‘X’ shift registers run horizontally through the chip centre while Y registers run vertic-
ally along the right-hand edge along with power routing. Power to these is isolated from
the analog supplies.

These architectural modifications are designed to reduce or alleviate the non-idealities found
in EPSILON as outlined in Section 5.2.
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5.6 EPSILON II Circuits

This section presents the circuit changes made to address the remaining problems of Section 5.2
and the system requirements of Section 5.3. These are presented as functional blocks:

1. Input neuron.
2. Synapse.

3. Output neuron.
4. Shift register.

5. Control logic.

5.6.1 Input Neuron

The specification for the input neuron is for the cell to be programmable as either an analog or
pulse modulated input. To accomplish this the circuit if Figure 5-3 is used. The SRAM cell

load_mode
RN S SRAM cell load_mode value| Mode
— e e : 1 ‘ Analog
Analog or B ! ‘ 0 Pulse
PM input :

—{EEP Vj to synapse
array

o Ramp

Figure 5-3: EPSILON II Input Neuron Circuit

of cross-coupled invertors is loaded with the value of the associated synaptic input when the
load _mode signal is high. The invertors are scaled such that this can be done through a single
NMOS transistor (circuit details are given in Section A.2).

In analog mode (‘1’ loaded) the signal from the synaptic input pad is sampled onto the
capacitor C when the sample signal is high. This value is held on C when sample goes low
and a linear dual-sided ramp is applied as explained in Section 2.3.2 to produce a pulse-width
modulated output to the synaptic array. '
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The layout of the cell is pitch-matched for the synapse array, implying that two input neurons
occupy a cell 100pm in height. The layout is shown in Appendix A, figure A-3 highlighting
the various circuit components. NAND gates are scaled to provide the necessary drive to the
synapse array.

5.6.2 Synapse

The synapse used was basically that in the EPSILON device. The only changes made were to
the horizontal metal 1 routing to provide thicker power rails and the addition of two vertical bus
lines to route input pulse-widths to output pads for the analog recovery mode. These two lines
are utilised by an “overlay” cell containing a pass transistor which is placed on the diagonal
axis through the array. Figure A—4 in Appendix A shows the layout of this cell.

5.6.3 Output Neuron

Basic circuitry is again similar to that of EPSILON and includes the feedback operational
amplifier for the synapse array[9], pulse-width modulating neuron[24] and pulse frequency
modulating neuron[44]. A cell for control of the activity capacitor allows it to be reset to a
mid-point or accessed and programmed similarly to a weight refresh operation. A new cell to
multiplex the output modes was also designed. This cell selects the neuron output as either
pulse-width mode, pulse-frequency mode or the pulse-width modulated analog recovery mode.
Layout of the output neuron in included in Appendix A, Figure A-5.

5.6.4 Shift Register

The operation of the raster-scan weight refresh requires shift register cells pitch matched to
the X and Y dimensions of the synapse array. As previously mentioned, the shift register in
EPSILON caused large power supply transients and so re-design was undertaken to prevent
this. Simulation and layout were performed by a Napier University undergraduate project
student, Alan Clark, under supervision of the author and Dr Alister Hamilton. Layout for these
cells can be found in Section A.6.

5.6.5 Control Rationalisation

The pad-limited nature of an I/O dense chip such as EPSILON II meant that pad usage had to
be kept to a minimum. Coupled with this was the desire to keep external support circuitry to a
minimum, this led to design of logic to minimise the number control signals. The EPSILON
chip contained eight pads for control of the weight refresh system. This was reduced to four
pads on EPSILON 11 by designing the refresh control logic of Figure 5-4. External signals
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are now reduced to a two phase clock, ¢, and ¢,, which clock the X direction shift registers,
a refresh and preset control signal. The application of the refresh signal starts a refresh cycle
coincident with ¢,. The preset signal is used to reset the X and Y registers and along with
refresh is used to start a preset operation on the activity capacitors.

5.7 EPSILON II Characterisation Results -

This section performs basic characterisation tests on the EPSILON II device to gauge the
success of the design changes. Several series of tests are described in in this section:

1. Initial verification tests.
2. Characterisation of the pulse-width neuron.
3. Testing of reference generation circuitry.

4. Neuron variation for zero input response: a test to examine the spread of offsets in the
neuron characteristics.

5. Tests to judge the performance of the autobiasing scheme in removing the above offsets.
6. Characterisation of the synaptic muitiplication.

7. An investigation into an anomaly in neuron zero response.

5.7.1 Initial Testing

The EPSILON II chip was fabricated using European Silicon Structures 1.54m double metal
CMOS process. A photomicrograph of the chip is shown in figure 5-5. After fabrication a
series of tests were performed on the chip to verify that it functioned correctly. These tests
were performed using the FENICS board designed for the EPSILON chip[44] by constructing
a prototype board containing EPSILON 11 to plug into the EPSILON chip socket. Tests done
included:

e Testing of weight download system.
e Simple characterisation runs to test synapse operation.
o Testing of PWM and PFM neurons to confirm correct operation.

These tests proved successful so the design of the EPSILON processor card (EPC) described in
Chapter 6 was undertaken. The results presented in this section were taken using of the EPC.
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Figure 5-5: EPSILON II Chip Photograph

5.7.2 Pulse-Width Neuron Characterisation

The output mode of operation used throughout this thesis is the pulse-width modulating mode
as it offers substantial flexibility in control of the neuron transfer function. To test this mode
and verify its operation the reset voltage (shown in figure 2-7) was swept across the input
range, centred on 2.5V, and the pulse-width of the output pulse measured. The circuit proved
linear with a maximum of 1 bit offset to the 8 bit resolution of the measuring system (the
EPC); confirming the linearity of the ramp generation circuitry and the robust nature of the
pulse-width comparator neuron.

5.7.3 Reference Bias Setup

The synapse circuitry requires two global reference voltages that set the synapse characteristic
zero or mid-points. The first of these is Vi, which determines the zero weight voltage (see
figure 2-6). The second reference V;, sets the voltage integrator mid-point such that for zero
synaptic current the integrator output produces a nominal 10us output pulse-width. Both these
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references have feedback generation circuitry as explained in Section 2.3.1. To test these
references all synaptic weights were set to zero value (T;; = 3.75V) and the neuron output
pulse-width measured with a linear ramp for:

1. A zero input (S; = Ous) pulse-width (zero input response).
2. A S; = 10us input pulse-width (zero weight response).

For correct operation both these inputs should yield the nominal midpoint of S; = 1045 as net
synaptic activity should be zero in both cases.

Unfortunately, despite the architectural changes made in EPSILON II, these circuits failed
to generate suitable references for correct operation. This implies that the power supply
distribution problem and edge effects (Section 5.2) of EPSILON was not wholly responsible
for malfunction of these reference generators.

To investigate these references they were set manually by adjusting V,, to get a nominal
S; = 10us output for a S; = Ous input pulse then adjusting V;, to get a nominal 5; = 10us
output for a S; = 10us input pulse. Results from these tests indicate that a variation of 10mV
in V, led to a large (= 2us) change in neuron output®>. This indicates that the circuitry is
very sensitive to this reference — the effects of this is discussed further in Section 5.8. For the
remainder of the experiments presented here V;, and V,,, are set manually.

5.7.4 Zero Input Response Variation

With V,; and V|, set to produce an average S; = 10us output, it is possible to examine the spread
of neuron offsets by measuring their zero input response. This offset is due to the mismatches
between the distributed feedback amplifiers and voltage integrators for each neuron.

The variation of the zero input response for the seventeen operational chips was measured
and the results summarised in figure 5-6. The figure is a histogram showing the frequency of the
zero output response for 5,100 measurements (5,100 - 17 chips x 32 neurons x 10 repetitions).
As the graph shows, there is a wide spread of zero input response values, most lying in the
range of 5;25~15us. This large spread indicates a poor matching between neurons. To confirm
that this is not due to an architectural problem as on EPSILON, where power supply variations
caused large variations, in figure 5—7 each neuron is plotted separately for the seventeen working
chips. In this graph average values of the zero input response along with the standard deviation
is shown. From this it can be seen that there is no gross trend according to geographical
position on the chip as was the case with EPSILON. This implies that while the architectural
changes made were successful in alleviating problems in EPSILON, these problems masked
other non-idealities now apparent in the spread of zero input response. The two circuit blocks

210mV was the smallest increment measurable with available equipment.
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EPSILON II Zero output frequency historgram across all chips
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Figure 5-6: EPSILON II Characterisation — Zero State Histogram.
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Figure 5-7: EPSILON II Characterisation — Zero State of Neurons.

responsible for this characteristic are the distributed feedback amplifier(DFA) and the voltage
integrator. Their contributions to these non-idealities are discussed in Section 5.8. The next

section determines how effectively these offsets can be removed by using the autobias synapscs
included on EPSIL.ON IL

5.7.5 Autobias Characterisation

That offsets (due to component mis-matches) in neuron zero input response would be present
was a known problem,; for this reason autobias synapses were included as a way of removing
these. This section details the results of the tests performed using the autobias synapses to
determine their ability to reduce zero input offsets. This reduction is achieved by adjusting the
weights of the autobias synapses iteratively until the neuron zero input response is the desired
10us. Figure 5-8 shows this process in operation whereby all neurons characteristics are shifted
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Figure 5-8: EPSILON H Autobias Settling Response.

to the defined zero point. The autobias neurons can shift the characteristic by approximately
+6us, which means that some neurons lie outside this range as seen in figure 5-6. These
neurons can either be used as they will now lie closer to the ideal zero point, or not used
decreasing the number of neurons available.

Table A-5 gives a summary of the twenty chips received from fabrication, their functionality,
and how many neurons lie out of autobias range. The majority of chips have less than four
neurons out of autobias range. In Chapter 7 it is shown that learning with the chip in loop can
accommodate such hardware non-idealities. The aim of removing offsets as far as possible
is to achieve close matching between chips and to allow the possibility of off-line evolution
of weights sets in software. This section has shown that the addition of autobias synapses 0
EPSILON II removes all but a few of the zero input offsets associated with neurons.

5.7.6 Synapse/Neuron Characterisation

This section examines the multiplication characteristics of the synapses. Due to the nature of
‘the chip it is not possible to characterise individual synapses. Instead, columns of synapses
are characterised by applying identical weights and inputs to all synapses and reading output
from a linear pulse-width modulating neuron. Figure 5-9 shows the characteristic as input
pulses are swept from S; = 0 — 20us for various weight voltages. Similarly, figure 5-10
shows the characteristic as weight voltage is swept from T;; = 2.5 — 5.0V for various input
pulse-widths. Both these graphs plot the average of 30 run samples for a single column of
synapses, in this case column 1 on chip 2.

From both these sweeps it can be seen that the EPSILON 1 synapse achieves good linearity.
To further examine the spread of these values figure 5-11 and figure 5-12 show error bars
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EPSILON 11 Neuron 1 Characterisation
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EPSILON II Neuron 1 Characterisation with standard deviation
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of the standard deviation and maximum and minimum values respectively of these sweeps.
These results show the spread of values becomes progressively greater with increasing input
pulse-width. This is as expected as the spread is primarily due to noise inherent in the synapses,
which is only fed through when an input is active.

An additional point to note from these graphs is the tight zero point; that is all sweeps
converge to a single point at the 10us output puise. This is in contrast to EPSILON where
power supply problems caused great distortion in this region (see figure 2-12). This implies
that the power supply distribution problem of EPSILON has been solved. In similar char-
acterisations performed on EPSILON a maximum (minimum) absolute standard deviation of
857ns (517ns) was recorded[9]. The maximum (minimum) absolute standard deviation for
the characterisation of figure 5-11 is 517ns (17ns). This tighter standard deviation represents
a significant improvement in the noise response indicating that isolation of analog references
has been successful in reducing noise coupling.

The trace for a zero weight value (i.e. T;; = 3.75V') is not perfectly horizontal. This varies
from synapse column to column as the value of the global zero reference V;, needed to anull the
zero weight current varies with process parameters and device mismatch. This is not considered
a major problem and in Chapter 7 it is shown that chip-in-loop learning can accommodate such
variations.

5.7.7 Neuron 0 Anomaly

In the course of testing the chip an anomaly in the characteristics of neuron 0 (bottom left-hand
corner of figure 5-2) was revealed. Investigation proved that response of neuron O was being
affected by the weight values present on neuron 31 (top right-hand corner of figure 5-2). This
implied some coupling of the weights on neuron 0 with those on neuron 31. It was discovered
that the delay induced by an extra logic gate, along with the long signal path from weight refresh
logic to the Y-shift registers, produced a delay in the clocking of the Y-shift register, Thus in
the transition between addressing weight 73, ,, and Ty ,4; an overlap caused by the delay path
momentarily addresses Tp,, affecting its stored value. Though this does not fully overwrite the
column O synaptic weights, in practice column (neuron) O was not used in experiments.

The solution to this problem for future fabrications is to simply add a dummy X-shift register
after column 31 to allow the Y-register to change rows without inadvertently addressing any
synaptic weights.
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5.8 EPSILON II — Unresolved Issues

Two major unresolved issues remain in the performance of EPSILON II circuitry:

1. The failure of bias generation circuitry to produce the correct values of V,, and V,, for
chip operation.

2. The large spread in offsets of neuron characteristics that was observed as quantified in
the zero input response measurements.

It is believed that these two non-idealities are linked and this section discusses possible causes,
concludes what is the major contributing cause and offers a possible solution.

5.8.1 Investigating Neuron Offset

It is relatively easy to narrow down candidate blocks to investigate neuron offset characteristics:

e Synapse transconductance pairs are eliminated as they are isolated from the circuit for
the zero input response measurements.

e The pulse-width comparator was shown in Section 5.7.2 to have minimal offset.
The remaining two candidates are:
o The voltage integrator.

o The distributed feedback amplifier.

Voltage Integrator

The voltage integrator is simply a differential transconductance device which subtracts the net
synaptic activity, Vomj from the output zero reference, V,, and converts this to a current, Tow;
which is integrated in the integration capacitor, Cj,; (see figure 5-13). The transconductance
stage consists of adifferential stage followed by acurrent mirror. As with any CMOS differential
stage mismatch between “identical” MOS devices, along with bias errors from mirror matching,
will produce an input offset. Allen and Holberg[4] quote this as being typically in the SmV -
20mV range.

SPICE simulations show that the predicted transconductance, g, of the stage is:

m = 1.1u8 (5.1)
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Figure 5-13: EPSILON II Voltage Integrator.

Thus for a worst case input offset of £20mV:
Aloy; = £22nA (5.2)

This current charges the integration capacitor Cj,, = 3pF' giving a voltage change in the 20us

integration period of:

IDU t
AVie, = G = £14TmV (5.3)

int

with the linear ramp used in the characterisation experiments having a slope of 0.1V/us this
produces a zero input response spread of

Siiere = 10 1.47us (5.4)

ZETO

This figure is too smail to account for the spread encountered thus the voltage integrator is not
the major contributing factor to the spread.

Distributed Feedback Amplifier

The effect of mismatch in the distributed feedback amplifier is more difficult to calculate.
Expansion of the transistor equations while modelling V4 as shown in figure 5-14 leads to a
complex expression. Instead a SPICE simulation was used to investigate the effects of input
offset voltage on V(,mj and oy, . The simulation used extracted circuit values and included the
synapse, feedback amplifier and voltage integrator. To investigate the effect that an offset in
the distributed feedback amplifier would have on the zero input response, the offset voltage
was swept £20mV measuring Viy; and Joy,. Results of this are shown in figure 5-15(a).
Performing similar calculations to the previous section:

AIc,utJ. = —118nA — +112nA

Ioutj t
Cint

AV, = = —~786mV — 746mV
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Figure 5-14: EPSILON II Distributed Feedback Amplifier Offset Experiment.

Sirere = 2.14-17.46p.5 (5.5)

ZETAO

This spread is slightly larger than the observed spread in zero input response, thus demonstrating
a typical input voltage offset in the distributed feedback amplifier is sufficient to produce the
observed spread in zero input response values.

To investigate the effect of input offset voltage on the synaptic multiplication characteristic
the synapse was included in the simulation and weight voltage on the synapse was swept
for Vor = £20mV. The results of this simulation are shown in figure 5-15(b). The black
horizontal line in the centre of the response corresponds to the zero input response results.
That the points at either end of this line, corresponding to Vyz = 320mV, do not coincide
with the zero weight response marked on the characteristics shows a difference between zero
input response and zero weight response as observed in the experimental resuits. The different
slopes on the plots also show that input offset voltage has an effect on synaptic multiplier gain.

The feedback bias generation circuitry uses identical circuit blocks of a transconductance
pair and distributed feedback amplifier to generate V;, and V,,, it is no surprise therefore that
these do not produce appropriate values. To balance the integrator:

Vor = ‘/bias + 1/1'c:f + Vo + AV, + V(AVDS) (56)

where AV, is the difference in threshold voltage between M1 and M2 due to substrate bias and
V (AVps) is a function of unequal drain-source voltages between M1 and M2 and is zero for
Vorr = 0. Thus any input offset will affect both the V, value required to balance any particular
integrator and also the V;, reference produced by the feedback bias generation circuit.

To balance the synaptic transconductance multiplier:

Vo = Ve + Vier + Vo + AV, + V(AVps) (53.7)



The EPSILON II Chip 73

(a) Zero Input Response with varying offset voltage
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(b) Integrator Output Current against Weight Voltage for Varying Offset.

260 0n e —— (V= S0, 01 S e b S ol R S A )
e Zero weight response : :
200.0n| . — Voff =-20my “°° WEIET IESPAISE :

=
¥y 8 020
=
=]
]
T e e e PR Lo S o L e R L
Zero input response
—400.0n|—". RO T L A ISR et SR SRAR Ry S e
2.80 3.20 3.60 4.00 4.20 4.40
Weight Voltage (V)

Figure 5-15: Effects of Op-amp offset on EPSILON II Response.

This again shows a dependence on input offset voltage of the DFA. The error introduced by
the unequal drain-source voltages also effects the gain of the transconductance pair as seen in
the varying slopes of characteristics in figure 5-15(b).

Thus the effects of moderate input offset voltage can account for a portion of all the major
types of non-idealities observed in the EPSILON II response; zero input response offset, zero
weight response offset, gain variation and bias generation failure.

5.8.2 Removing Input Offset

The previous section showed that input voltage offsets on the distributed feedback amplifier

have large effects on EPSILON II response. Itis therefore important that a method is developed
to minimise these offsets.

With the pulse-width modulation scheme a calculation is performed in three steps:

1. Inputs are applied and synaptic activity integrated.
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2. Output ramp is applied and pulse-width is generated.
3. Integration capacitor is reset for next operation.

In steps 2 and 3 the distributed feedback amplifier is unused and an autozeroing operation can
be implemented. One such scheme is shown in figure 5-16. Here during ¢, the offset voltage
is sampled and stored on C,,, this could take place during the integration reset operation.

From synapse array

mvout j

To voltage integrator

Figure 5-16: Autozeroing Scheme for Distributed Feedback Amplifier.

During ¢, the amplifter is used as normal but the charge stored on C,, effectively cancels the
input offset voltage. To use this scheme the amplifier must be stable in unity gain negative
feedback, simulations on the amplifier used in EPSILON II confirm that it is. Using this type
of autozeroing offset can be significantly reduced, it will not however be completely removed
as effects such as charge injection from the MOS switches and decay on C,, will prevent ideal
operation{39].

Implementation of such a scheme holds promise of greatly improving EPSILON Il matching
and feedback bias generation.

5.9 Summary

This chapter has presented the EPSILON II chip, its design, testing and characterisation. The
architecture of the chip was developed to overcome problems encountered in the previous gen-
eration EPSILON chip such as power supply distribution problems, excessive signal coupling
and poor performance of automatic bias generation. Other changes were incorporated to make
the new device more amenable to system level integration for use in applications such as an
analog recovery mode, programmable inputs and control rationalisation.

In comparing characterisation results to the previous generation EPSILON chip significant
improvements were noted; specifically the synaptic multiplication characteristic is now linear
around zero input and noise on output is less due to less coupling of analog references with
digital signals. ‘ '
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A significant spread in neuron offset for a zero input response was observed. Autobias
synapses were able to remove this offset in most cases. The key contributing factor to this
neuron offset was identified as due to input offset voltage in the distributed feedback amplifier.
This was also implicated in the observed incorrect operation of reference bias generation
circuitry and imperfections in the zero weight characteristic. A solution to minimising this in
future chip designs was also presented.



Chapter 6
The EPSILON Processor Card

6.1 Introduction

The previous chapter presented the EPSILON 11 chip. This device in itself however is insuf-
ficient to fill the system specification of Chapter 4; it requires additional circuitry to provide
such support operations as weight refresh, ramp and reference generation and /O management.
This calls for a sensible system level framework. In this chapter such a solution is presented,
the EPSILON Processor Card (EPC). The EPC is a peripheral device designed to interface to a
standard digital bus and provide data channels to the analog world and the pulse stream domain
of EPSILON II.

This chapter begins by presenting the necessary system level functions needed to support
the EPSTILONII chip. Following this, the architecture and design of the EPC is presented
leading to a discussion of the use of the EPC.

6.2 System Level Considerations

The EPC operates as a peripheral in a digital environment. It must also fulfil functions of pulse
stream communications between EPSILON II chips and control direct analog signal access to
the chip. Along with this IYO management role, the EPC must also provide support functions
necessary to operation of the chip. A summary of the functions implemented on the EPC along
with data and control flow between them is shown in figure 6-1. These functions, which are
discussed in this section, are: )

1. Weight refresh of on chip dynamic storage.
2. Ramp generation for pulse-width modulating neurons.
3. Pulse conversion of inputs and outputs.

4. Analog reference generation.

W

. Analog signal interface to access analog input data.

76
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Figure 6-1: Block Diagram of EPC Operations.

6. Pulse stream interface to allow cascading of boards via pulse stream communication
between EPSILON II chips.

7. Bus interface to map the EPC onto a standard digital bus system.

8. System control to oversee operation of functional blocks and EPSILON II chip.

6.2.1 Weight Refresh

As EPSILON II uses dynamic weight storage, the weights are stored on the EPC in digital
RAM which are used to periodically refresh on chip weights via D/A conversion. There is
no provision on EPSILON II for on-chip learning, thus weights must also be accessible to
an external processing device for modification. The functions necessary to carry out weight
refresh are shown in Figure 6-2. The functional block is under control of the Refresh Control
block which generates RAM addresses, control signals to the weight RAM and DAC, arbitrates
access to the weight RAM for bus requests and generates the timing signals to drive the on-chip
refresh circuitry of Section 5.6.5. The logical implementation of this block is included in
Section B.3 and figure C4.

6.2.2 Ramp Generation

The pulse-width modulation (PWM) employed on EPSILON II requires analog ramp signals to
operate. These ramps may be linear or some arbitrary function. Figure 63 shows a functional
diagram to implement such a function. The ramp waveform is stored in RAM; to generate
the ramp this data is fed sequentially to the DAC for conversion to an analog wavetorm. The
ramp control block arbitrates bus requests to modify data in the ramp memory and generates
the address sequence and control signals to memory and DAC to produce the ramp. In



The EPSIL.ON Processor Card

Access Request
(S:ysteml [
t gddress
ontro 27755 Refresh | refiesh
OERW| (Control |[coenird
@ |address Weight
‘E Memory
3 ate eight
dat weig
2| afn 5 DAC
2]
2
- Weight Refresh

EPSILON II

Figure 6-2: Block Diagram of Weight Refresh Operation.

ramp

EPSILON II

Conlrol
System ] ¥
Control | address Ramp
QERW) Control
o Ramp
< { addyess
I Memory
j;
d
E ddta L DAC
2
- Ramp Generation

Figure 6-3: Block Diagram of Ramp Generation.

78

practice, generation logic is part of the pulse conversion as ramp generation occurs along with
pulse conversion. The logical implementation of this function is included in Section B.2 and

figure C-5.

6.2.3 Pulse Conversion

Data representation at the interface of EPSILONII is in the form of puise streams. Data
representation of digital systems is binary words of set resolution. To provide bus compatible
I/0, data conversion between these data representations are necessary.
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Binary to pulse-width conversion

To enable data generated by digital systems to be processed by EPSILONII a conversion
between binary words and pulse-widths is required. Figure 64 shows such a scheme. This
scheme is analogous to the pulse-width neuron on EPSILON II: a linear reference ramp (signal

255 B
A
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g g \/
— o
W Tt
E Latch g. BeAl—— 0
et g 5V
g load B 6
==

load
ov L B<A

\/—‘ Digital ramp time

Figure 6—4: Block Diagram Binary to Pulse Width Conversion.

B) is generated and the data (A) is compared to this. The result (B<A) is a pulse-width
proportional to the magnitude of A. The same ramp (B) can be fed to a DAC to generate the
ramp used in the input neurons that converts analog inputs EPSILON II to pulse-widths. The
logical implementation of the binary to pulse-width conversion is included in Section B.2.1.

Pulse-width to binary conversion

To utilise the results from EPSILON II, outputs need to be converted from pulse streams
to binary words. Already available from the ramp generation block is a clock signal and
the sequence of addresses which scans the ramp memory to produce the output pulse-width
neuron’s ramp. One scheme to calculate output pulse-width would be to use the rising and
falling edges of the pulse-width to latch ramp memory address values. The pulse-width is then
calculated by subtracting these two values. The disadvantage of this scheme is that any noise
or spikes on the pulse-width signal can severely distort the result. An alternative scheme not as
susceptible to noise is shown in figure 6-5-a. Here the pulse-width is used to enable a counter
clocked by the reference clock. The counter output is thus proportional to the pulse-width.
For the EPC a word length of 8 bits was chosen as the resolution. Thus for a 20us ramp a
reference clock frequency of 12MHz is used. Logical implementation of the pulse-width to
binary conversion is included in Section B.2.2.

Pulse frequency to binary conversion

If EPSILON II is operated in pulse-frequency output mode a different conversion is needed.
One such scheme is shown in figure 6-5-b. Here a counter is used to count the incoming pulses
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Figure 6-5: Block Diagram Pulse Stream to Binary Conversion.

for a sample time ¢ to produce a digital output. The pulse-frequency output of EPSILON II
is a pulse stream of fixed high time (1s) with a duty cycle varying from zero to 50%. Thus to
convert to a resolution of 8 bits (256 levels):

ter = Max. number steps x period of max. output (6.1)
100
max. duty cycle
= 256 x 2us = 512us

= 256 x high time x

6.2.4 Analog References

For the purposes of experimentation, most references on EPSILON II were pinned directly
off-chip rather than tied to a global reference on-chip. Thus a total of 5 current references and 4 -
voltage references must be supplied to the chip. Also the failure of the feedback bias generation
circuitry for V,, and V; implies these voltages must be supplied as well. Along with these
references the non-standard synapse power supplies of 0.5V and 1.5V are produced locally.
The details of producing and setting up these references and supplies are given in figure C-6
and Section C.4.

6.2.5 Analog Signal Interface

The number of analog neural inputs to the EPC is variable and application dependent. Analog
input to EPSILON II is via the same 32 inputs as pulse modulated input. On the EPC, these
32 inputs are also commoned with the 32 outputs (which can take a high impedance state) to
form a pulse bus. The analog input to the EPC must be able to be isolated from this bus. Thus
analog inputs enter the bus through analog switches. These are configurable by a software
controlled input mode mask which maps which inputs are to be analog (mode 1) and which
pulse modulated (mode Q). Figure 6-6 shows this arrangement. The Mask register stores
the configuration of the inputs. To initialise the EPSILON II chip, load_mode is brought high
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Figure 6—6: Block Diagram of Analog Signal Interface.

which loads the configuration into the the latches of the EPSILON II input neurons. Analog
input data is sampled when sample is high and held when low. In practice, inputs on the EPC
are configured as groups of four to reduce the chip count on the board.

6.2.6 Pulse Stream Interface

The pulse stream interface addresses the system specification of cascadability. The pulse
stream interface allows the internal pulse bus of the EPC to be extended to other EPCs. To
do this a dedicated bus for neural pulse streams was designed with control signals (o allow
communication and synchronisation between boards. The scheme is summarised in figure 6-7.
The System Control block configures the board to accept inputs from the neural bus, or place
outputs on the bus, by controlling the bi-directional tri-state buffer. A system controller placing
data on the bus indicates it is doing so via a control signal. A controller waiting for inputs uses
this to start an EPSILON II processing cycle.

6.2.7 Bus Interface

The system specification calls for an interface to a standard digital bus. Some suitable bus
standards include the PC-bus, VME-bus and STE bus. As one target application, specifically the
instinct-rule robot, requires a stand-alone processor the STE bus was chosen for the following
reasons: )

e A wide range of inexpensive processor cards and other peripheral cards were available.
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Figure 6-7: Block Diagram of Neural Bus Scheme.

o Compact size of Eurocard standard size boards was ideal for the robot application.

o Asynchronous 8 bit data bus was sufficient for the essentially 8 bit resolution data of
EPSILON II.

In order to interface to this bus the EPC must:

e Decode addresses.

o Interpret STE control signals such as address & data strobes and read/write control lines.

o Provide a data acknowledge (DTACK) signal to indicate completion of a bus cycle.

Schematics of hardware to do this are included in Section B.4 and figure C-11. For more
details on the STE bus architecture see Mitchell [81].
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6.2.8 System Control

The System Control block addresses the system specification of autonomy. It holds overall
control of the previously described functional blocks as well as providing the control signals
for the EPSILON 1I chip. It synchronises and sequences all the operations carried out on the
EPC and will be discussed further in Section 6.5.3.

6.3 EPC Architecture

In the previous section the functional blocks of the EPC were presented. What remains to
be discussed is how these blocks were implemented in hardware. To gain an insight into the
design decisions let us return to the FENICS system designed to support EPSILON. This
system employed a combination of a micro-controller and standard 74 Series logic to perform
similar functions to the EPC, however it suffered from several major drawbacks. Firstly there
were major data bottle-necks in the system due principally to 30 bit data (the output dimension
of EPSILON) being processed over 8 bit buses. Transferring data over lower dimension busses
adds an extra overhead that on the EPC is minimised by transferring data over the internal 32 bit
pulse bus.

Pulse conversions on FENICS were intended to be carried out by the micro-controller. This
serial processing device, with a relatively stow clock speed, proved too slow and conversion
was found to be quicker by up-loading raw sampled pulses to a PC for processing. To alleviate
this type of problem, the hardware for processing pulse conversions was designed. However if
this was to be implemented with standard logic packages, the chip count on the board would be
enormous. Along with this, other functions such as weight refresh and ramp generation, which
were also performed on FENICS required several chips to realise.

To prevent an unacceptable chip count a FPGA! was used to implement much of the digital
logic and processing. Figure 6-8 shows the distribution of functions on the EPC highlighting
those implemented on the FPGA. The FPGA chosen was a re-programmable device to allow
the EPC to be customised to various applications. For instance, if pulse conversion is required
for all inputs and outputs, then the size of the FPGA is insufficient to implement all pulse
conversion circuitry in parallel. In this case pulses are stored or sampled in a a block of
RAM 32 bits wide (the pulse RAM of figure 6-8) and processed after an EPSILON II cycle
has taken place, in the case of outputs, or before and loaded into RAM in the case of inputs.
This is the most generalised case of the EPC and is what is presented in Appendix B. For an
application such as the instinct-rule robot, not all output neurons are used: in this case only four
— thus pulse conversion can be implemented in parallel on the FPGA. Similar optimisations

!Field Programmable Gate Array
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Figure 6-8: EPC Block Diagram.

can be implemented if many inputs are analog, reducing the demand on binary-to-pulse-width
conversion, and allowing processing to be done in a fast, parallel manner if possible.

6.4 EPC Design

The EPC was designed to conform to the STE bus standard and was laid out on Eurocard
size boards. To achieve this and to provide good noise isolation between analog and digital
functions a twin board approach was taken. A mother-board carrying out digital functions and
containing the FPGA is mated to daughter-board via an 80-way bus (see figure 6-9-a). The
daughter-board contains the EPSILON II device and all D/A circuitry, analog references and
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Figure 6-9: EPSILON Processor Card Boards.

power supplies (see figure 6-9-b). A photograph of the EPC is shown in figure 6-10 with the
key components highlighted.
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Details of the board layout and the set-up procedure for the board can be found in
Appendix C.

6.5 Using the EPC

This section describes the practicalities of using the EPC as part of a system. Firstly the issues
of data representation are discussed and a set of state variables is defined for the different data
representations used in the EPC. Next the I/O and control of the EPC is presented from the
point of view of the host system. Finally with this information available the system control
block of the EPC is explained.

6.5.1 Data Representation

Data communication between the EPC and its host is via the 8 bit STE bus. Data communic-
ation to and from the EPSILON II chip is in the form of analog voltages or pulse modulated
waveforms. The EPC carries out data conversions between these two domains. To avoid confu-
sion, table 6-1 defines state variables for the various data types and summarises the conversion
undertaken on the EPC. These variables are used throughout the remainder of the thesis such

Table 6-1. Data Representations in EPC and EPSILON IT

EPC EPSILON II Conversion
inputs X, € [0,0xFF] S; € [0,20pus] pulse-width X, = 8-bit PW conversion
outputs  Y; € [0,0xFF] S; € [0,20pus] pulse-width Y} = 8-bit PW conversion
weights W;; € [0,0xFF] T;; € [2.5,5V] voltage T;; = 8-bit A/D conversion

that the data type is implicit in the name. The state variables for EPSILON 11 (S;, S; & Tij)
have already been used in Chapter 5. These are mapped by the EPC into 8 bit integers (X;, X
& W;;) for use by the host system.

6.5.2 Memory Mapped 1/O

The I/O of the EPC is memory mapped onto the STE bus. The location of the EPC in memory
is determined by setting jumpers on the board to define the base address of the device. The
memory map of the EPC relative to this base address is shown in figure 6—11-a. The principal
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Figure 6-11: EPC Memory Map and Operational Flow.

memory blocks are:
o Weight memory — write only.

¢ Neural state memory — State inputs (X;) are written to this block and state outputs (¥})
are read upon completion of processing.

o Control register (on write)} and status register (on read).

e Mask register - 4 bytes which hold the mask that determines whether an input is analog
or pulse modulated.

e Ramp memory — 256 values that define the shape of the pulse-width output neuron’s
ramp.

Control of the EPC is via the control register which determines what function the EPC is to
perform. The status register is read to determine the current status of the device. The functions
of individual bits are given in figure 6-12. Bits 0—4 of the control register are common to all
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BIT Status Control
Register Register

0 Init. in process| Initialise |
1 Refresh Paused Recover
2 Reset Button Run
3 Interrupt Acknowledge
4 Inputs changed | Refresh Pause
5 BIN-TO-PW Motor 1
6 Running Net Motor 2
7 PW-TO-BIN Motor 3

Figure 6—12: EPC Status and Control Registers.

FPGA customisations while bits 5-7 are user definable for particular applications; in this case
motor control signal for the mobile robot presented in Chapter 8. Setting one of bits 0-2 sets in
motion the corresponding EPC function. When this is complete an interrupt is flagged either
on bit 3 of the status register or on a user selectable interrupt line of the STE bus. This interrupt
is acknowledged by setting bit 3 of the control register.

A flow chart example of running the EPC is shown in figure 6—11-b. These are the
operations that a host performs in using the EPC, namely:

e Load the mask register that configures inputs as analog or pulse stream.

o Initialise "(CR[O]) is then set to perform an initialisation function that downloads this
mask to the EPSILON II chip.

e When this function is complete the interrupt bit (SR[3]) goes high. This is acknowledged
by the host by setting the acknowledge bit (CR[3]) high. Further functions can be carried
out once interrupt goes low.

e To start a network run inputs are loaded to the board then run (CR[2]) is set high to begin
cycle. Cycle is finished by the same interrupt and acknowledge procedure as above.

e Qutputs are now available and can be read from the state memory.
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6.5.3 System Control

The core digital processing of the EPC is accomplished in the Xilinx FPGA. The firmware
code to initialise this device is loaded at power-up from an on board EEPROM or during
development via a special Xilinx serial cable. The FPGA design performs the functions
outlined in Section 6.2 such as weight refresh, pulse conversion, STE interface, bus control
and system control. The system control consists of a master state machine which sequences
and provides control signals to the functional blocks within the EPC. An example of this state
machine (as it can be customised for various applications) is shown in figure 6-13, while logical
implementation can be found in Section B.5. Each state of the state machine triggers an EPC
function:

WAIT Idle state — waits for change in control register.
INITIALISE Initialises the EPSILON II chip by down-loading the mask register
to the EPSILON II chip input neurons.

B-TO-PW Binary-to-pulse-width conversion — Triggers the binary-to-pulse-
width conversion function and waits for the BTPfin signal from
that block.

SAMPLE Sample and hold analog inputs.

FIRE INPUT Apply input ramp and any pulse modulated inputs to EPSILON IL

FIRE OUTPUT Apply output ramp to EPSILON 1II and capture output puises.

PW-TO-BIN Convert pulse-width modulated outputs to binary numbers. These
are stored in the state RAM for the host to read.

INTERRUPT Generate an interrupt to signal processing finished. This interrupt
is cleared by host via setting the acknowledge bit of the control
register (CR[3]) high.

This approach of allowing customisation of internal logic gives the EPC great flexibility.
For instance in Chapter 7 two EPCs are cascaded. In this case the system control state machine
is modified to start a cycle on receipt of control signals over the neural bus.

6.6 Summary

In this chapter the EPSILON Processor Card was presented. It constitutes a platform whereby
access to the EPSILON II chip is made transparent to a host device. All support functions
necessary to the operation of the chip are carried out independently of the host and the use of
FPGA technology allows customisation of internal functions for different applications. The
EPC communicates with external data via three channels:

1. Tts host via a STE bus.

2. Analog data via an analog input bus.
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3. Other EPCs via a neural pulse stream bus.

This structure means the EPC can communicate effectively in an applications environment rather
than decreasing the host system performance by transferring large quantities of unprocessed
data across the system bus.
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Chapter 7

Hardware Issues in Back-Propagation
Training

7.1 Introduction

To use the EPC in applications a network structure must be imposed on the hardware and a
training algorithm used to develop a weight set for a solution. In this, the first of the applications
development chapters, the use of the EPC as a multi-layer perceptron (MI.P) is explored. The
MLP is the most widely used of network structures; the most common training algorithm used
to train MLPs is the back-propagation training algorithm. The non-idealities present in analog
hardware raises issues concerning the performance of the network as well as the ability to
effectively train it. In this chapter the back-propagation algorithm is used to train the hardware
forward pass network and the empirical effects of hardware non-idealities associated with this
are investigated. This investigation explores the practicalities and limitations of using the EPC
as a hardware neural network.

7.2 Experimental Approach

The emphasis of this chapter is on the practicalities of training the EPC chip-in-loop rather than
a theoretical study of precision and accuracy issues. For this reason, rather than implementing
simulations to model the effects of individual hardware non-idealities, the approach is from
a system level. To perform comparisons, each application of the EPC is compared against
a floating point software model. For most experiments a second software model is used to
model the effects of limited precision and dynamic range in the weight set. The results from
these simulations are compared to actual hardware results to gauge the limitations of practical
hardware. :

In the first section of this chapter the hardware configuration is described and a software
model is developed to form a baseline for comparison — this entails determining the data
transformation necessary for communication and matching between hardware and software.
Following this techniques of maximising dynamic range and accuracy are outlined. The

93
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hardware non-idealities that effect network performance are introduced and the results of work
by others investigating these effects are reviewed.

The remainder of the chapter presents the experimental work to investigate the practicalities
of using the EPC. The first problem used is an artificial character recognition task. While not
truly representative of the problems likely to be found in the defined applications area of the
EPC, it allows an approach of graded complexity to probe hardware performance. This study
reveals practical aspects of hardware use particularly in relation to weight dynamic range and
choice of learning parameters.

The lessons learnt in this investigation are next applied to more difficult real-world problems:
e Link admission control in an ATM (Asynchronous Transfer Mode) network.
¢ A speaker identification problem.
e A medical data classification problem.
e A region classification problem.

The ATM problem investigates the EPC as a function approximator while the others involve
1-of-N classification problems. These problems are more representative of the types of tasks
found in the real-world. They have been chosen to provide a spread of difficulties from the
easier speaker identification problem to the difficult ATM and medical data problems, to the
very difficult region classification problem. The three 1-of-N classification problems were also
used by Cairns of Oxford University[18] in a study on the effects of analog precision in learning,
with the speaker identification problem being implemented on a pulse stream hardware network.
This allows comparisons to be made between the work of this thesis and that of Cairns.

7.3 The EPC as a Multi-layer Perceptron

Training a multi-layer perceptron (MLP) with back-propagation consists of two distinct oper-
ations: firstly a forward pass which propagates network inputs through one or more hidden
layers to the output layer. This operation is implemented on the EPC hardware. The second
operation occurs only during the training phase and compares the output results to target values
producing an error term which is propagated to previous layers to determine weight updates.
This error calculation and back-propagation is done in software forming a chip-in-loop system.

Data representation in hardware is implicit in various physical quantities such as voltages
and currents. These are all bounded quantities and subject to quantization when generated by
digital means via the EPC. The data in software can be represented as a high precision 32 bit
floating point number. As such various transformations and models are needed to interchange
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data and simulate the hardware network. The remainder of this section describes the hardware
system and the transformations of data between the hardware and software domain.

7.3.1 Hardware Configuration

. o
i
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Figure 7-1: Two EPC System for the Character Recognition Problem

To configure the EPC as a multi-layer perceptron (MLP) a system consisting of two EPCs
with a common digital bus and neural pulse bus is used as shown in figure 7-1. One EPC is
configured as a master board and processes the input-to-hidden layer of the network while the
other is configured as a slave and processes the master’s outputs as inputs, thus implementing
the hidden-to-output layer. The EPCs are under the control of the PC via a 40-way /O card
mimicking the STE bus.

7.3.2 Data Transformation

Table 7-1. Data Representations in EPC and PC

PC EPC Conversion
inputs z; €[0,1] X; €[0,0xFF] X, = (int)(z; * OxFF)
outputs  y; € (0,1)  Y; € [0,0xFF]  y; = (¥;+1)/0x101
f (int) (ws; + 128)

weights w;; € float  W;; € [0,0xFF] W,

In order to train and simulate the neural network the PC needs an internal data representation.
For this reason data is transformed into floating point numbers for use in the software. These
transformations are shown in table 7-1 and allow the back-propagation learning algorithm and
network simulation to operate on high precision floating point data. These data transforma-
tions follow on from those presented in table 61 which showed the transformation between
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EPSILON II and the EPC. Note that for an ideal sigmoidal activation function the output (y;)
never reaches 1 or 0, rather it approaches these as network activity approaches plus or minus
infinity. To approximate this behaviour the transformation for y; is such that

yjma:r < 1 aHd yjmin > 0 (7'1)

This is important for back-propagation learning as weight change is proportional to y’; if
y; = Oor 1 y; = 0 which prevents any weight change.

. . L L L
-50 40 30 20 -10 0 10 20 30 40 50

e
.TJ; = Z;w,

a) Linear multiplier constant by least squares fit. b) Comparison of sigmoid output for hardware and software.
Figure 7-2: Synaptic Multiplier and Sigmoid Characteristic

To match the PC simulation of the EPSILON II chip, PC software characterises each EPC
to determine a multiplier constant. Consider the transfer function of a column of synapses:

Yi=Ff (Z X-iw/z'j) (7.2)

This is modelled in software by:

yi = [ (Z kmiwij) (7.3)

where £ is a multiplicative constant. In actual fact this is only a first order approximation of
the multiplier characteristic as the synaptic multipliers are not perfectly linear or matched. To

calculate this factor f(z) is set to a linear function and all weights and inputs are set to the
same value, that is:

yi = kNzjw,
kNa’ (7.4)

J
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where N is number of neurons, and z; = z; , w;; = w; V1

By sweeping z; and w; through n different values (7, y;) pairs are obtained as plotted in '
figure 7-2—a. By using a linear least squares best fit[64] the “best” k for the neurons on a chip

can be calculated: r
1 n3my — 3y

= 5= A (1.5)
The line corresponding to this calculated £ is also plotted in figure 7-2—a.
Back-propagation training generally uses a sigmoidal transfer function of the form:
@) = —— (7.6)
14 e

where A is the sigmoid gain. This function is implemented by loading appropriate values into
the EPC ramp generator. Figure 7-2-b demonstrates the match achieved when the software
model (solid line) is adjusted using the calculated multiplier constant.

7.3.3 Maximising Dynamic Range

Weights in hardware are restricted in the range and value they may take. For the EPC the
dynamic range is limited by the physical [2.5,5V] range synapse circuitry allows while the
precision is limited by the 8 bit resolution of refresh circuitry!.

To maximise the dynamic range of the network implemented all available inputs and neurons
should be utilised. For instance a single weight on the EPC can take 256 independent values,
i.e. is of 8 bit precision. If there are spare inputs to a layer then they can be used to increase
the available dynamic range. If two inputs are connected in parallel to two synapses then the
dynamic range of that weight can be doubled, giving an effective weight of 512 independent
values. If the number of inputs, n, to a layer is less than half the number of available inputs
(N = 32), this is done for all inputs.

A bias unit is a network whose input remains at a fixed positive value. Any remaining
inputs are designated bias units thus utilising the full available dynamic range of the hardware.
The software controlling the EPC does this automatically given the network dimensions.

7.3.4 Accuracy Maximisation

In characterising the EPSILON II device in Chapter 5 some aspects of device accuracy were
discussed, in particular the technique of autobiasing was presented to improve the zero offset of

'The ultimate limit to precision on EPSILONTI is limited by capacitive decay and refresh rate
coupled with noise level.
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neurons. This technique improves the matching of the software model and the actual hardware;
thus a weight set evolved on the software model is closer to the desired solution than would
otherwise be the case without autobias. Autobias also alleviates an area of variability between
chips; allowing a solution evolved for one chip to be close to the desired solution in another[44].
For these reasons autobias is performed in the experiments presented here to maximise accuracy
and repeatability.

7.3.5 Summary

In this section:
e A first order software model of the hardware has been developed.

e A consistent set of data transformations was developed to allow communication and
comparison between software and hardware.

e Matching of software model and hardware was demonstrated for linear and sigmoidal
transfer functions.

o A technique for utilising the full available dynamic range of the EPSILON II chip was
presented.

e The use of autobias was presented as a means to gain a more accurate matching between
hardware and software solutions.

7.4 Back-propagation and Hardware Non-Idealities

The learning algorithm used in these experiments is the back-propagation or generalised delta
rule algorithm[100,10]. Other training techniques such as weight perturbation[57], node
perturbation[18] and stochastic error descent[5] have been developed more specifically for
hardware use and have been shown to work well with chip-in-loop learning[18]. However
all these methods require training times of at least an order of magnitude longer then back-
propagation to produce only slightly better solutions[18]. In practice back-propagation is much
faster for chip-in-loop training and produces comparable results. For these reasons it is used
here.

Back-propagation seeks to minimise the network error by comparing actual outputs to given
target values. The mean square error of a network is given by:

B= > (g5 — ;) (7.7
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where y; is the j** component of the network output and ¢; similarly the target. y; is a function
of the inputs, z; and the connection weights, w;;. What back-propagation does is to attempt
to decrease this error by adapting weights in proportion to the gradient of the error in weight
space: '

oF
A’U),'j o - awij (78)
= nzid; | (7.9)
where 7 is the learning rate, a constant and 4, is given by:
(t; — y;) f'(net;)  if layer is an output layer.
§ (7.10)

37 f'(net;) > Spwj  if layer is a hidden layer.
3

where & and w,y refer to the layer following the layer being calculated. For a derivation of
these equations see [100].

7.4.1 Assumptions Concerning Hardware Non-Idealities

In this chapter back-propagation is applied to a hardware network. In doing this several
assumptions and approximations are made. First of all note that equation 7.10 requires the
values of the weights, w;;. When weights are downloaded to hardware the exact value of
the weight as represented in the hardware is not known, either through noise being present or
component variation producing an offset or scaling in the weight. In this series of experiments
it will be assumed that value of the weight is that stored in software.

Another area of uncertainty can be the neuron transfer function f(z) and its derivative
f'(z). For the puise-width modulating neuron of EPSILON II, it has been shown that the
neuron function is well defined (Section 5.7.2). That is the non-linear function (such as
a sigmoid) closely matches the desired function as it is determined by the reference ramp
waveform rather than physical device characteristics.

Another assumption in the derivation of the back-propagation algorithm is that the error
space is a continuous function. Of course when using hardware this is not the case as all values
have a limited dynamic range and resolution as summarised in table 7-1. To limit the effects of
quantization on the learning algorithm weights are manipulated in software at high resolution
and only quantised as they are downloaded to the hardware.

7.4.2 Related Work

This problem of hardware uncertainty and limited precision has been studied for other analog
hardware implementations [18,17,30,35,36,83,117] and by simulation for limited precision
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digital networks [19,49,55,87]. Results from these studies have influenced the decisions made
here. Frye et al [35,36], Hollis et al [52] and Holt er al [55] have all presented studies showing
that successful back-propagation requires resolution in the range of 12-16 bits. However it has
also been shown that with lower precision {68 bits) in the feed-forward component, coupled
with high precision for the back-propagation of errors, effective training can be achieved [18,
36,44,55]. These results led to the chip-in-loop system used here of the EPC performing the
forward pass at hardware resolution and the host performing error back-propagation at floating
point precision. The studies above are further referenced when the results presented here relate
to their results.

7.4.3 Summary

This section has introduced hardware non-idealities which may, or are known to, effect back-
propagation training: limited dynamic range, mismatches, offsets, quantization and precision.
The remainder of the chapter presents experimental work to investigate the ramifications of this
on practical use of the EPC.

7.5 Character Recognition Experiments

This section presents a series of experiments carried out using the system explained above.
Each experiment was designed to test various assumptions regarding the hardware and software
emulation and determine the limits of the EPC. Three experiments are presented where the
complexity of each subsequent one is increased by way of increasing the number of training
patterns. The first experiment uses a simple problem to investigate the matching of software
simulation and the neural hardware. The second experiment investigates the effects of limited
dynamic range and sigmoid gain on the ability to train the network; while the third attempts to
compare performance of the software and hardware networks after training.

7.5.1 Simple Character Recognition Problem

The problem used for this investigation is the artificial 1-of-N character recognition system
shown in figure 7-3. Input data consists of a 5 x 5 pixel array on which characters are
represented. These inputs are mapped to a hidden layer of a variable number of neurons. These
then feed an output layer of one neuron for each of the N training patterns. This artificial
problem offers several advantages in terms of experimenting with the EPC:

e Highly controlled problem.

e Easily generated training sets of varying size and complexity.
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Figure 7-3: Simple Character Recognition Problem
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e Problem represents a vehicle for investigating training hardware neural networks.

e Allows comparison of software (high resolution/accuracy) and hardware (low resolu-
tion/accuracy) neural networks.

e Allows exploration of the limits of the hardware using a problem of graded complexity.

7.5.2 Experiment One: Three Character Recognition

Table 7-2. Experimental Summary: 3 Character Recognition

Aim : Using a minimal problem look at the matching of the software model and
hardware reality.

Network Structure : 25:14:3

Training : Error back-propagation training algorithm[10] on training set of
‘H,'P,'K’.

Stopping criteria : MBE < 0.05

Learning Parameters :

Learning rate = 50
sigmoid gain A = 0.05054

Results Summary : A comparison was made between the hardware and simulated
networks for this simple problem.

e Both the ideal software model and the hardware evolved a solution in
similar manner.

o Analog hardware non-idealities present translated to hardware training
times that were Jonger than the ideal software network.

e When the hardware network was trained from the weights evolved in the
software model, initial error was very high but further training quickly
trimmed weights to a low error solution.

These points demonstrate that the software model of the hardware network is a
reasonable first order approximation. It was demonstrated that weights evolved
in software could be trimmed on the hardware to get a fast solution.

Initial experiments were performed on a training set of three input vectors, those representing
‘H’, ‘J’ and ‘K’. These were chosen as input vectors easy to distinguish. The aim of these
experiments was to investigate the software model of the network and compare results gained
with runs performed on the hardware.
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Figure 7—4 shows the salient results from these experiments. The graphs show the evolution
of the mean square error (MSE) and the maximum bit error® (MBE) of the network for each
epoch or presentation of the training set. Results from three networks are shown in these

graphs:

1. The benchmark for comparison is a software network in which all data is evaluated at
32 bit floating point precision. The error evolution of this network is shown in the green
curve. The training proceeds smoothly to a low final error.

2. In the second network (blue curve) the weight set evolved by the software network is
quantized and downloaded to the hardware then the network is trained. The fact that
there is a low initial error which quickly trains to the target error demonstrates that the
software model is a reasonable one. As expected non-idealities in the hardware introduce
differences between the software and hardware networks as manifest in the initial error.

3. These differences can be seen in the third experiment where the weights are initialised
to the same random values as the first software network. Here the forward pass is done
on the hardware (red curve). The error characteristic follows the software closely at first
but as differences due to hardware non-idealities accumulate, the characteristic departs

from the idealised case.

2Maximum bit error is the maximum of the absclute error of any of the output neurons i.e.

max; (ly; — t;])
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The effects of noise, offsets and gain variations are manifest in the fact that the char-
acteristic is not smooth and monotonic as with the ideal case. These effects are most
prevalent at high errors where the neurons are operating in the steep, high gain portion
of their sigmoid characteristic, effectively amplifying the noise present. As the weights
evolve, pushing outputs towards the flat, low gain, sections of the sigmoid these effects
are less prevalent.

Performing multiple runs of the experiment confirms the general trend that the hardware
network, due to the non-idealities present, takes substantially longer to train than the ideal
software model.

Conclusions

From this series of experiments we can conclude that:
e The software model is a reasonable first order approximation of the hardware.

o Weights evolved in the software can be used as a starting point for quick hardware training
(trimming).

e Training fully on hardware is possible and takes substantially longer than the ideal
software case.

These results are comparable to those found on other hardware systems such as the optically
controlled system of Frye et al [35] and the EPSILON system[44].

7.5.3 Experiment Two: Ten Character Recognition

The first series of experiments introduced three networks: a benchmark high resolution software
network, a hardware network trained from software evolved weights and a hardware network
evolved from random weights. All three converged to a similar final training error leading to
the conclusion that the model and assumptions made were at least valid for simple problems.

In this series of experiments the complexity of the problem is increased by presenting a
training set of the first ten letters of the alphabet. The problem is more difficult as not only are
there more patterns to classify but certain characters (input vectors) in this set lie very close
in input space. For example ‘C’ and ‘G’ differ by only two pixels and are thus difficult to
distinguish. This serves to highlight the effects of limited dynamic range of weights as weights
are forced to the extremes of their dynamic range. To model this a software network with
similarly limited weights is introduced.

The first series of experiments concentrates on the effects of dynamic range limitations; to
accomplish this a method of introducing variations in dynamic range is first presented.
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Table 7-3. Experimental Summary: 10 Character Recognition

Aim : Using a more difficult problem, look at the effects of limited dynamic range
on network performance.

Network Structure : 25:14:10

Training : Error back-propagation training algorithm[10] is used on the training set
of the characters ‘A’—‘J’.

Stopping criteria : epoch = 7,000

Learning Parameters :
Learning rate n = 150,1000 & 2000
sigmoid gain A = 0.05054 and 0.0382

Results Summary : A new software model developed to model the effects of limit-
ations In precision and dynamic range in the weight set.
It was shown that the dynamic range of the weights directly effects the final error
of the solution. By increasing sigmoid gain, dynamic range could be effectively
increased resulting in a better solution, while with the low gain sigmoid error
was large and variable.
It was also demonstrated that the stability of the hardware network was more
sensitive to the learning rate parameter » than the software model. This was
principally due to larger n values producing larger weights which were then
clipped in hardware representation. The implications of this are that the min-
imum training time of the hardware is longer than that possible on software.

It was also found that the hardware network was more sensitive to the learning rate parameter
1. This is the focus of the second set of results.

Weight saturation

In the previous experiment the weights of all the networks remained within the hardware’s
boundary of w;; € [—128,127]. For the problem presented here, as several input vectors
are separated by small distances in input space, larger weights evolve to separate these close
patterns. In the case of the hardware this process is limited by the saturation of the weight
as it reaches the physical limit of T;; € [2.5,5V] that is w;; € [—128,127]. The precision
of the weights on the EPC is 8 bits. To better investigate the effects of this a new software
model is introduced with a likewise finite precision bounded weight set. This is done simply
by hard-limiting or clipping the software weights to this range and quantizing the weights to
8 bit values for the forward pass.
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Limited dynamic range

The physical characteristics of the hardware network imply a limit on the dynamic range of
synapses and neurons. In an ideal network any single synapse may change a neuron’s output
from off to on. This is not the case with hardware as the effect of any single synapse is limited
by the maximum weight value it can assume. If classification depends on a small change in
on]y a few inputs, the dynamic range of these synapses may be insufficient to influence the
result appropriately. There are ways by which this dynamic range can be altered however:

. Alter the sigmoid gain A (equation 7.6). If sigmoid gain is increased, a small change in
network activity produces a larger swing in output. Effectively this means the neuron
is more sensitive to the contribution of each individual synapse. This is equivalent to
an increase in dynamic range. In practical terms, increasing A compresses the reference
ramp waveform. There are obviously limits to this in how accurately a compressed ramp
waveform can be generated. Also a high gain sigmoid effectively amplifies any noise
present in the network activation. Thus the trade-off here is increased dynamic range
for a decrease in noise tolerance and a decrease in accuracy of ramp waveform and thus
neuron transfer function.

2. While the physical value of weights in chip are limited, values of inputs are encoded
in the time domain as pulse-widths. If the pulse-width of inputs is doubled, so is the
effective dynamic range of synapses. Thus a trade-off of increased dynamic range for
increased computation time can be made.

Note that in both these cases precision is unaffected; that is, there are still the same number
of discrete values between maximum and minimum extremes. Frye et al looked at the effects
of decreasing precision in [35] while keeping dynamic range constant. The effect of dynamic
range in the analog network is analogous to the effect of dynamic range in fixed point digital
implementations as studied by Hoehfeld er al [49] and Vincent er al [111]. In both these
cases auto-scaling schemes are presented to increase dynamic range when necessary. In the
experiments presented here dynamic range enhancement is performed manually by adjusting
the sigmoid gain,

Results: Dynamic range limitation,
Figure 7-5 presents results for four network training runs which are:

1. An idealised floating point software simulation with n = 150°,

3The 5 values here may seem high to the reader — this is because of the small values of the multiplier
constant & and the sigmoid gain 7', both usually unity in software simulations
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Figure 7-5: Results of Ten Character Recognition Experiments

107



Hardware Issues in Back-Propagation Training 108

2. A software simulation where the weights are hard-limited to the same range as the
hardware, = 130.

3. A hardware run continuing from the above evolved weights.
4. A hardware run from random weights.

The effects of dynamic range are investigated by repeating the experiments at sigmoid gains
of A = 0.0382% (figure 7-5 (a) and (b)) and A = 0.05054 (figure 7-5 (c) and (d)).

Several key observations can be made concerning these results:

o The evolution of the software model and hardware networks is again similar and the
network trimmed from the software model again finds a solution quickly. This indicates
that the network models developed still form a good approximation of the hardware.

e For the low gain sigmoid (A = 0.0382, figure 7-5 (a),(b)) weights become saturated
before synaptic activity is sufficient to push neuron outputs to the relatively flat extremes
of the sigmoid where the solution lies. This is indicated by the final, near flat, portion of
the error graphs having relatively high maximum bit and mean square error.

e With neuron outputs in this high slope area of the sigmoid characteristic the effects of
small weight changes are large, as is the effect of noise. In figure 7-5(b) several distinct
levels of maximum bit error can be seen. This is due to limited dynamic range' and
quantization. The ideal solution lies outside the limits of the weights. The boundary
around weight space forms several local minima which the network visits as the back-
propagation algorithm tries to push the solution past the boundary of the limited weight
set. This is what is seen in figure 7-5(b) as a small change in weights jumps the solution
to different minima with different maximum bit error.

e When A is increased (figure 7-5 (c),(d)) final mean square error is reduced significantly
and maximum bit error reduces to under 0.2. Thus the network is much closer to an ideal
solution implying that increasing the sigmoid gain has increased the dynamic range of
the weights and promoted a better solution.

It can be seen that while the limited dynamic range and quantization of the hardware has a
significant effect on the final solution of the network it is stiil able to reach a stable solution.
Effects of limited dynamic range can be minimised by making the neurons more sensitive to
small weight changes. This can be done by compressing the output ramp to the comparator
neurons by way of the sigmoid gain, A.

4These numbers are chosen due to hardware ranges - a A of 0.0382 utilises the full voltage swing
of the output neuron comparator, numbers greater than this reduce this voltage swing hence make the
NEeuron more sensitive.
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Figure 7-6: Results of  Variation Experiments

Effect of learning rate, n

The learning rate parameter 5 determines the magnitude of steps taken along the error gradient
(equation 7.9). Hoehfeld and Fahlman [49] showed that with limited precision in the back-
propagation path these steps could be quantised to zero and thus no learning occur. For the
hardware here the back-propagation path is performed at high precision in software. If 7 is
increased eventually the algorithm becomes unstable as the weight step jumps to a region with
a radically different error gradient rather than taking small steps along the gradient to a minima.

For the hardware network, calculation of the error gradient is less accurate than the ideal-
ised and limited weight software model case. This is because the neuron outputs used in this
calculation are quantised. Thus the error function, rather than being smooth and continuous,
is also quantised. The effects of this are apparent in figure 7-6. Here the character recogni-
tion problem has been run with 7 set at 1,000 and 2,000. The key observations from these
experiments are:

e For both n = 1000 and n = 2000, the idealised software network evolves a solution, thus
n in itself is not too large.

e The hardware networks are unstable for both 5 values and do not evolve a solution.
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e For = 1000 the weight limited software model also evolves a solution while the
hardware networks do not. This indicates that hardware non-idealities which are not
modelled, such as neuron quantization and weight uncertainty, have a significant effect.

e For 7 = 2000 the weight limited software model is also unstable indicating that the
hardware non-idealities modelled are responsible also for this instability.

A partial explanation was gained by examination of the weight sets. This revealed that larger
1 values led to larger values of individual weights. For n = 2,000, many weights are clipped
and the training becomes unstable. At 7 = 1,000 only a moderate proportion of weights in the
weight limited software model became clipped and a solution was evolved, however hardware
failed to converge and became unstable. This tends to indicate that the effects not modelled
in the software model, namely weight uncertainty and offset and quantization of inputs and
outputs, are also limiting training performance. The effect of large # producing larger weights
has been noted by Cairns in [18].

The ramifications of this are that the hardware neural networks are slower to train than
high precision software networks where a larger n can get to a solution faster. Note that no
experiments have been done here with other back-propagation derivatives designed for faster
convergence, it would be interesting to see the effects of hardware non-idealities on these.

Summary

This section has introduces a new software model that includes the hardware non-idealities of
a weight set limited in precision and dynamic range.

It was shown that the dynamic range of the weights directly effects the final error of the
solution. By increasing sigmoid gain, dynamic range could be effectively increased resulting
in a better solution, while with the low gain sigmoid error was large and variable.

It was also demonstrated that the bounded nature of the weights has an effect on the speed
that the network can be trained in that the hardware becomes unstable with increasing 7 well
before an idealised software network does.

All these results indicate that the hardware can produce adequate solutions but care must
be taken in setting network parameters to achieve the best possible solution.

7.5.4 Experiment Three: Generalisation and Character Recognition

The final set of character recognition experiments takes the problem to its logical conclusion
of the full twenty-six character set then compares the results of the experiments performed thus
far. Following this the issue of generalisation ability is discussed.



‘Hardware Issues in Back-Propagation Training

Table 7-4. Experimental Summary: 26 Character Recognition and
Response to Noise Generalisation

Aim : The experiment is performed with the 26 character alphabet and tested with
noise corrupted inputs to compare the software and hardware networks

Network Structure : 25:14:26
Training : Error back-propagation training algorithm[10] on training set of ‘A’-‘Z’.
Stopping criteria : epoch = 10,000

Learning Parameters :
Learning rate n = 50
sigmoid gain A = 0.05054

Results Summary : The full training set of 26 characters was trained on the network

which was able to produce a solution, albeit with a higher error level. The four
networks were then compared for generalisation ability and were found to be
virtually equivalent.

Twenty-six character recognition

111

The results of training the character set ‘A’—‘Z’ are shown in figure 7-7. The results are similar
to those obtained in the ten character case except, as would be expected, the maximum bit
error is greater still. A summary of average final error from the experiments presented so far is
shown in figure 7-8.

It is possible to see some general trends in relation to back-propagation learning on hardware
networks from these results:

¢ As the complexity of the problem increases so does the achievable minimum error. This
is true for software as well, but with the further limitations placed on hardware the effects

are manifest earlier.

e The dynamic range of the neurons is critical. This can be seen from the 10 character

experiment where error was very large for the small dynamic range case.

e That the software model with limited weights exhibits an increase in error indicates the
limited weight dynamic range is a significant factor in the performance of the hardware

neural network.

o That the hardware error is greater than the limited software simulation indicates the other
hardware factors, such as weight uncertainty, limited output resolution, offsets etc., also

limit the performance of the hardware solution.
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Generalisation performance

For a real-world problem a training set is not as readily defined as in the artificial problem used
here. In such a case the training set consists of only a sub-set of inputs that the network may
encounter. The ability to classify inputs the network was not trained on is called generalisation.
To gauge generalisation ability an examples database is subdivided into a training set and
a generalisation set. The network is trained using the training set and then tested on the
generalisation set. For the contrived problem presented here there is no generalisation set,
instead the “generalisation ability” of the network may be gauged by testing the network on
inputs corrupted by adding random noise. For the experiments presented here the peak value
of this random noise is expressed as a percentage of full scale input. At each noise level 3000
trails are performed and the results are averaged over 10 training runs. Figure 7-9 shows the
results of these experiments where the percentage of correct classifications is plotted against

Noise Generalisation Response
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Figure 7-9: Noise Generalisation Experiment

the percentage of peak added noise. Surprisingly, considering the different final errors achieved
by each network, the performance of each of the networks is almost identical. This tends to
suggest that the increased error present in the hardware network has not significantly effected
its generalisation ability. This will be further tested in the next section where a more complex
problem is implemented on the network.

7.5.5 Summary

This section has used the artificial character recognition problem to study the effects of hardware
non-idealities on performance and training of the EPC. It was found that learning rate must
be kept small to form solutions with the limited hardware weight set and that dynamic range
limitations had a strong effect on network performance in terms of final training error achievable.



Hardware Issues in Back-Propagation Training 114

For the character recognition problem, this larger training error did not adversely effect the
generalisation ability.

The rest of this chapter continues by applying the lessons learnt thus far to more difficult,
real-world problems. The next section examines the use of the EPC as a function approximator
and classifier while Section 7.7 examines a range of 1-of-N classification problems.

7.6 Link Admission Control

This section tests the EPC on a more difficult real-world problem. This problem is that of link
admission control in an ATM (Asynchronous Transfer Mode) communications network router,
the neural solution of which has been developed by Nordstrom and Gillmo et al at Uppsala
University, Sweden[37,38,91,92,93]. The problem is more demanding than the character
recognition problem in that inputs and outputs are real valued rather than digital, coupled with
a non-linear mapping. Here we investigate the performance of the hardware in providing a
solution to this problem. The problem is first described, then a metric is introduced to evaluate
network performance leading to the experimental results.

7.6.1 The Problem

In an ATM network the problem of link admission control is to determine if 2 new connection
can be accepted on a link in the network. This is achieved by calculating an estimation of
the probability of losing a data packet, P, based on the current load present on the link
along with traffic parameters that characterise the new connection. If this probability exceeds
a certain set limit, P, = 1077, then the new connection is rejected, otherwise it is accepted.
Hardware implementation would be an advantage in this case as each link must perform such a
function and exact methods of calculation are too time consuming for real time operation[91].
For further background on this problem see [91,92].

The neural network solution to this problem involves estimating the probability of 10ss (F,ss)
from six statistical measures of aggregate traffic on the link[93] along with three parameters
defining the connection. These are processed by an MLP of 9:6:1 architecture. Hidden layers
have a sigmoidal activation while the output neuron is linear as the network is performing a
function approximation.

7.6.2 Network Performance

Though the decision to accept or reject a connection is a classification problem, the network
performs as a function approximator to estimate P, as this estimate is useful elsewhere in
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the ATM system. Performance of the network can be judged on a variety of measures; the
most basic being whether the network classifies the input on the correct side of the decision
boundary (P, = 10~?). This is not necessarily a wholly effective measure of performance
as wrong decisions near the boundary are not as detrimental to performance and ones further
away. To take this into account a widrh statistic w is defined by Géllmo in [38] that measures
the mean square distance of a bad decision from the decision boundary:

Z (loglo(le) - 10210(10_9))2 Z (logo(Prss) + 9)2

w= Y errors — Y errors (71 1)
N errors N, errors

Where P, is the estimated probability of loss and N, is the total number of bad decisions. '

These measures of performance will be used to compare the networks constructed here with
results from Gilimo et al [38].

7.6.3 Training and Test Data

A database of traffic situations has been compiled by researchers at Uppsala University,
Sweden[38,93]; the author is indebted to Jey Ngole and Olle Gillmo for arranging access
to this data. In this data-set, a fluid flow model has been used to accurately calculate targets
for a set of over 100,000 random traffic situations. A subset of 500 of these is used for training
and a further 5000 for testing/generalisation. The input data for these sets is normalised on a
[0,1] interval. Target values are normalised as shown in figure 7-10.
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Figure 7-10: Normalisation of Target Values
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Table 7-5. Experimental Summary: ATM Link Admission Control
Network Width | Decisions | Mean Sq.
w Correct Error
Swedish results [38] 0.66 88.5 % —
Idealised Software 0.36 89.0 % 0.0060
Weight Limited Software | 0.48 88.4 % 0.0091
Hardware 1.06 85.6 % 0.0163

7.6.4 Results

The link admission control data was used to train three networks:
1. An idealised software network.
2. The weight limited software model.
3. The hardware neural network.

The results presented are the average performance on the generalisation test data of 10 training
sessions per a network each trained for 5000 epochs®. Table 7-5 shows the results of these
experiments while figure 7-11 shows the distribution of incorrect decisions.
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= 2 Bl Weight Limited Software
sg.. Bl Hardware
¥ 30
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Log(Ploss)

Bad rejects I - Bad accepts

Figure 7-11: LAC Classification Experiment

3The Swedish results came from networks trained for 1000 epochs, however with the low n values
used for hardware compatibility, the networks here were trained longer to converge to a low error.
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The key observations from these experiments are:

e The results from Sweden and the idealised software model show similar performance.

The larger width measurement, w, stems principally from the poorer performance in the
Pss = [10719,107%] region.

e The weight limited software model shows a small degradation in performance and w
value.

e The hardware network shows a substantial degradation in performance both in the total
percentage of correct decisions but more specifically in the spread (width measurement
w) of bad decisions.

The performance of the hardware is encouraging on this much more realistic and difficult
problem. The decrease in performance in terms of total correct decisions is not very large
(4.4% below the idealised software). The principle variation between hardware and software
is in the width measurement w. The w measure for the hardware is more than double that of
the software. Examining the histogram of figure 7-11 the reasons for this become clear:

o Firstly bad decisions at the extremes of the P, show a marked increase for hardware
compared with software, this increases w. This difference can be partly explained by the
dynamic range limitations present in the hardware, confirmed by the increase in error for
the limited weight simulation.

o A more significant difference in bad decisions is in the interval [10~8, 1077] close to the
decision boundary on the bad accept side. Here hardware is significantly worse than any
of the software simulations.

This second area of difference can be explained with reference to the normalisation of targets
values as shown in figure 7-10. The steeper slope of the reject side (an incorrect reject is a bad
accept) makes the network more sensitive to small variations of P, on the reject side. This
is coupled with the fact that there are more training and generalisation examples on the reject
side. For the software network this encourages better performance on the reject side, as can be
seen by the low number of bad accepts. The hardware network follows this trend further from
the decision boundary, but close to it.shows much worse performance than the software. The
effect manifest here is noise; that is any noise present close to the boundary can easily push the
output past the decision boundary.

The effects of noise combined with linear ramps highlights a weakness of hardware when
used as a function approximator. When used with a sigmoidal output noise effects are minimised
as outputs are generally at the extremes of the sigmoid which has low gain and noise is
suppressed. With the linear response, noise has the same effect everywhere and this leads to
incorrect classification when it effects outputs close to the decision boundary.
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Despite the degradation of performance, hardware results are encouraging and such a
degradation may be offset by the benefits of real-time operation a hardware solution can
provide. Having used the EPC to prototype a hardware solution, if a dedicated solution was
considered feasible a highly integrated solution would be called for. As the network size for
this problem is small support functions, such as the pulse conversion, could be integrated along
with the EPSILON II neural circuits. It must be noted however that this problem, having purely
digital I/O, is not in the primary applications area as outlined in Chapter 1. This tmplies that
a dedicated digital solution would in all likelihood be more feasible. The problem though
demonstrates a class of problem, function approximation, which occurs within the target area
of analog/mixed signal problem — for example inferring a plant transfer function from sensor
readings. This section has shown that the presence of noise in analog hardware significantly
degrades the performance of such solutions. Edwards’ [31] theoretical work on noise in MLPs
also noted the detrimental effects of noise in networks with neurons operating in a linear
fashion.

7.7 1-of-N Classification

The remainder of the problems implemented on the EPC are 1-of-N classification problems.
Here the goal is to classify input space into one of N possible classes as was done'in the earlier
artificial character recognition problem. An example within the target applications area of the
EPC would be sensor monitoring to classify operation of an engine as ‘correct’, ‘uneconomical’
or ‘dangerous’. Three test problems are presented here in order of increasing difficulty®:

1. Speaker identification.
2. Medical data analysis.
3. Robot region classification.

These test problems are the same as used by Cairns [18] in his work on precision in analog
MLPs. They were chosen as a good representation of 1-of-N classifiers and to allow a direct
comparison to the work of Cairns. The data for the problems is in digital form, though it
originally comes from analog sources followed by some pre-processing. A brief outline of
each problem is given followed by the experimental results gained in implementing these on
the EPC.

®This order is as presented by Cairns [18], the author considers the ATM problem to be of similar
difficulty to the speaker identification problem. Problem difficulty is not easy to quantify as it is a
combination of factors such as the number of inputs, resolution of data and sharpness of decision
boundary.
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Obstacle

Figure 7-12: Robot Localisation Problem

7.7.1 Problem QOutlines
Speaker identification

The objective of the speaker identification problem is to classify which one of three speakers was
speaking given a short sample of speech input. The speech input is pre-processed to produce
eight inputs and applied to an 8:8:3 MLP — more details on the problem and pre-processing can
be found in Cairns [18].

Medical data analysis

The task of this problem is to classify the sleep state of patients from measurements derived
from electroencephalogram (EEG) readings. A data-base of measurements classifying patients
as ‘awake’, ‘dreaming/light sleep’ or in ‘deep sleep’ is used to train a 10:6:3 MLP. Five
hundred random data points are used for training with a further 1,000 used for generalisation
tests. Further details of this problem can be found in Tarassenko [104] and Cairns [18].

Region classification

The goal of this problem is to classify which one of six areas of a room a hypothetical robot is
in. The floorplan of the room is shown in figure 7-12. The room contains two obstacles and
the six regions are divided on the basis of the nearest visible corner. A set of eight features
extracted from a 360° range scan are presented to a 8:25:6 MLP. The problem is extremely
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difficult as at the boundaries of the regions, input data vectors are very similar. Further details
of this problem can be found in Tarassenko [106] and Cairns [18].

7.7.2 Results

The experimental method used was similar to that of the ATM problem. Results are evaluated
using the method used by Cairns [18] such that direct comparisons can be made. A summary
of the experiments performed follows:

e Three networks were evaluated:

1. An ideal floating point precision software network.
2. A weight limited software network.

3. The hardware network.
e Each experiment was repeated five times with different initial weights.

e Performance was evaluated on the correct classification of the generalisation set. This
evaluation, or validation, was done every 200 epochs.

The results of the experiments are shown in table 7-6. For each problem and network, two
metrics are presented’. These are the percentage error of classifications on the validation set
(in bold type) and the mean square error on the validation set. These values are an average of
the best validation results of each of the five runs. The key observations from these results are:

o A degradation of performance occurs as the problem complexity is increased. This
degradation is present both in the limited weight software model and the hardware.

e For the speaker recognition and medical data problems, hardware performance is very
close to the limited weight software simulation. This indicates that the principal factor in
reduced performance here is the limited precision and dynamic range of the weight set.

e The very poor performance of the hardware on the region classification problem, much
below that of the limited weight software model, demonstrates that for very difficult
problems other hardware non-idealities have large effects and prevent a good solution.

"Note that it is not the absolute values of these metrics that is important but rather the degradation of
performance between the different network types. The achievable error rate is problem dependent and
does not necessarily reflect the difficulty of the problem — for instance the software network achieves
an error rate of 6.5% on the difficult region classification problem but only 19.2% on the easier speaker
identification problem.
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Table 7-6. Experimental Summary: 1-of-N Classification Problems.
Problem Software | Weight EPC Oxford Oxford | Oxford
Results Iimited | Hardware | Software | Software | Hardware
Software | results Results | Model of | Results
Results Hardware
Speaker 19.2% 22.3% 22.9% 18.8% 21.8% 20.3%
Recognition 0.114 0.114 0.151
Medical Data 17.5% 28.2% 29.2% - 19.0% 226% | —
Analysis 0.087 0.133 0.146
Region 6.5% 20.5% 36.3% 6.8% 11.4% —
Classification 0.018 0.055 0.085
Bold font — % error on validation set
normal font — mean square error on validation set

e The speaker identification problem was the only problem small enough to be implemented
on the hardware of Cairns. This hardware employed 12 bits of weight precision refreshing
on-chip dynamic capacitors and utilised a pulse-width modulation scheme similar to the
EPC. The results of the two hardware implementations are comparable showing a similar
drop in performance over fioating point networks.

7.7.3 Discussion

Two areas warrant further discussion here: The first is the poor performance on the region
classification problem and the implications of this with respect to the types of problems suitable
for hardware. The second areais, for the successfully solved problems, what are the the principal
factors limiting the hardware performance.

Region Classification: High resolution problems.

The region classification problem was the toughest problem attempted on the EPC. Not only
was performance of the hardware poor but also the weight limited software model performed
poorly and did not provide a reasonable match to the hardware results as it did for the other
problems.

Basically the problem is too difficult. Decision boundaries are straight hyper-lines through
decision space so on either side of a classification region input vectors are virtually identical.
This requires a very high resolution to distinguish; the poor solution provided by the weight
limited model shows that the hardware can not provide this. In the hardware case, noise present
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Table 7-7. Experimental Summary: Gain Variation Experiments for Medical Data Ana-
lysis Problem.

{ Network { gain=0.1 | gain=0.2 | gain=04 [ gain=0.8 | gain=1.6 |
Ideal software 17.3% 17.5% 17.1% 16.6% 17.0%
network 0.088 0.087 0.087 0.086 0.088
Weight limited 29.5% 28.2% 23.2% 21.2% 17.2%
software network | 0.139 0.133 0.113 0.105 0.099
Hardware - 29.2% 28.7% 26.6% -
network 0.146 0.136 0.133

Bold font — % error on validation set
normal font — mean square error on validation set

in the network will make close vectors indistinguishable — this explains the degradation in
performance of the hardware compared to the weight limited model.

The data for this problem was generated artificially, allowing exact demarkation of regions.
If the problem was implemented in the real-world, 'such sharp boundaries would be unrealistic
as inevitable noise on sensor readings would blur boundaries. Still this problem does highlight
a fundamental limitation of analog hardware: while lower resolution analog hardware can
perform well for many problems, if input data is of high resolution and classification boundaries
are arbitrary, low resolution solutions will be poor and noise will greatly affect the solution.

Limiting factor: Dynamic range or precision?

Turning to the problems where the hardware produced a good solution, the first point to note 1s
that hardware and the weight limited model performed comparably. This indicates that effects
such as noise, input/output quantization, offset and gain variations, have had minimal impact.
This raises the question of which factor modelled in the weight limited software, dynamic range
or precision, has the most significant effect on the solution. To investigate this some further
simulations were carried out varying the dynamic range. The software models were kept the
same and the multiplicative constant k was varied (see equation 7.3) to vary dynamic range of
the weights. The medical data problem was chosen for these experiments as it was the most
complex of the successfully solved problems. The results of these experiments are shown in
table 7-7, the key observations are:

e Varying the gain has a minimal effect on the ideal software solution, both in terms of
correct classification and mean square error.

e As gainis increased in the weight limited model both classification and mean square error
improved. At a gain of 1.6 (8 times that of the hardware gain) classification performance
was comparable to the ideal model.
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These experiments demonstrate that dynamic range is the principal factor limiting performance
in this problem and that low precision is acceptable.

To further test this the gain of the EPC was similarly increased by scaling the duration of
the input pulses as outlined in Section 7.5.3. Inputs were scaled by a factor of two and four to
produce gains of approximately 0.4 and 0.8 respectively. The bottom row of table 7-7 shows
that an improvement in classification performance was achieved but not to the extent predicted
by the weight limited simulation. The most likely reason for this is that in scaling the inputs the
noise present is also increased along with the effects of offset and gain variations, this is due to
the longer integration times. Despite this the general trend of increased weight dynamic range
resulting in increased performance was shown. It is not envisaged that this increase would meet
the software performance as effects of increased noise would soon outweigh the benefits of
increased dynamic range. To further investigate dynamic range effects a mechanism whereby
dynamic range can be increased without substantially increasing noise and inaccuracy needs to
be devised.

7.8 Summary

This chapter began by investigating the practical aspects of back-propagation learning on the
EPC by using an artificial character recognition problem. The graded complexity of this
problem allowed easy investigation of:

e Software models to compare hardware results.

¢ Effects of dynamic range on training performance.

o Effects of the learning parameter i on network training.

The investigation showed that:

e With a high precision back-propagation path, back-propagation learning could be applied
successfully to the non-ideal EPSILON II hardware.

e The effects of hardware non-idealities were manifest as slower training times and higher
final training error.

¢ Limited dynamic range was highlighted as an issue in network performance and the need
to vary this according to problem was demonstrated. The PWM scheme of EPSILON 11

offered a simple method of accomplishing this through variation of sigmoid gain.

e Generalisation ability did not exhibit as rapid a degradation as training error.
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The lessons learnt from this study were next applied to a series of more difficult problems.
Only in the most difficult of these problems did the hardware fail to provide an adequate
solution. This was attributed to the hardware having insufficient resolution and the effects of
noise and other analog non-idealities degrading the solution. This result would apply to other
problems with high resolution input data and where classification regions have very close input
vectors.

Hardware performance on the other problems compared well with the ideal software. The
following observations account for differences in performance:

e Analog noise has a detrimental effect on linear output units as demonstrated in the ATM
link admission control problem.

e Dynamicrange of weights is a limiting factor in performance. It was shown that increas-
ing dynamic range can improve the solution evolved.

e With sigmoid transfer functions, noise, input/output quantization and other analog non-
idealities such as offset and gain variations had only minor detrimental influence on the
problem solution. '

Further investigation of the effects of weight dynamic range limitations would be a valuable
contribution to the field. Due to time requirements, experiments such as investigations into the
limits of the region classification problem and the effects of increased dynamic range on the
solution to the speaker identification problem, were not carried out.



Chapter 8
Kryton: An Instinct-rule Robot

8.1 Introduction

This chapter presents the section of work aimed at utilising the EPC as a controller in an
autonomous mobile robot named Kryton. The control methodology of Kryton is based on a
control strategy and software driven exemplar (named Alder) developed by Nehmzow[88] from
Edinburgh University’s department of Artificial Intelligence.

The purpose of the work presented in this chapter is twofold: primarily it demonstrates
the EPC operating in a real system with real-world analog inputs, thus achieving one of its
design goals. The controller also utilises the mixed signal processing capabilities of the EPC.
Secondly it offers a vehicle for exploring the instinct-rule control strategy. This is achieved
by enriching the robot’s sensory inputs using analog sensors, making changes to the control
algorithm in response to this move to the analog domain and exploring other instinct-rules.

The first sections of this chapter introduce the instinct-rule controller architecture. Kryton
is next specified and the differences between it and its predecessor, Alder, summarised. Next
the extensions to the controller architecture that have arisen from this work are outlined before
the experimental work is presented.

8.2 Background: Approaches to Robotic Control

Robotic control has been a principal testing ground for theories in Artificial Intelligence (AI);
the field dedicated to producing intelligent behaviour in machines. Early, or classic, Al work
in robotic control was characterised by a vertical decomposition of the control task in which
sensor signals enter the controller and are processed in a pipelined manner by perceptual, mod-
elling, planning and executional modules to produce action commands[73,89]. These controller
techniques rely on an internal world model of the robots world and symbolic representation
of intermediate steps. The effectiveness of the controller is inherently limited by the accuracy
of this world model — problems arise when the robot encounters a situation not considered by
designers of the world model. This type of conundrum led to the development of behaviour
based robotic controllers which are characterised by the absence of internal world models and

125
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symbolic representations, plus tight coupling between sensory input and effector output[88].
Brooks in [12] argues strongly against von Neumann based Al and states the case for beha-
viour based models. Exemplars of this type of work include the subsumption architecture
of Brooks [11,13,73] and the instinct-rule controller of Nehmzow[88,89,90] which employs
neural techniques. The principles on which this instinct-rule controller is based, and the robots
built around, can be summarised as:

Experiment, rather than simulation. A computersimulation can only simulate what is known;
by using real robots the need to model the environment is eliminated and the non-idealities
of the real environment are present.

Minimise a priori knowledge. This is achieved by using a self-organising structure; in this
case a neural network is trained with the aid of an instinct-rule teacher. The neural
network forms a sensor-motor mapping with no predefinition. A priori knowledge is
limited in a minimal way to the instinct-rules.

Rapid competence acquisition. Fundamental to the robots operation is the acquisition of basic
competencies such as obstacle avoidance, contour following or direction biased motion.
These competencies must be learned rapidly to effectively compensate for changes in
environment. For a real robot these environmental changes can also include internal ones
such as sensor failure or degradation,

These are the guiding principles behind all instinct-rule robots constructed to date[89]. The
robot from which this work has evolved was the original robot Alder. The following section
describes the controller architecture of Alder, then Kryton is introduced and the differences
between Kryton and Alder summarised.
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Figure 8-1: Architecture of Instinct-rule Robot Controller

8.3 Controller Architecture

The controller architecture used in Kryton was proposed and first implemented by Nehmzow
in a robot called Alder[88,89,90]. The controller (shown in figure 8-1) consists of fixed
and plastic elements. The fixed elements being the performance monitor, which contains the
instinct-rules and the plastic, or adaptive, element the pattern associator; a single layer neural
network. The adaptive behaviour of the neural network is under control of the teacher which
responds to violations of the instinct-rules. The teacher acts in concert with the motion selector
to train the neural network by trying alternative actions in an attempt to remove instinct-rule
violations.

8.3.1 Pattern Associator

The pattern associator is the adaptive element which is trained to acquire the sensor-motor
mapping that controls the robot. To satisfy the principle of rapid competence acquisition
outlined in the previous section, adaption of the associator must be fast. For this reason a
single layer perceptron (with linear output units) is used. This type of network was first
used in the pioneering days of neural computation. Minsky and Papert in their seminal book
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Perceptrons[80] proved that the fundamental limitation of such networks were that they could
only solve linearly separable functions. Despite this, a single layer structure adapts more rapidly
than its multilayer counterparts. To conform with the requirements of linear separability we
must ensure that the sensory input linearly spans the input space. A demonstration of the linear
separability of the basic problem can be found in [88].

8.3.2 Instinct-rules

To understand the function and basis of the instinct-rules, consider this definition:

Instinct n:. . . complex and specific response on the part of an organism to environ-
mental stimuli that is largely hereditary and unalterable though the pattern through
which it is expressed may be modified by learning, that does not involve reason,
and that has as its goal the removal of somatic tension or excitation.

Webster’s Third New International Dictionary 1981.

This, in essence, is what is required — a set of hardwired precepts which are used to judge
performance of the learned associations between inputs (sensors) and output (motor actions).
Consider the basic requirement of an autonomous mobile robot — obstacle avoidance; this can
be encapsulated by the instinct-rule “Keep crash sensors inactive”. An urge to explore the
environment can be institled with the simple instinct “Move forward”. Basic competence
acquisition was demonstrated on Alder using these instinct-rules.

8.3.3 Training Mechanism

The mechanism by which instinct-rule violations adapt the weights of the pattern associator is
governed by the teacher and action selector (see figure 8-1). A flow chart of the operation of
the teacher is shown in figure 8—2. When no rules are violated the action selector performs a
winner-take-all function selecting the action of greatest activation of the pattern associator. If
an instinct-rule is violated the teacher is activated and the winning action performed for a fixed
period of time. If the violation is relieved in this time, the selected action is reinforced. If it is
not, the teacher signals the motions selector to perform the action associated with the second
strongest output of the network. This is performed for a slightly longer time than before to
compensate for the action taken earlier. If this results in relief of the violated instinct-rule the
network is trained to associate the initial sensor state to this output; if not, the next strongest
action is selected and the process repeats.

This is the mechanism used in Alder. Later sections of this chapter will present certain
enhancements to this initiated by the author.
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This hardware demonstrator has its basis, and is an extension of, Alder and Cairngorm, two
robots developed by Ulrich Nehmzow[88]. These robots use the control architecture above and
carried a variety of simple digital sensors. The simplest of these was a binary whisker which
detected when a robot touched an object. Alder also used in some experiments an ultrasonic
range-finder producing a ternary valued distance measurement.

When investigating possible demonstration applications the instinct-rule robot was selected
for experimentation because:

e The single layer architecture offered an effective demonstration of the EPC hardware in
action.

¢ Use of simple analog sensors could be used both to enrich the robots sensory environment
as well as providing real-world analog input to verify this aspect of the EPC’s operation.

¢ Asamatter-of-course, this use of analog sensors raised issues of robotic control in relation
to this control architecture. However it must be stressed that this work is primarily a
demonstration of the hardware rather than an in depth study into robotics.

Table 8-1 presents a comparison between Alder and Kryton highlighting the differences
between their sensory environment. The analog feelers of Kryton are constructed from a
matched infra-red emitter and phototransistor. These are mounted at opposite ends of a flexible
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Alder Kryton
Sensors digital: digital:

2 whiskers 2 crash sensors

1 forward motion - analog:

analog: none. 5 analog feelers

3 Light sensors

Neural Software simulation Hardware implementation
Network
Computation ARCS52 micro-controller EPC + 68020 board

board with on-board BASIC

interpreter.
Mechanics Ficher Technic chassis Technical Lego chassis

Twin motor rear wheel drive
Free rotating front castor

Twin motor rear wheel drive
Free rotating front castor

Table 8-1. Comparison of Alder and Kryton.

tube as shown in figure 8-3. As the tube is bent phototransistor current falls as less radiation
reaches the phototransistor, whether directly or by internal reflection.

The response of one such feeler is shown in the graph of figure 8-3. These feelers can be
seen mounted on the front of Kryton in the photograph of figure 84. The hardware piatfofm
for Kryton is an EPC under the control of a microprocessor board. The microprocessor board
performs the functions of the monitor block and provides a communication interface to record
the results of experiments. It is feasible that the monitors functions could be implemented
within the FPGA of the EPC. This however was not attempted as the data logging functions of
the microprocessor were central to the experiments. '
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8.5 Controller Extensions

The primary motivation in using the EPC in the context of the instinct-rule controller was to
interface directly to analog sensors. In doing so several issues were raised that resulted in
extensions or improvements to the controller architecture. The following sections describe
two such areas; the generation of additional input data to aid context detection and linear
separability and the use of somatic tension as a measure of motor action performance.

8.5.1 Input Generation

The controllers task is to train the network to give a correct mapping between sensory inputs
and motor actions. As mentioned before, the neural network architecture is a single layer one
only capable of resolving inputs that are linearly separable. If inputs are not linearly separable
the controller will over-write a previously learnt response to resolve the current situation. This
has been noted in Alder where the robot was faced with a dead-end situation and learnt to turn
always in one direction rather than the previous behaviour of turning away from the sensor
that was excited[88,89]. Once out of the dead-end the robot had forgotten obstacle avoidance
behaviour. This is not a particularly significant problem as the architecture adapts rapidly and
the appropriate behaviour is re-learnt.

To minimise this over-writing of learnt responses there are some techniques that can be used.
The obvious is to supply the network with inputs that can help to distinguish different situations
or contexts. Nehmzow([88] demonstrated this by providing a dead-end signal manually as a
network input. Alternatively, what is proposed here is that extra inputs are generated from
the sensory input that may be useful in assisting the pattern associator to distinguish different
situations. This practice is similar to the technique of providing a network with hints, defined
by Abu-Mostafa[1] as “awxiliary information about the target function that can be used to
guide the learning process”. It has been shown that networks can benefit from such hints,
either as inputs or outputs, to speed or enhance training[1,38].

The first obvious hints are to give the robot some historical information. If the robot just hit
a wall on one side for instance, it is likely to hit it on that side again soon. Thus historical data
may provide an effective context hint. Other inputs are generated to assist in other behavioural
goals, these are all derived from the input sensors and/or delays, and will be explained as they
are used.

8.5.2 Somatic Tension

With Kryton’s sensors being analog and continuous in nature, its sensory input is much enriched
compared with the digital nature of previous robots such as Alder. With this transition into the
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Figure 8-5: Flow Chart of Teacher Actions with Somatic Tension

analog domain other enhancements can also be made. The definition of instinct in section 8.3.2
leads to one such enhancement; paraphrased it says that the goal of an instinct is the removal
of somatic tension. In Kryton’s case a measure of somatic tension can be constructed as an
aggregate of inhibitory sensors; that is the feelers. Such an aggregation or summation is natural
to perform in the context of neural networks. It is achieved by using an extra linear neuron with
fixed weights to provide a weighted summation of all feelers. This suggests a more effective
way of gauging the correctness of alternative actions attempted by the teacher during instinct-
rule violations: if somatic tension decreases it is likely that the action selected is a “good”
one. If somatic tension increases it is unlikely to be “good”. Utilising this concept, actions
on Kryton are performed while monitoring somatic tension. The criteria (or threshold) under
which an action is considered “bad™ are relaxed as further actions are tried (or repeated). In this
way the robot removes instinct-rule vielations under minimal somatic.tension, that is it is less
likely to damage itself (hit an obstacle) than with the previously used, purely time based, trial
system. A revised flow-chart for the teacher functions incorporating the idea of somatic tension
is shown in figure 8-5. The following expériments all use the concept of somatic tension to
determine motor action performance.
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8.6 Experiments in Competence Acquisition

The following sections describe the experimental work performed with Kryton. Three basic
behaviours are investigated; obstacle avoidance, wall following and phototaxis. Obstacle
avoidance is the most basic of competencies that enables the robot to stay operational by
avoiding collisions. Wall following combined with obstacle avoidance gives the robot more
complex objectives and would be useful in situations such as a domestic cleaning device. The
experiments in phototaxis give the robot a navigational task, that is to move towards a light
source.

8.6.1 Experiment: Obstacle Avoidance

The initial experiments implemented the most basic of competencies — obstacle avoidance. In
these experiments Kryton used its feelers to learn mappings between its sensors and motor
actions that avoided obstacles. At first this may appear a trivial task, but when performed under
real-world conditions, or even the limited subset that is the laboratory, difficulties soon become
apparent. Real sensors do not always perform as expected or designed. For instance the feelers
used here may get stuck in gaps or bent into unforseen positions giving unexpected readings.
One of the strengths of the instinct-rule controller is that complex behaviours are promoted by
simple instinct-rules thus removing the need to pre-empt all possible contingencies.

Instinct-rules

The instinct-rules used in this experiment can be expressed as:

1. Keep feelers quiet.
2. Move forward.

The “keep feelers quiet” rule is triggered if any feeler exceeds a set threshold and promotes
the obstacle avoidance behaviour. The “move forward” rule encourages the robot to explore
its environment and is triggered if the robot has low sensory excitation (somatic tension) and is
not moving forward.

Generated Inputs

It has been stated that to maximise the potential separability of the problem additional inputs
are provided to the pattern associator. In these experiments the generated inputs consist of
historical information and a low excitation bias input. The need for a bias input is obvious: if
there is no sensory excitation all inputs to the network are zero and thus 5o are output states.
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Figure 8-6: Obstacle Avoidance Experiment: Figure of 8

A constant high bias input is a possible solution to this. However to enrich the information
content of this input, a low excitation bias is generated that is high if all feeler inputs are low
(somatic tension low).

For each feeler, a record of activation is kept for twelve time-steps' the pattern associator
is presented with three historical inputs for each feeler:

1. Previous time-step value (¢t — 1).
2. Maximum of time-steps (t — 2) to (¢t — 5).

3. Maximum of time-steps (f — 6) to (t — '12).

The effects of these generated inputs will be examined in the experiments below.

Experiment One: Figure of eight enclosure

The first results presented here were obtained by running Kryton in the enclosure depicted in
figure 8-6. To gauge the performance and present results in a meaningful way the following
statistics are uploaded from the robot every 100 time-steps:

1. Number of time-steps with rule violations per hundred samples.

I'This is approximately 1 second in real time. The sampling rate of the controller is 12Hz. This
is determined principally by the amount of data that is transmitted over the 9600bps serial link when
logging the experiment. The rate is consistent with the physical time constants associated with Kryton’
s motors. That is the time taken for a change in motor drive signal to manifest as change in motion.
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2. Percentage of non-forward motor actions.
3. Number of new rule violations per hundred samples.
4. Number of new rule violations resulting in network training.

The nature of the system dictates that events happen in short bursts (such as coming into contact
with an object) followed by longer periods of little activity (moving forward with no obstacles).
To discover trends in activity the data was smoothed. Thus the data presented in the graphs
in this chapter is the result of running window averages of fifteen data points. Figure 8-7
shows the trends in these statistics during a trial in the compound of figure 8-6. Kryton was
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Figure 8-7: Obstacle Avoidance Experiment

initialised with random weights at time-step zero and to examine the training effectiveness of
the controller, the monitor is disabled at time-step 7,000 such that the neural network directly
controls the robot. The results plotted in the graph reveal the following about the experiment
and controller:

e The number of time-steps with rule violations is initially high (green trace). This is as
expected as there is only a random mapping between sensors and motor actions.

e The number of violations trained (cyan) starts high then rapidly drops away by time-
step 3,000. This indicates that the network has been successfully trained to react to the
situations the robot is encountering. Note that this takes only 15 or so training steps to
achieve (black trace).
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o The number of new violations (red) starts high and decreases to an essentially constant
small number. As these violations are not resulting in training the network must already
be performing the correct remedial action when the rule is violated.

e The similarity of the response before time-step 7,000 and after, together with the observed
correct action, shows that the neural network has learnt the required mappings to suc-
cessfully navigate this environment. '

Surﬁmary

This experiment has shown:
e The EPC employed as a neural controller fulfilling the design goals of:

— Direct interface to analog signals — sensors.

— Direct interface to digital environment — the instinct-rule monitor and teacher.

o The instinct-rule controller was shown to promote simple obstacle avoidance behaviour
with the modified somatic tension performance evaluation.

Experiment Two: Dead-end behaviour

The previous environment was relatively benign in that it had no tight comners or dead ends
for the robot to negotiate. The neural network learnt a response that turned it away from any
sensory excitation. If the robot approaches a dead-end or tight corner the physical positioning
of the sensors means the response of some sensors must increase before the robot can turn out
of the comer. Does the simple instinct rule of “keep feelers quiet” promote this behaviour? It
was shown with Alder that it would; but once out of the dead-end had to re-learn the obstacle
avoidance behaviour, indicating that the two situations, or contexts, were not linearly separable
by the network.

This experiment confirms that the addition of the historical information can aid in providing
contextual information. The robot was run in the environment pictured in figure 8-8. The
statistics uploaded during one such experiment are depicted in figure 8-9. Like the previous
experiment the robot was started in a random state and the monitor was disabled after time-step
10,000. The robot was trained to the correct behaviour where it would travel from end to end of
the compound, avoiding the walls when moving between ends and turning out of the dead-end
when encountering it. The graph of figure 8-9 shows the statistics of this experiment:

¢ The number of rule violations (green) and tfaining epochs {cyan) is highest initially,
dropping rapidly as basic competencies are acquired.
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Figure 8-8: Obstacle Avoidance Experiment: Dead-end Enclosure
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Figure 8-9: Dead End Experiment
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e The majority of training is carried out in the first 3,000 time-steps in which approximately
30 training epochs take place (black trace).

e The number of violations (green) is not as close to constant as in the previous experiment.
This is because the environment presents two distinct situations; the dead-end, where
rules tend to be violated, and travel between ends where few rules are violated.

e The observed behaviour after the monitor is disabled proves that Kryton successfully
learns both behaviours of obstacle avoidance and dead-end escape.

In this experiment Kryton evolves a mapping that recognises the dead-end context with the aid
of history inputs. Figure 8-10 demonstrates the acquired behaviour — it shows the five general
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Figure 8-10: Behaviour in a Comer

movements that Kryton makes to detect and escape from a corner along with approximate
sensor and history activations. When Kryton enters a corner @) it initially turns away (left @)
from the sensor activation. It turns until it encounters the wall on the left and turns right @® to
avoid this obstacle. By this stage a strong excitation has accumulated in the history information.
This triggers action @ which keeps the robot turning left until it gets low excitation ®.

Experiments conducted in other, more complex, compounds consisting of straight, convex
and concave walls and corners produced the same ability to successfully avoid obstacles and
get out of dead ends.
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Summary

This experiment has shown historical data providing context information allowing Kryton to
learn obstacle avoidance and dead-end escape behaviour from the simple “keep feelers quiet”
instinct-rule. The mixed signal capabilities and the analog recovery feature of the EPC is used
to mix analog sensor data and historical data in processing.

8.6.2 Experiment: Wall Following

This section investigates how an additional instinct-rule can be added to modify the behaviour
of the robot. In this case an instinct-rule was added to promote a wall following behaviour.

Instinct-rules

The instinct-rules used in this experiment can be expressed as:

1. Keep feelers quiet.
2. Toucha wall.
3. Move forward.

The additional instinct-rule “touch a wall” is activated if in a certain period of time no sensor
has become active. The violation is relieved when a sensor is activated or a time limit is reached
where it is considered that the wall is lost.

Generated Inputs

In addition to the history inputs of the last section two additional types of generated input are
used in this section:

1. A find wall input which increases every time-step that there is no sensor activation and is
reset once a sensor is activated. The reasoning behind this is that the pattern associator
will learn to associate this input with the “touch a wall” instinct.

2. Two long term memory inputs are generated to store on which side the robot last touched
a wall. This is to allow Kryton to decide which direction to turn to touch a wall after
history has decayed.

Results

Figure 8—11 shows an experimental run with Kryton in the same compound of figure 8-8.
Kryton rapidly evolved a behaviour of turning back to the wall once all sensors left it and
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Figure 8-11: Wall Following Experiment

turning away from a wall when too close. This behaviour continued when the monitor is
disabled after time-step 7,000. The analog nature of the sensors allows a smooth reaction to
the problem — if sensors were digital as was the case in Alder, the robot in satisfying the “touch
a wall” instinct-rule violates the “keep feelers quiet” rule, producing an oscillatory behaviour
requiring constant intervention of the monitor block. With analog sensors this is not necessarily
the case as the robot will move towards the wall before a “touch a wall” rule is violated and
move away before a “keep feelers quiet” rule. — the pattern associator learns to pre-empt
the instinct-rule violations. This can be seen in the fact that the number of time-steps with
violations (green) of figure 8—11 is generally below 30. In the dead-end experiment it was
rarely below 30. Also the percentage of non-forward motions (blue) is essentially constant as
the robot smoothly follows the perimeter as against heading into corners in the dead-end case.

Summary

The EPC proved an effective processor for analog sensor inputs. Kryton was able to form
a mapping between analog sensor, digitally generated data and delay signals that produced a
wall following behaviour. The mapping was more effective than was the case in Alder as with
analog sensors Kryton was able to pre-empt instinct-rules.
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8.6.3 Experiment: Phototaxis

The basic behavioural tasks presented in the previous experiments had no navigational task
associated with them. To be useful the robot must be able to carry out navigational tasks. In
a subsumption architecture, navigational planning would be carried out be a higher level sub-
system. The instinct-rule controller performs the basic low-level motor competency functions,
yet must respond to directions from higher systems. This experiment demonstrates the ability
of the instinct-rule controller to do just this by using an instinct-rule “maximise navigational
signal”. In this experiment rather than coming from a higher-level system, this navigational
signal comes from a set of three light sensors to implement a light following behaviour —
phototaxis. Figure 8—12 shows the arrangement and approximate response of the light sensors
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Figure 8-12: Photo-sensors for Phototaxis Experiments

which are mounted on top of Kryton. Outputs of these light sensors are fed as analog signals
into the EPC,

Instinct-rules

1. Keep feelers quiet. _
2. Maximise navigational signal.
3. Move forward.

In addition to the basic obstacle avoidance instinct-rules a new rule to maximise the navigational
signal (photosensor @) is added. The rule is violated when the output from photosensors @
or (3 is greater than photosensor .
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Generated Inputs

Generated inputs are similar to the wall following ones:
1. A find light input which increases when there is no light sensor active.

2. Long term memory of last light sensor active.

Results

Figure 8-13 shows a typical experimental arrangement of obstacles and light source along with
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Figure 8-13: Example of Phototaxis Experiments

some observed paths of the robot. Experiments proved that the robot would lock and track the
light source while avoiding obstacles. If the robot lost the light source in avoiding an obstacle
it quickly learnt which way to turn to find the light again.

Summary

The important results from this experiment is that the instinct-rule controller will respond to
directional signals while maintaining obstacle avoidance behaviour. This means that the EPC
based controller can interact with higher navigational systems while autonomously handling
the motor competency tasks.
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8.7 Summary

The work presented in this chapter has placed the EPC into a real-world system. The EPC is
performing in its primary mode of operation — as a processing interface between the analog
domain and digital computing. It handles all analog input and presents this to the digital host.
Along with this, neural processing is performed on the analog input along with inputs provided
by the digital host. The results of this processing are made available as digital outputs. In
the experiments presented here the EPC performed the vast majority of processing with the
digital host idle or logging data over a serial line the majority of the time. This would allow
the host to perform other tasks such as task planning and navigation, and it was shown that the
instinct-rule controller could respond to such directional inputs.

The major difference between Kryton and its predecessor, Alder, was the direct interface
to analog sensors. This prompted enhancements to the controller architecture such as the use
of somatic tension to judge action performance. The mixed signal nature of the EPC allowed
generation of additional inputs which enabled the robot to correctly differentiate situations
such as obstacles and dead-ends. It also allowed finer control over competing tasks as in wall
following where one instinct-rule promotes the robot to move towards a wall while another to
IMove away.



Chapter 9

Discussion and Conclusions

9.1 Introduction

The objective of this thesis was to study the issues and practicalities of placing pulse stream
neural hardware into applications. The issues raised by this work fall into three categories
according to whether their effects are manifest at a VLSI, systems or applications level. This
concluding chapter discusses the issues in these three categories and draws conclusions as to
the success of the work and the future of hardware neural computation.

9.2 VLSI Issues

The investigation of the VLSI aspect commenced with a review of application based neural
VLSI in Chapter 3 and showed no obvious leader in implementation methodology for neural
VLSI. The benefits of pulse stream neural computation were particularly strong for the defined
primary application area of analog/digital interface, due to its ability to provide mixed signal
inputs and outputs suitable for direct digital processing.

The focus provided by the requirements of applications led to several VLSI design enhance-
ments, principally mixed signal input structure and analog signal recovery. The performance
of the EPSILON cells was also enhanced by layout improvements and refinements to the archi-
tecture. In particular the improvement in the distribution of synaptic power supply revealed
operational characteristics of the synapse array that were masked in the original EPSILON
chip.

The results gathered testing and characterising the EPSILON Il device, together with the
practical experience gained in putting the hardware to use, raised two major areas that concern
future VLSI improvement:

1. Minimisation of neuron offsets through reduced amplifier input offset voltage. This in
turn relates to the performance of the bias generation schemes.

2. The need for controlled variation of weight dynamic range.

145
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9.2.1 Minimisation of Neuron Offset

In Chapter 5 variation of offsets between synaptic columns was quantified and simulations
were used to illustrate the dominant role played by the distributed feedback amplifier’s input
offset in this variation. Here lies a practical consideration in using the distributed feedback
synapse: it is very sensitive to supply and mid-point voltage variations. In fact these two
factors are virtually equivalent as they are both manifest as unequal drain-source voltages
across the transconductance pair. This leads to the practical consideration that both power
supply variation and amplifier offset must be minimised for optimum operation. This problem
also effects the bias generation scheme used for the distributed feedback synapse. If input
offset is not minimised these references are unreliable. A scheme for minimising these offsets
was presented in Chapter 5.

Despite the problems of neuron offsets and gain variations, chip-in-loop learning has
been demonstrated in this work, and elsewhere, as being capable of compensating for analog
inaccuracies. Though the presence of non-idealities prevented a software evolved weight set
from providing a good solution in hardware, only relatively few training steps were required on
such a weight set to rrim it to a good solution. Thus the issue of minimising neuron offset is one
of compatibility of weight sets between chips and software simulations to minimise training
times, along with reliable generation of on-chip references.

9.2.2 Weight Dynamic Range

Chapter 7 highlighted the importance of restricted dynamic range in the weight set. It was
found that while limitations in analog precision are acceptable in the feed-forward path, some
control over the dynamic range is needed to allow solutions to a wide variety of problems. Two
methods of dynamic range variation were presented for the pulse stream hardware:

1. Scaling of input pulse-widths to produce a dynamic range trade-off against speed and
noise level.

2. Scaling of output ramp waveform to produce an accuracy/dynamic range trade-off.

For a practical learning system an automatic weight scaling and dynamic range adjustment
scheme would be advisable. Such schemes have been proposed by Myers et {[87). The above
dynamic range enhancement methods were shown to have limitations or adverse effects in
increasing noise and reducing network computation rate. To gain further control over dynamic
range a third, circuit level, method could also be incorporated into future designs. This would
involve adjusting the synaptic gain, which is set by the width-to-length ratios of the synapse
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Figure 9—1: Gain Variation for EPSILON Distributed Feedback Synapse.
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Thus reducing the width-to-length ratio of the buffer stage, equivalent to using less buffer stages,
would increase the gain and thus dynamic range of the weights. Local digital storage in the
neuron can control how many buffer stages are switched into the feedback path, the basic idea
is shown in figure 9-1. The advantage of this arrangement is that it adds little complexity (thus
area) to the synapse as no extra transistors are required, just extra routing. Apart from gaining
extra control over dynamic range, this method does not entail significant neganvc trade-offs as
the other methods presented in the thesis did.

synaptic gain = O9.1)

9.2.3 VLSI Summary

Upon investigation of the applications area and system level needs, it was concluded that pulse
stream methodology was the most suitable implementation strategy due to its:

e Mixed analog/digital domain input capabilities.

e Digital compatible outputs.

Cascadable structure with digital communication.

Simple, robust and compact synapse design.

Existing technology available within the Edinburgh research group.



Discussion and Conclusions - 148

The chip presented, EPSILON I, represents an advance with regard to previous pulse stream
neural chips in that it provides:

e Better performance achieved by layout improvements.
e Additional features for applications use such as:

— Programmable input modes.
— analog signal recovery mode.

— simplified control strategy.

Amplifier offset was highlighted as a major source of non-ideality, and techniques to minimise
this were presented for future designs. With limited weight dynamic range highlighted as a
practical limitation on network capabilities, an electronic gain variation scheme was outlined.

9.3 System Level Issues

As part of the literature review, a variety of hardware neural systems were studied in order to
illustrate system level issues. The most successful of these implementations showed a tight
coupling between input structure and input domain. Examples of this were the direct analog
sampling in the Kakadu system and the direct optical input of the Synaptics OCR. Similarly,
matching between network outputs and output domain, which is invariably a digital system,
was a factor in the most successful systems. Conversely, designs where large system overheads
were needed showed the drawbacks of inappropriate use, one such example would be the
ETANN chip in a digital environment requiring hundreds of D/A channels[61]. The same work
also described problems in providing low noise analog busses to cascade ETANN chips.

The EPSILON/FENICS system, along with the ETANN systems discussed, demonstrate
how data conversion can limit the data throughput of the system. In these cases conversion was
slower than device computation. For EPSILON/FENICS, the host processor had to perform
substantial processing to recover results and for ETANN, the large A/D overhead limited the
computation rate. The following factors thus emerged as pointers for successful applications
oriented neural hardware:

* Autonomy of operation from the host system is essential. For pulse stream systems this
involves a system incorporating:

— Chip support operations such as weight refresh and ramp generation.

— Data conversion to and from host system data representation.

e Effective data interfaces to domains of operation, that is:
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— Analog real-world data implies the need for analog inputs.
— Data input from a digital host requires digital inputs.

— Chip operation is pulse stream so pulse stream communication is necessary to
cascade chips.

— The output domain is a digital host so digital outputs are required.
o Flexible structure to allow a variety of problems to be implemented.

The EPSILON Processor Card embodies these principles to provide a framework for pro-
totyping applications. The strengths of the EPC are derived from the:

1. Parallel and autonomous nature of support functions allowing real-time operation.

.

2. Flexibility of its I/O structure.

3. Ability to customise internal digital processing.

Support functions and real-time operation

All chip support functions were performed at system level and parallel pulse conversion tech-
niques were used to minimise data bottle-necks; the major source of performance degradation
in previous systems. In an optimum configuration the EPC can operate at the top speed of the
EPSILON II chip — a single layer computation cycle of 40us, or two layers in 60us. Some
configurations of input and output (e.g. full digital input and output) require a serial pulse
conversion approach which slows throughput somewhat.

Comparisons with software networks are dependent on the application and input structure.
For instance a 66MHz processor could perform a two layer MLP computation at a similar rate
of 65us'. Yet if inputs are analog then a significant A/D conversion overhead is required, both
in hardware and computation time. Here lies the advantage of the hardware implementation:
A/D conversion and neural processing are performed in the same step. This is the key factor
promoting hardware use and development: if the input domain is the analog world there is
significant advantage in using analog processing because the interface requirements are inherent
in the hardware.

Input/output flexibility

The second key area in which the EPC improves on previous neural systems is in the flexibility
of its I/O structure. The EPC can provide parallel channels for analog data directly to the chip.

! Assuming a multiply accumulate takes two clock cycles and a non-linear threshold four: total cycles
=1024 x 2 x 2+ 32 x 2 x 3 = 65us compute time. In reality program and memory access overheads
would make this longer.
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It can also configure inputs to process digital data from the standard bus to provide mixed
signal processing. One extreme of this is the fully digital input configuration, though this is
not seen as an efficient mode of operation when compared to a dedicated digital solution. The
other extreme is fully analog input where the EPC performs as a processing A/D converter. In
between, the mixed signal architecture allows a powerful tool to fuse analog and digital data.
No other system examined has this flexibility of architecture, especially important is the ability
to deal with mixed signal inputs.

The output of the EPC converts pulse stream outputs to digital values, these are presented
to the host via a standard digital bus. It can also recover analog inputs and supply the host
with digital conversions of these. Cascading chips or broadcasting inputs is achieved with a
dedicated pulse stream bus which provides a relatively noise immune method of transferring
neural states. Again no system examined presents digital output along with providing parallel,
noise tolerant cascading ability.

Customisation

The use of FPGA technology for the digital support processing allows a great deal of flexibility
and customisation for different applications. The digital support can be optimised to the highest
degree of parallelism for the data and network structure of the applications. This is in contrast
to providing support for all possible I/O variations which would be prohibitive with standard
logic. Added to this is the advantage of being able to implement custom digital processing on
the EPC itself; such as winner-take-all functions or delay loops for inputs. Spare FPGA pins
can also be used for digital control purposes in the application, this was done for motor control
in the instinct-rule robot demonstrator. This ability to match neural system to application has
not been found in previous hardware neural systems,

Future system level work

Future advances in system level work is largely dependent on VLSI advances. The EPC
architecture is ideal for applications such as remote sensor monitoring or control applications;
for the EPC to be economic in such a role a near two chip solution is required. This implies
substantial integration of analog functions onto the neural chip. Most of these are achievable,
for instance:

* Ramp and weight refresh D/A converters.
» Bias and reference generation circuitry.

e Synaptic power supplies.



Discussion and Conclusions 151

The largest system overhead is weight memory which implies that the ideal solution would
involve on-chip non-volatile analog memory. Until technology provides such an analog solution
external digital storage is required. For the EPC the problem of volatility of weights can be
alleviated by storing the weights in the on-board EEPROM.

9.4 Applications Issues

Part III of the thesis investigated the practicalities of using the EPC. In Chapter 7 chip-in-loop
learning with back-propagation was investigated and the limits of network ability studied. The
study commenced using an artificial character recognition problem. The lessons learnt from
this were then applied to a series of real-world problems. In Chapter 8 the EPC was placed
in a real-world system, an autonomous mobile robot, to study its performance as a processing
analog interface. The rest of this section discusses the issues raised by these studies.

9.4.1 Effects of Analog Non-Idealities on Back-Propagation Learning

The major areas to arise from the investigation of training the EPC chip-in-loop with back-
propagation learning were:

1. Learning rate limitations of hardware.

2. The effect of limited dynamic range and precision on learning ability and performance
of the hardware.

3. Pointers to the types of problems suitable for hardware neural solutions.

Learning rate

In the course of the investigation it was found that the hardware was inherently slower to train
than an ideal software network because the learning rate parameter, 7, required for stability
was much lower than conld be used in software. The principal reason for this was that a higher
71 promotes larger weights which become clipped in the bounded weight representation of the
hardware, too high and the learning became unstable. Also the effects of analog non-idealities
introduce inaccuracies in the error function that meant the training algorithm took longer to
reach a low error solution. The best method to reach a good solution was found to be training
a software model of the hardware which took into account the limited precision and dynamic
range of the weight set then downloading this weight set to the hardware and trimming it by
further training,
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Table 9-1. Summary of Comparative Performance of EPC to Software Network

Problem . Difference in Increase in mean
generalisation square error
performance

Character recognition 2.5 +797%

ATM link admission 34 +171%

Speaker identification 3.7 +32%

Medical data analysis 9.1 +9.7%

Region classification 29.8 +54%

Dynamic range and generalisation performance

Both finite precision and dynamic range of the hardware were found to affect network per-
formance, though dynamic range was found to have greater practical ramifications. While
precision in the weight set determined an absolute limit in network accuracy, variation of the
dynamic range of the weights was shown to be essential in maximising the use of this preci-
sion. Experiments showed that the performance of low precision analog hardware will never
match that of high precision software. For instance, the hardware non-idealities result in a
significantly higher final training error for a problem. However, this was not found to translate
directly as a severe degradation in generalisation ability. This is demonstrated in table 9-1
which summarises the results of the five problems presented in Chapter 7. The first column
tabulates the difference between the percentage of correct classifications of the generalisation
set for the floating point software network and the EPC hardware network. The second column
shows the percentage increase in the mean square error of the hardware network compared to
the software network®. As can be seen the hardware performed to a reasonable level when
compared to the floating point software for all but the region classification problem.

The initial experiments for the medical data problem showed poorer performance which
prompted an investigation into the effect of dynamic range on the solution to this problem. A
series of software simulations demonstrated that increasing the dynamic range could produce
a solution approaching that of the floating point network. This was attempted on hardware by
scaling the inputs to increase dynamic range. This produced an improvement in performance
but the corresponding increase in noise and the effects of gain and offset variation limited the
effectiveness of this method.

These experiments again highlighted the importance of limited dynamic range on network
performance and this is perhaps the major result of this thesis as weight dynamic range is
a limited hardware resource dependent on the physical characteristics of the design. Careful

2The figure for the character recognition problem is from the training set while the rest are calculated
from the generalisation test sets.
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design is needed to maximise weight dynamic range without adversely affecting noise tolerance,
speed and power consumption. Note that this is a practical issue relating to hardware only —
such scalings of dynamic range can be easily achieved in software networks without introducing
errors as long as sufficient headroom is available in the calculations. The role of dynamic range
in hardware performance as demonstrated by the experimental work of this study has not been
seen reported in the literature.

The next section discusses the issues of problem suitability that arose from the experiments
of Chapter 7.

Suitability of problems

The experiments in Chapter 7 demonstrated the type of problems most suited to hardware
implementation. The 1-of-N classification problems, bar the region classification problem,
performed well as the output units, being sigmoidal, suppressed the effects of noise. The
effects of noise were much more prevalent where the network is in the role of a function
approximator with linear outputs such as the ATM problem. Though the hardware performed
satisfactorily in classification, the larger error may mean its value as a function approximator
is limited.

The region classification problem demonstrated that there is a limit to the difficulty of
problems that can be solved with the hardware. This problem required higher resolution than
was available to differentiate very close input vectors. This highlights that problem selection,
or equally input data selection, must be examined to determine suitability of the problem for
hardware implementation. The simple software models of the hardware presented in the thesis
offer a convenient first step in determining problem suitability.

9.4.2 Kryton - The EPC Processing Analog, Real-World Data

Chapter 8 presented the instinct-rule robot, Kryton. The aim of this investigation was to place
the EPC in a real system and utilise its ability to interface directly to analog data. The problem
represents a class of potential applications where analog sensor data must be interfaced and
processed to perform a control task. The instinct-rule application demonstrated the ease of use
of the EPC; it was possible to wire Kryton's analog feelers directly to the EPC analog input
bus and three unused digital outputs were used as control signals to motor actuators.

While it is difficult to make a direct comparison between Kryton and the software controlled
exemplar Alder from which it was modelled, as Alder used digital or ternary sensors and a
software neural network. However the use of real-valued sensor readings did lead to refinements
in the control architecture which were shown to have such effects as fewer actual contacts with
obstacles and a smooth action in wall following.
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The mixed signal architecture of the EPC was also utilised in interaction with the instinct-
rule controller. Here additional inputs conveying time dependent or historical information were
presented to the network which allowed the robot to make context dependent decisions.

As a demonstrator Kryton performed well and was the only example found in the literature
of dedicated neural hardware controlling an autonomous vehicle.

9.4.3 Future Work — Applications

An obvious area for future work in the applications field is to use the EPC to prototype further
real-world problems such as sensor monitoring tasks, local control problems and intelligent
A/D. The demonstration applications presented in this thesis show that the EPC is suitable for
prototyping such problems. The analog recovery ability enables sampling of analog inputs of
an application to build a data—set for training. The software models developed in Chapter 7
allow the developer to predict likely performance of the EPC and gauge problem suitability.
These software models also allow the off-line development of weight sets that may be quickly
trimmed on the hardware.

Chapter 7 raised issues concerning the ability to train hardware neural networks. Further
work here would be to examine the performance of other MLP learning aigorithms.

The issue of weight dynamic range could be further investigated by studying its effects on
other problems and determining the limits to which increasing dynamic range is effective.

9.5 Overall Conclusions

To make the transition from laboratory research to real-world use and acceptance, hardware
neural networks must fill an applications niche where they outperform existing methods or
for which no present method is available. In evaluating potential applications areas, points to
consider are:

¢ Most neural applications will be served optimally by fast, generic digital computers. This
is because data is in digital form and conventional computing continues to improve in
performance which quickly outpaces the performance of a dedicated hardware solution.

e Analog neural VLSI is applied optimally at the interface between the real world and
higher-level digital processing. It is here that the ability to deal efficiently with analog
inputs can give neural technology an edge.

To operate in this area it is essential that neural hardware:

e Interface directly to analog inputs.
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¢ Deal equally well with digital inputs.
e Provide output in a host readable form.
e Operate without consuming host resources

The EPC proved an effective solution to most of the problems studied in the thesis and
demonstrated a high degree of flexibility and ease of use:

e The EPC was demonstrated solving 1—of-N classification problems such as the speaker
identification and medical data problem. These problems represent a class in the applica-
tions area where real-world analog signals must be classified and outputs made available
to a digital host.

e The limits of the EPC’s performance was probed with the region classification problem
where it failed to provide a good solution. This demonstrated a class of problem unsuited
to analog hardware implementation: those with high resolution input data and sharp
decision boundaries requiring high resolution weights.

e The success of Kryton demonstrated the advantages of the EPC in interfacing to analog
signals. Kryton represents a broad class of problem where analog and digital signals are
fused in neural processing.

e The combination of neural VLSI combined with the digital support provided by an
FPGA allowed the EPC to interface easily with digital systems. This gives the EPC great
flexibility for prototyping applications as custom digital control can be implemented on
the board.

The above points demonstrate that analog pulse stream neural processing, embedded in a
support system can provide an effective solution to real-world problems.
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EPSILON II Chip Details

A.1 Layout Plot Legend
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Figure A-1: Key to Geometrical Layers in Layout Plots

A.2 EPSILON II Input Neuron SRAM Cell
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Figure A-2: EPSILON II Input Neuron SRAM Circuit with Transistor W/L Ratios
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A.3 EPSILON II Input Neuron Cell

8 S
= = 2
<
o3 =5 23 g3 L%
C| d 8
2z E 5 By R
<2 B E K& =8 g8

Agnd
load_mode - _: ] : .

@l PW output 1

,- PW output 2

SRR S
P s

NAND Gate Driver D Gate Driver

_Comparator 3 Comparator ;

Figure A-3: EPSILON II Input Neuron
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EPSILON II Chip Details

A.4 EPSILON II Synapse Cell
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A.5 EPSILON II Output Neuron
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Figure A-5: EPSILON II Output Neuron Cell
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A.6 EPSILON II Shift Registers

Figure A-7: EPSILON II Y-Shift Register
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A.7 EPSILON II Pin Out

| Description | Name | Pad # | PGA | SCM |

Network Input | IN28 | | C3 29
Network Input | IN27 | 2 B2 15
Network Input | IN26 | 3 Bl 14
Network Input | IN25 | 4 D3 42
Network Input | IN24 | 5 C2 28
Network Input | IN23 | 6 Cl 27
Network Input | IN22 | 7 D2 41
Network Input | IN21 | 8 E3 48
Network Input | IN20 | 9 Dl 40
Digital Ground | GND | 10 E2 47
Digital Supply vdd | 11 El 46
Network Input | IN19 { 12 F3 54
Network Input | IN18 | 13 F2 53
Network Input | IN17 | 14 F1 52
Network Input | IN16 | 15 G2 59
Network Input | IN15 | 16 G3 60
Network Input | IN14 | 17 Gl 58
Network Input | IN13 | 18 H1 64
Network Input | IN12 | 19 H2 65
Network Input | IN11 | 20 H3 66
Network Input | IN10Q | 21 J1 70
Network Input IN9 | 22 J2 71
Network Input INS | 23 Kl 76
Network Input IN7 | 24 13 72
Network Input ING | 25 K2 77
Network Input INS | 26 L1 82
Network Input IN4 | 27 Mi 95
Network Input IN3 | 28 K3 78
Network Input IN2 | 29 L2 83
Network Input IN1 | 30 N1 108

Table A-1. EPSILON II Pin out part I
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{ Description |  Name [ Pad# [ PGA | SCM |
Network Input INO | 31 L3 84
Autobias Input In_bias | 32 M2 96
Input Ramp Vramp_ip | 33 N2 109
Digital Ground GND | 34 14 85
Analog Ground AGND | 35 M3 97
Digital Supply Vdd Pry | 36 N3 110
Mode select ld_mode | 37 M4 98
Sample input Vsample | 38 L5 86
Neuron Output OUTO | 39 N4 111
Neuron Qutput OUT1 | 40 M5 59
Neuron Qutput OUT2 | 41 N5 112
Neuron Output OUT3 | 42 L6 87
Neuron Qutput OUT4 | 43 Meé 100
Neuron Output OUTS | 44 N6 113
Neuron Qutput OUTé6 | 45 M7 101
Neuron Output OUT7 | 46 L7 88
Neuron Output OUTS | 47 N7 114
Neuron Output OUT9 | 48 N8 115
Neuron QOutput OuUT10 | 49 M3 102
Neuron Output OUT11 | 50 L8 89
Neuron Output OuT12 | 51 N9 116
Neuron Output OuUT13 | 52 M9 103
Neuron Output OUT14 | 53 N10 117
Neuron Output OUTI15 | 54 L9 90
Enable integrator Venable | 55 M10 104
Reset integrator Vreset | 56 NI11 118
PF phase filter ifp | 57 N12 119
PF gain filter rfg | 58 L10 91
PF gain VCO O/P vcog | 59 Mi11 105
PF phase VCO O/P vcopw | 60 N13 120

Table A-2, EPSILON II Pin out part II
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| Description | Name | Pad # | PGA | SCM |
Digital Ground GND Pry | 61 L11 92
Analog Supply AVdd | 62 MIl12 106
N/C N/C | 63 M13 107
Digital Ground GND Pry | 64 K11 79
Iv0 synapse reference 1vOref | 65 L12 93
Output ramp Vramp_op | 66 L13 94
Phase PLL in rip | 67 K12 | 80
Phase PLL out rop | 68 J11 73
Gain PLL in rig | 69 K13 81
PLL reference current ipg | 70 J12 74
Gain PLL out rog | 71 J13 75
PLL reference voltage vig | 72 H1l 67
Integrator O/P zero Voz_int | 73 HI12 68
Weight load Vwt | 74 Hi3 69
(.5V Supply Ov5 |75 Gl12 62
1.5V Supply 1v5 | 76 Gl1 61
Vsz generator VszOUT | 77 G13 63
Voz generator Voz_out | 78 F13 57
syn buffer bias vbias | 79 F12 56
2.5V reference Vset2v5 | 80 Fl11 55
Zero weight reference Viyjz | 81 El13 51
PWM Comparator reference Iref PW | 82 E12 50
Int Balance 1 Ibal_int | 83 D13 45
Int tail I Itail_int | 84 Ell 49
Synapse zero ref Vsz | 85 D12 44
Opamp tail current Itail_op | 86 C13 39
Opamp tail voltage Vtail.op | 87 B13 26
Digital Supply Vdd Pry | 88 D11 43
N/C N/C | 89 C12 38
Digital Ground GND Pry | 90 Al3 13

Table A-3. EPSILON II Pin out part Il
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| Description | Name | Pad # | PGA | SCM |
Analog Supply Avdd | 91 Cl1 37
Preset control signal Preset | 92 B12 25
Neuron Output OUT31 | 93 Al2 12
Neuron Output OUT30 | 94 Clo 36
Neuron Qutput OUT29 | 95 B11 24
Neuron Output OUT28 | 96 All 11
Neuron Output OuUT27 | 97 B10 23
Neuron Output OUT26 | 98 C9 35
Neuron Output OuUT25 | 99 Al0 10
Neuron Qutput OouT24 | 100 | BY 22
Neuron Output OuUT23 | 101 A9 9
Neuron Output OouT22 | 102 | C8 34
Neuron QOutput OuUT21 | 103 | B8 21
Neuron Output OUT20 | 104 | A8 8
Neuron Output OUT19 | 105 | B7 20
Neuron Output OUT18 | 106 | C7 33
Neuron Output OouTI17 | 107 | AT 7
Neuron Qutput OUTI6 | 108 | A6 6
Output mode control | PWM_select | 109 | B6 19
Output mode control PFM select | 110 | C6 32
Control test output SR _check | 111 | A5 5
Refresh control signal refresh | 112 | BS 18
Refresh clock 1 xphi2 | 113 | A4 4
Refresh clock 2 xphil | 114 | C5 31
Digital Supply Vdd Pry | 115 | B4 17
Analog Ground AGND | 116 | A3 3
Digital Supply Vdd Pry | 117 | A2 2
Network Input IN31 | 118 | C4 30
Network Input IN30 | 119 | B3 16
Network Input IN29 | 120 | Al 1

Table A—4. EPSILON II Pin out part IV
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A.8 Summary of Chip Functionality

Chip Number Comments
Number  of out- ‘
of-range
neurons
0 1
| 3
2 0
3 - Originally working but damaged during testing
4 4
5 4
6 - Not operational
7 |
8 3
9 2
10 3
11 1
12 4
13 1
14 4
15 - Not operational
16 3
17 - Not operational
18 4
19 - Not operational

Table A-5. Summary of Chip Functionality



Appendix B

Xilinx Chip Design

This appendix gives the schematic designs of Xilinx functional blocks. Additional information

on Xilinx building blocks and chip configuration can be found in the libraries guide [118] and
data book [117].
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Figure B-1: Top Level Design
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Xilinx Chip Design
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B.2 Pulse Conversion

Consists of five blocks:

BIN_TO_PW for binary-to-pulse-width conversion.

FIRE_PULSES to fire input and output ramps and drive pulse RAM.

169

EPSII_ADDRESS_COUNTER which clocks addresses for ramps and pulse RAM.

1
2.
3. UP_DOWN_COUNTER to generate linear input ramp.
4
5

PW_TO_BIN for pulse-width-to-binary conversion.
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Figure B-3: Pulse Conversion Design
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B.2.1 Binary to Pulse Stream Conversion
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Figure B—4: Binary-to-pulse stream Design

The UP_DOWN_CTR begins counting on a run signal down from 0xOFF to 0x00 in steps
of two, it stays at 0x00 for one clock cycle then counts up from 0x01 to OxFF then stops.
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Figure B-5: Up-Down Counter Design
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Figure B—6: Address Generation and Control Design

B.2.2 Pulse Stream to Binary Conversion
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Xilinx Chip Design 172

4 52\\ CE_ADD
. 124 — L B
recover% N N -
MASK _BITR®——-1""" - 3 FD 2
13 T b —‘““j _______ S
SIS r e .
TC_ADD E—— Y. I j____\
T e ~ finished
—22 WE_RAM
run . J D__J_ﬁ
TC_STATE TR S S N P -
oy 5T o at o

CE_STATE

=)

Y
+ I§15]
i
S
‘ i
cik B
i
{
!
|
{
-

TC_STATE

'TC_ADD

recover. MASK _BIT

Figure B-8: Control State Machine Design

This state machine controls pulse-width-to-binary conversion. Pulse-widths are processed
sequentially by scanning pulse RAM (CE_ADD enables address generation in COUNT state)
then writing the result into state ram (WRITE state). State RAM address counter is then
incremented and (INC) process repeated until all states done (as defined by TC_STATE signal).
For a recovery of analog inputs (recover) only analog inputs are processed as defined by mask
register.
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B.3 Weight Refresh
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B.4 STE Interface
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Figure B-12: STE Interface Design

This block decodes addresses and produces select and write signals for various registers and
RAM blocks memory mapped in the EPC. It generates the STE data acknowledge (DTACK)
signal to indicate the completion of a bus cycle.
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B.5 Control State Machine
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This state machine sequences EPC operations. It is triggered by bits in the control and
status registers along with finish signals from the EPC functional blocks. It provides run
signals for functional blocks and the main control signals for the EPSILON II chip.
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EPC Documentation

C.1 Parts List

PARTNO.  DESCRIPTION QTY
STECON STE BUS CONNECTOR 1
M-TERM MOTHER BOARD SOCKET 2
IDC40 40 WAY IDC CONNECTOR 1
XCHECK]1  XCHECKER CONNECTOR 1 1
XCHECK2  XCHECKER CONNECTOR 2 1
0.1uF 0.1uF CAP 11
XC4006 XILINX XC4006PG156 FPGA 1
T4HC245 OCTAL BUS TRANSCEIVERS 4
M5M5178-25 8192 X 8-BIT HIGH SPEED STATIC 6
74HC688 8 BIT MAGNITUDE COMPARATOR 2
27C256 32K X 8 UV EPROM CMOS 1
TUMP4 4 WAY TUMPER 1
JTUMP 8 WAY GND/VCC JUMPER 1
SM-LED SMALL LED, INT RES 2
0SC24 DIL OSCILLATOR 24.0‘MHz 1
ME8-47K 8 RESISTORS,9 PIN SIL 47K 1
10K 10K 1/4W RESISTOR 1
DUALSW  DUAL DPDT SWITCH 1
PB-SW PUSH BUTTON SWITCH N/O 2

Table C-1. EPC Mother Board Parts List
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PART NO.

TAP
DB-TERM
IDC20
PWRCON
33pF
0.1uF
14F-TANT
C

1PF5
82PF
10PF

10uF-TANT

EPSII
LF347
DG211
AD7524
EL244
DACO08
DG303
ADS828
JUMP2
LINKS
10KPOT
100RPOT
1KPOT
SKPOT
LM337LZ
LM317LZ
MD4-2K2
R

220R

DESCRIPTION

TAP POINT TERMINAL
DAUGHTER BOARD HEADER
20 WAY IDC CONNECTOR
POWER CONNECTOR

33pF CERAMIC CAP

0.1uF CAP

1uF TANTALUM CAP’
CAPACITOR

1.5pF CERAMIC CAP

82pF CERAMIC CAP

10pF CERAMIC CAP

10uF TANTALUM CAP

PULSE STREAM NN

QUAD FET INPUT OPAMP

DG211CJ QUAD SPST ANALOGUE SWI

AD7524 8 BIT MULT DAC

QUAD VIDEO OPAMP 350V/uS SLEW

8 BIT HI SPEED DAC

DG303AC] DUAL SPDT ANALOGUE SW

DUAL HIGH SPEED OPAMP
2 WAY JUMPER

8 WAY LINKS

10K POT

100R POT

1K POT

SK POT

Negative Voltage Regulator
Positive Voltage Regulator

4 2K2 RESISTORS,S PIN SIL
1/4W RESISTOR

220R 1/4W RESISTOR

Table C-2. EPC Daughter Board Parts List

QTY

B O B e s DO e = B2 e e B = B e = B B = B RN = NOND D A = = Do
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C.2 PCB Layout
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C.3 EPC Schematics
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Figure C-3: Daughter Board Schematic
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C.4 Board Set-up Procedure

The following procedures describe how to set up the EPC board for operation.

C.4.1 Xilinx Microcode Selection.

The microcode that determines the functionality of the Xilinx chip can be loaded into the chip
from two sources:

1. Xilinx Xchecker serial cable: This allows downloading and de-bugging from a SUN
workstation via the Xchecker serial cable. To select this mode the mode switches are
in the XCHK and DWN positions. The Xchecker cable is plugged onto connectors
XCHKI1 and XCHK2. '

2. On-board EEPROM: To load the Xilinx device from the on-board EEPROM the first
switch is placed into the EEPROM position. A single EEPROM can store two possible
configurations. Select switch to UP to load configuration from EEPROM address 0x0000
select DWN to load configuration from EEPROM address Ox7FFF

C.4.2 EPC Base Address Selection

The base address is set using jumpers marked A11-A18 these are set to O or 1 depending on
position of jumper.

C.4.3 Analog Supplies

The two analog synaptic supplies as set using POT11 (0.5V supply) and POT12 (1.5V supply)
these can be monitored at tap points marked ANOVS and AN1V5 and should be set to ImV
accuracy.

C.44 DAC Setup
Weight Refresh DAC

Apply a weight set consisting of weights of T;;=0x00,0x80 & OxFF. Adjust POT10 to give
minimum weight voltage of 2.5V then adjust POT9 which controls gain to set T;;=0x80 to be
3.75V. T;;=0xFF should be close to 5V.
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Ramp DACs

Input ramp is adjusted by POT13 to give 0-5V ramp. Output ramp is offset by POT15 to start
at 1.0V and end at 4.0V.

C.4.5 Analog References

Potentiometers P1 to P8 set the analog references, theses are monitored from the appropriate
op-amp pins (see figure C-6) and set to:

P1 VSZ set to achieve a 10us output pulse-width with zero weight and 10.s input pulse.
P2 VOZ set to achieve a 10us output pulse-width with zero weight and Ous input pulse.
P3 VTijz setto 3.75V
P4 Vbias setto 3.10V
PS5 Vt-op setto 1.60V
P6 2V5 set to 2.500V
P7 1V0 set to 1.000V

P8 Vig set to 0V, not used for pulse-width circuits.
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Abstract

In this paper we examine the practical use of hardware neural
networks in an autonomous mobile robot. We have developed a
hardware neural system based around a custom VLSI chip, EP-
SILON II!, designed specifically for embedded hardware neural
applications. We present here a demonstration application of an
autonomous mobile robot that highlights the flexibility of this sys-
tern. This robot gains basic mobility competence in very few train-
ing epochs using an “instinct-rule” training methodology.

1 INTRODUCTION

Though neural networks have been shown as an effective solution for a diverse range
of real-world problems, applications and especially hardware implementations have
been few and slow to emerge. For example in the DARPA neural networks study
of 1988; of the 77 neural network applicalions investigated only 4 had resulted in
field tested systems [Widrow, 1988]. Furthermore, none of these used dedicated
neural network hardware. It is our view that this lack of tangible successes can be
summarised by the following points:

+ Most neural applications will be served optimally by fast, generie digital
computers.

¢ Dedicated digital neural accelerators have a limnited lifetime as “the fastest”,
as standard computers develop so rapidly.

'Edinburgh Pulse Stream Implemenation of a Learning Oriented Network.
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¢ Analog neural VLSI is a niche technology, optimally applied at the interface
between the real world and higher-level digital processing.

This attitude has some profound implications with respect Lo the size, nature and
constrainls we place on new hardware neural designs. After several years of research
into hurdware neural network implementation, we have now concentrated on the
areas in which analog neural network techinology has an “edge” over well established
digital technology.

Within the pulse stream neural network research at the University of Edinburgh,
the EPSILON chip’s arcas of strength can be summarised as:

s Analog or digital inputs, digilal oulputs. e Modest size.
» Scaleable and cascadeable design. » Compact, low power.

This list poinis naturally and strongly to problems on the boundary of the real,
analog world and digital processing, such as pre-processing /interpretation of analog
sensor data. Here a modest neural nelwork can act as an ntelligent analog-to-digital
converier presenling preprocessed information to its host. We are now engaged
in a two pronged approach, whereby development of technology te improve the
performance of pulse stream neural network chips is occurring concurrently with
a search and development of applications to which this technology can be applied.
The key requirements of this technological development are that devices must:

» Work directly with analog signals.
e Provide a moderate size network.

e Have the potential for a fully integrated solution.

In working with the above constraints and goals we have developed a new chip,
EPSILON 11, and a bus based processor card incorporating it. Ii is our aim to
use this system to develop applications. As our first demonstration the EPSILON
processor card has been mounted on an sulonomous mobile robet. In this case the
network utilises a mixture of analog and digital sensor infoermation and performs a
mapping between input/sensor space, a mixture of analog and digital signals, and
output motor control.

2 THE EPSILON II CHIP

The EPSILON TI chip has been designed around the requirements of an application

based system. It follows on from an earlier generation of pulse stream neural network
_ chip, the EPSILON chip [Murray, 1992].

The EPSILON II chip represents neural stales as a pulse encoded signal. These pulse
encoded signals have digital signal levels which make them highly immune to noise
and ideal for inter and intra-chip communication, facilitating efficient cascading of
chips to form larger systems. The EPSILON II chip can take as inputs cither pulse
encoded signals or analog voltage levels, thus facilitating the fusing of analog and
digital data in one system. Internally the chip is analog in nature allowing the
synaptic multiplication function to be carried out in compact and cfficient analog
cells [Jackson, 1994].

Table 1 shows the principal specifications of the EPSILON II chip. The EPSI-
LON II chip is based around a 32x32 synaplic matrix allowing cfficient interfacing
to digital systems. Several features of the device have been developed specifically
for applications based usage. The first of these is a programmable input mode. This
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Table 1: EPSILON II Specifications

EPSILON II Chip Specifications
No. of state input pins 32
Input modes Analog, PW or PF
Input mode programmability Bit programmable
No. of state outputs 32 pinned out
Qutput modes PW or PF
Digital reccovery of analog I/P | Yes - PW encoded
No. of Synapses 1024
Additional eutobias synapses 4 per outpul neuron
Weight storage Dynamic
Programmable activity voltage | Yes
Dic size 6.9mm x Tmm

allows each of the network inputs to be programmuned as cither a direct analog input
or a digital pulse encoded input. We believe that this is vital for application based
usage where it is often necessary to fuse real-world analog data with historical or
control data generated digitally. The second major feature is a pulse recovery mode.
This allows conversion of any analog input into a digital value for direct use by the
host systemn. Both these features are utilised in the robotics application described
in section 4 of this paper.

3 EPSILON PROCESSOR CARD

The need to embed the EPSILON chip in a processor card is driven by several
considerations. Firstly, working with pulse encoded signals requires substantial
processing to interface directly to digital systems. If the neural processor is to
be lransparent to the host system and is not to become a substantial processing
overhead, then all pulse support operations must be carried out independently of
the host system. Secondly, to respond to further chip level advances and allow rapid
prototyping of new applications as they emerge, a certain amount of flexibility is
needed in the system. It is with these points in mind that the design of the flexible
EPSILON Processor Card (EPC) was undertaken.

3.1 DESIGN SPECIFICATION
The EPC has been designed to meet the following specifications. The card must:

o Operate on a conventional digital bus systern.

o Be iransparent to the hoslt processor, that is carry out all the necessary
pulse encoding and decoding.

s Carry out the refresh operations of the dynamic weights stored on the
EPSILON chip.

e Generate the ramp waveforms necessary for pulse width coding.
+ Support the operation of multiple EPC's.
e Allow direct input of analog signals.

As all data used and generated by the chip is effectively of 8-bit resclution, the STE
bus, an industry standard 8-bit bus, was chosen for the bus system. This is also cost
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clfeclive and allows the use of readily available support cards such as processors,
DSP cards ard aralog and digital sigral corditionicg cards.

To allow the trarsparercy of operation: the card must perform a variely of furctiors.
A block diagram irdicatirg these furelions is showr ir: figure 1.

e TROA
Newral Bus Puisc RAM - Pulse 1n Dig. Conv, |— Bus imerface etel, [t

I ; T :

Analopg Bus - €2 - Dig. 10 Pulse Conv, Contro] Stale Machine. | §
&
EPSILON I B

Weight sefresh Cuel. Ramp Gew. Cul
[ — S VT, P— |
1 )| I
Analog Refs. pac [— Woight RAM DAC k Ramp RAM

Figure 1: EPSILON Processor Card

A substartial amourt of digital processir.g is required by the card, especially in the
pulse conversior circuitry. To corform to the Furecerd stai:dard size of the STE
specificatior. ar. FPGA device is used to “absorb” most of the digital logic. A twir
mother/daughter board desigr is also used to isolate sersitive aralog circuitry from
the digital logic. The use of the FPGA makes the card extremely versalile as it
is row easily recorfigurable to adapt to specialist applicatior. The dotied box of
figure 1 shows furctiors implemerted by the FPGA device. Ar or: board EPROM
car. hold multiple FPGA corfiguratiors such that the board car be recorfigured
“or. the fly”. All EPSILON support furctions, such as ramp geieratior, weight
refresh, pulse conversion: and izterface control are carried out or: the card. Also the
use of the FPGA mears that rew ideas are easily lested as all digital sigizal palhs
go via this device. Thus a card of rew furctiovalily car be desigred withoul Lhe
reed to desigr arew PCB.

3.2 SPECIALIST BUSES

The digital pulse bus is buffered out under corntrol of the FPGA to the reural bus
alorg with two cortrol sigrals. Hardshakirg betweer EPC’s is dore over these lires
{o allow the trarsfer of pulse stream dala belweer processors. This implies that
larger retworks car be implemerted with litile or ro iccrease iz computation lime
or overhead. A separate aralog bus is ircluded to briizg aralog irputs directly orto
the chip.

4 APPLICATIONS DEVELOPMENT

The over-ridirg reasor: for the developmert of the EPC is to allow the easy develop-
meri of hardware reural 1etwork applicatiors. We have already irdicated that we
believe that this form of reural techrology will fird its riche where ils advartages
of direcl sersor irterface, compaciress and cost-effectiveress are of prime import-
arce. As a good ard irtrirsically irteresting example ol this gerre of applicatiors,
we have choser: autoromous mobile robotic corirol as a first test for EPSILON II.
The object of this demorsiralor is rot to advarce the state-of-the-art it robotics.
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Rather it is to demonstrate analog neural VLSI in an appropriate and stimulating
conlext.

4.1 *INSTINCT-RULE” ROBOT

The “instinet-rule” robotic control philosophy is based on a software-controlled ex-
emplar from the University’s Department of Artificial Intelligence [Nehmzow, 1992].
The robot incorporates an EPC which interfaces all the analog sensor signals and
provides the programmable neural link between sensor/input space and the motor
drive actuators.

SENSOR INPUTS
Motors.

Monitor.

a) Controller Architecture. b} Instinct rule robot.

Figure 2: “Instinct Rule” Robot

The controller architecture is shown in figure 2. The neural network implemented on
the EPC is the plastic clement that determines the mapping between sensory datla
and motor actions. The majority of the monitor section is currently implemented
on a host processor and monitors the performance of the neural network. Tt does
this by regularly evaluating a set of instinct rules. These rules are simple behaviour
based axioms. For cxample, we use two rules to promote simple obstacle avoidance
competence in the robot, as listed in column one of table 2

Table 2: Instinct Rules

Sunple obstacle avoidance. Wall following
T. Keep crash sensors inactive. | 1. Keep crash sensors inactive.
2. Move forward. 2. Keep side sensors active.
3. Move forward.

If an instinct rule is violated the drive selector then chooses the next strongest
output (motor action) from the neural network. This action is then performed to
see if it relieves the violation. If it does, it is used as targets to train the neural
network. If it does not, the next strongest action is tried. The inechanism to
accomplish this will be described in more detail 1n section 4.2.

Using this scheme the robot can be initialised with random weights (i.e. no mapping
between sensors and motor control) and within a few epochs obtains basic obsiacle
avoidance competence.

It is a relatively easy matier to promote more complex behaviour with the ad-
dition of other rules. For example to achieve a wall following behaviour a third
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rule is introduced as shown in column two of table 2. Navigational tasks can be
accomplishied with the addition of a2 “maximise navigational signal” rule. An
example of this is a light sensor mounied on the robol producing a behaviour Lo
inove Lowards a light source. Equally, # signal from a nore complex, higher level,
navigational system could be used. Thus the instinct rule controller handles ba-
sic obstacle avoidance competence and motor/sensory interface tasks leaving other
resources {ree for inlensive navigational tasks.

4.2 INSTINCT RULE EVALUATION USING SOMATIC TENSION

The original instinct rule robot used binary sensor signals and evaluaied perform-
ance of alternalive actions for fixed, and progressively longer, periods of time
[Nehmzow, 1992]. With the EPC interflacing directly to analog sensors an improved
scheme has been developed. If we sum all sensors onto a neuron with fixed and
equal weights we gain a measure of tolal sensory activity. Let us call this somatic
tension as an analogy Lo biological signal aggregation on the soma. If we have
an instincl violation and an allernative action is performed we can monitor this
somnatic tension Lo gauge the performance of this action. If tension decreases signi-
ficantly we continue the aclion. If it increases significantly we choose an alternative
action. If tension remains high and roughly the same, we are in a tight situation,
for example say a corner. In this case we perform actions for progressively longer
periods continuing to monitor somatic Lension for a drop.

4.3 RESULTS AND DISCUSSION

The instinct rule robot has been constructed and its performance is comparable with
software-controlled predecessors. Unfortunately direct comparisons are not possible
due lo unavailability of the original excmplars and differing physical characteristics
of the robots themselves. In developing the application several observalions were
made concerning ihe behaviour of the system that would not have come Lo light in
a simulated environment.

In any system including rcal mechanics and real analog signals, imperfections and
noise are present. For example, in a real robot we cannot guaranice that a forward
motion directive will result in perfect forward motion due to inherent asymimetries
in the systein. The instinct rule architeclure does nol assume a-priori knowledge
such as this so behaviour is not affected adversely. This was tested by retarding
one drive motor of the robot Lo give it a bias to one side.

In early development, as the monilor was being funed, the robot showed a tend-
ency to oscillalory motion, thus exhibiting undesirable behaviour that satisfies its
instinets. It could, for example, oscillale back and forth at a corner. In a simulated
environment this continues indcfinitely. However, with real mechanics and noisy
analog sensors the robot breaks out of this undesirable behaviour.

These observations strengthen the arguments for hardware development aimed at
embedded systems. The robot application is bul an example of the different, and
often surprising conditions that pertain in a “real” system. If neural networks are lo
find applications in real-world, low-cost and analog-interface applications, these are
the conditions we must deal with, and appropriate, analog hardware is the optimal
medium for a solution. :
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5 CONCLUSIONS

This paper has described pulse stream neural networks that have been developed to
a system level to aid development of applications. We have therefore defined areas
of strengths of this technology along with suggestions of where this is best applied.
The strengths of this system include:

1. Direct interfacing to analog signals.

2. The ability to fuse direct analog scnsor data with digital sensor data pro-
cessed elsewhere in the system.

3. Distributed processing. Several EPC’s may be embedded in a system Lo
allow multiple networks and/or mulii layer networks.

4. The EPC represents a flexible system level development enviromnent. It is
casily reconfigured for new applications or improved chip technology.

. The EPC requires very little computational overhead from the host system
and can operate independently if needed.

(23

A demonstration application of an instinct rule robot has been presented highlight-
ing the use of neural networks as an interface between real-world analog signals and
digital control.

In conclusion we believe that the itnmediate future of neural analog VLSI is in small
applications based systems that interface directly to the real-world. We sce this as
the primary niche area where analog VLSI neural networks will replace conventional
digital systems.
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performance of pulse stream neural network chips is occur-
ring concurrently with o search and development of applic-
ations Lo which this lechnology can be applied,

‘Mie key requirements of this technological development
are that devices must:

+ Work directly with analog signals.

+ Provide a moderate size network to process datn for

further digital procesiing.

+ Have the potential for a fully integrated solution.

‘I'he next seclion describes the EPSILON U chip, or more
upecifically, the features of the chip that have been de
veloped to make the hardware more amenable to use i
real applications, ‘I'he following section examines the nys-
tem level considerntions and the specifics of the EPSILON
processor card (EPC), a flexible environment for applic-
ations and chip level development. Finally the nature of
appropriate applicalions is discussed and a demonstration
application of an sulonomous mobile robol is presented.

. THe EPSILON 1I Cuip

The EPSILON 11 chip has been designed around the re-
yuirements of an application based system. It follows on
fram an earlier generation of pulse streatn noural network
chip, the EPSILON chip[4].

The EFSILON 11 chip represents neural stales as o pulse
encoded signal. ‘These pulse encoded signals have digitul
signal levels which make thetn highly noise immune und
ideal for inter and intra-chip camnenunication, facilitating
efficient cascading of chips to formn larger systems. The
EPSILON ¥l chip can take as inpuis cither pulse encoded
signals or analog voliage Jevels, thus facilitating the fusing
of analog and digital data in one system, Internally the
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chip s analog in nature allewing Lhe aynaptic multiplic-
ation funclion Lo be carried out in compact and efficient
annlog cells{s].

EPSILON 1T Chip Specifications
No. of sinte input pins 42
Inpul modesy Analog, PW or PF
Input mode progratnmability Bit programmable
No. of siate oulputs 32 pinned out
Quiput modey PW or PF
Digital recovery of analog 1/P | Yes - PW encoded
No. of Synapses 1024
Additional aulebias synapses 4 per outpul neuren
No. of weight load channels
Weight load time 2abns
Weight stornge Dynatnic
Programmable aclivity voltage | Yes
Maximum epeed {cps) 102.4Af eps

Technology ES? Lhpm CMOS
Die size 6.0mm x Tmm
Pekaging 120 pin PGA
Maximuin power dissipation A20mW

TABLE 1
EPSILON [l SPECIFICATIONS

‘I'nble [ shows the principal specifications of the EPSI-
LON 11 chip. The EPSILON 11 chip is based wround a
32x32 gynaplic malrix allowing eflicient interfacing to di-
gita) systems. A plot of the layout of the chip (figurel)
shows the structure of, and the signal flow within the chip.
Several [eatures of the device have been developed specific-
ally for applications hused usage. The first of these is o
progratmable input mode. This allows ench of the net-
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Fig. 1. EPSILON 1 Chip Layout.

work inpuls Lo be progrannned ws either a direct suunlog
input or a digital pulse encoded input, We believe that
thix is vital for application hased wsage where it is often
necessary Lo fuse real-world analog dala with historical or
coutrol data generaled digitally. The second major fea-
ture s a pulse recovery maode. ‘This allows couversion of
uny analog input into a digital value for direct use by the
hosl systemn. Such a facility is necessary if learning is to
be done with the system in operation using say the hnck
propagation algorithm as inpul state values are needed for
learning.

Othier concurrent work in the neural group in Edinburgh
weuks Lo make fulure chips mote “application friendly”, by
using amorphous silicon for non-volatile weight storage [6]
and developing on-chip learning circuits to render chips
more autonomons|T}.

An examnple of the characleristics of the EPSILON 1Y
device is shown in figure 2. This plot shows the charac-
Leristics of an individual synapss/neuron on the chip, as a
plot of output pulse width agsinst the inpul runge for vari-
ous weighl values. 'This characteristic represents a signific-
ant improvement over the earlier EPSILON pulse stream
neural network chip[4]. This improvement atises from caro-
ful layout and archilecture changss while still using the
kame basic circuits.
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Fig. 2. EPSILON 11 Synapse Characteristics,

1. EPSILON Procrssor CARnp

The need to embed the EPSILOR chip in a processor
card is driven by several considerations. Fimstly, working
wilh pulse encoded signals requires substantial procesing
Lo interface divectly Lo digital systems. 1f the veural pro.
censor is Lo be transparent o the host systemn and is not
become a subsiantial processing overhend, then all pulse
support operations must be carried out independently of
the host syslem. Secondly, Lo respond Lo Turther chip Jevel
advances and sllow rapid protolyping of new applicstions
a5 they emerge, a certain amouut of flexibility is neaded
in the system. 1L is with these poinls in mind that the
desiign of the flexible EPSILON Processor Card (EPC) was
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undertaken.

A. Design Specification

The EPC his been designed to mect the {ollowing spe-
cifications. The card st

« Operale on a conventional digitul bus systei,

« Ba transparenl Lo the host processor, that is carry out

all the necessary pulss encoding and decoding.

« Carry out the refresh operations of the dynamic

weights stored on the EPSILON chip.

« Generate the ratp waveforing necessary for pulse

width coding.

« Support the eperation of inultiple EPC.

« Allow direct inpul of analeg signals.

Az wll dats used and generated by Lhe chip is effectively
of B-hit raolution, the STE bus, an industry standard 8-
bit hus, was chosen for the bus system. Uhis is also cost
effective and allows the use of readily available support
cards such ns processors, DSP cards and analog and digital
signal conditioning cards.

‘I'o allow the trousparency of operation the card rust
perform a variely of functions. A bleck diagram indicating
these funclions is shown in figure 3.

mia
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Fig. 3. EPSILON Processor Card

A substantial amount of digital processing is required by
the card, especinlly in Lhe pulse conversion cireuitry. o
conform Lo the Eurceard standard size of the STE spe.
cification an FPGA deviee is used Lo “alworb” most of
the digital Jogic. A iwin mother/danghier board design
iy also used Lo isolale sensitive analog circuitry from the
digital Jogic. The use of the FPGA mokes the card ex-
tremnely versntile ns it is now easily reconfigurable 1o adapt
Lo apeeinlist application. The dottad box of figure 3 shows
functions implemented by the FPGA device, An on board
EPROM can hold inultiple FPG A configurations such that
the board eun be reconligured “on the y". Al EPSILON
wupport funclions, such ay ramp generation, weight refresh,
pulse conversion snd interface control are carried out on the
card. Also the use of the FPGA means thal new ideas are
eastly lested ax all digital signal paths go via this device,
"Thus a eard of new functionality can be designed without
the need bo design a new POH.

B. Specialist Huses

“Ihe digital pulse bus iy bullered out under control of the
FPGA to the neural bus along with two control signals.

Handshaking between EPC's iy done over thess line Lo
allow the traosfer of pulse stream datu bulwean procesont,
This implies that larger networks can be inplemented with
little or no increase in comprubnation Lime or overhaml,

A separale analog bus is included Lo bring snslog inputs
directly onto the chip.

C. Fulure Erlensiora.

As a1l control and pulse stream signals are generated by
the FPGA the EPC stands ready to accept the next gen-
eration in the EPSILON chipset. Dy judicious chip desipn,
chips incorporating on-chip learning or non-velutile anulog
slorage currently being developed st Edinburgh {(see [8])
will readily plug inte the EPC for evaluation in & stable
environment,

1V, APPLICATIONS

The over-riding reason for the development of the EPC
is Lo allow the easy developmnent of hardware neoeal net-
work applications, We have already indicated thut we be-
lieve that thiy forn of neurnal technology will find its niche
where its advantages of direct sensor inverface, compact-
neszi antd cost-cflectivenes are of prime importance. As a
good and intrinsically interesting example of this genre of
applications, we have chosen autonomous mobile robolic
control as a first et for EPSILON 11 The object of this
dernonsirator is not to advance the state-of-the-arl in ro-
botics, Nather it is to demonsirate analog neural VLSI in
an appropriate and stimulating context.

The robot itself is of a form thet could perforn simple
tasks {pipe-following, for example) in sn unkuown envir-
onment, or have Lhe ability o “get oul of trouble” when
u higher-level camnera-based control systern fails. "The ulti-
mats reason for the development of the EFC is Lo allow the
vady development of hardware neurnl network applications.

A. “Insfinct” Rule Robolf

The “instincb-rule® robotic control philosophy is hased
on a proven sofiware-controlled exernplar in the Uni-
versity’s Department of Artificial Intelligence [ (see Fig-
ure 4). ‘The robot will incorporate an EPC Lo implement
the essenitial programinable neural link between the analog
sensors aud the drive actuators thal underpins U robol’s
aduplive behaviour,

The original instinct-rule robot used two feelers moun-
Lex] at Lhe front of the robol and s simple detector on Lhe
front freo-rotaling castor to register forward motion. The
Jeelers ure implemented as simple binary switches giving
the robol an indication of obstacles in its path, A hard-
wired network determines any instinet rule violations, this
then supplies a training signal 1o the neurs) network link-
ing sensor data Lo drive molors Lo train the network to
avoid these rule violations. Instinct-rules such ay “keep
crash sensors inactive”, “get bored - chunge direclion™ al-
low the robot to learn corridor following. The additional
use of historical information allows muze Tollowing tasks Lo
be accomplished.
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AINSOR INPUTR
Ve INSTINCT RULE BASE,
Hezinl Nt wark “Karep crash mecsors inactive™
“Kaep light scnscr active®,
"Gt bored - changs direction”.
Troining signal
DRIVE ACTUATORS

FRIMITIVE PROTOTYPE ROBOT

Fig. 4. “Instinct Rule* Robat

A directional instinct allows the robol to carry cul nav-
igational tusks, ‘This could be in the form of following o
light source. A pholo-sensor mounted on Lhe robol together
with the ingtinct rule “keep light sensor active” can be
uged to achieve thia, Alternatively the directional inform-
ation may come (rom sorme higher level pavigational con-

. braller, 1n this way the the instinel ruls controller handles
all low level behaviour such ay aveiding ohsiacle or dan-
gerous situntions whils a higher level controller determines
navigational tasks,

Qur intention is lo extend the sensitivity and range of
sensord interfaced to Lhe neural network and increase the
scope of Lhe instinct-rules, Using analog sensor data dir-
ectly means the use of more complex and numercus sensors
cut he easily achieved.

V. IhscussioN

‘I'his paper has discussed the use of pulse stream neural
networks in practical applications. “Iie paper has two nain
aling:

v Topresent new results from a novel snalog neural chip.

+ To offer ressoned opinions regarding the optimal use

of nevural anslog VLSI.

We lieve therefore defined orewd of strengths of this tech-
nodogy along with suggestions of where this is best applied.

To aid the development of practical applications the EP-
SILON 11 chip and the EPSILON Processor Card have been
designed. These resources have beenu designed Lo process
datn on the boundary between the aualog real-world and
the digital world of conventional computing. The analog
VLSI nature of the neural bardware make it extremely ver-
sabile for this Lype of purpose. Reasons for this include:

1. Direct interfacing to analog signals.

2. The albility 1o fuse direct analog sensor dats with di-
gita] sensor dala processed elsewhere in the systen.
3. Distributed processing. Several EPC's may be em-
buedded in a system o allow multiple networks and for

multi layer networks,

. Speed. Guaranteed esleulution times (as per ‘Iable 1).
The speed of soflware solutions is not so readily
defined or achievable in a compact unit, This haa im-
plications for real-time applicistiony,

. The EPC represents o flaxible systemn level develop-
menl enviromnent.

. ‘The EPC requires very little compututionn] overhead
from Lhe host systein and can operata independently
if needed.

. The lexibility of the EPC with mmajor digital functions
carried outb i programmable logie means that it is
eusily reconfigured for new applications or improved
chip technology.

It is envisaged thal the robot control applicution of the

&

o

=1

-~

EPC will be the fimt amongst many. Furlher advances in
non-volatile analog memory Lechnotogy and ou-chip learn-
ing currently being investigated at Edinburgh University
witl further enhance the capabilities of our neural nelwork
Y150,

In conclusion we helieve that the immediate future of

wetiri] analog VLST is in small applicalions based sysleing
Lhat interfice directly Lo the real-world. We sve this ns the
niche nrea where the V15! neural networks cun compete
most cffectively with conventional digital sysiemts,
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The EPSILON Processor Card:
A Framework for Analog Neural Computation
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Abstract

‘This paper presents new advances in pulse stream
neura! processing. These advances are made possibic
by o mcw neural chip EPSILON 12!, EPSILON 11 is
made using a sfandard digital £S¥ process and though
essentially analog in nature erbibity process invani-
ance. The new chip has been designed specifically with
a system level view in mind. The EPSILON Procssor
Card {EPC) e powerful neural processing tool with the
EPSILON 11 chip at its hearl is prescnicd for the first
time. Mulliple EPC's can be used in parallel do sinple-
wend large networks and can take inputs directly from
the auolog world,

To demoustrute the flexibility of the EPC an im-
plementation of an aulonomous mobile robot is under
ronsfruclion using the card,

1 Introduction

Like their biological counterparts, pulse stream net-
works use pulse cede modulation lo represent the
neural stales of Lthe neiwork. Over the years much
research has been undertaken in this field, beth al
Edinburgh [1, 2] and elsewhere, for example[3).

Pulse siream networks offer many advantages when
applied to VLS] hardware implementations. The es-
sentially digital levels of pulse streamn signals render
them largely iminune Lo noise, This, Logether with
uttnple buflering, muke them ideal for inter- snd intra-
chip communicalions,

Of conme ho rd vantage in engineering is without its
cost. Pulse siream systems, as with any other modu-

*emall: ghjGer.ed.ac.uk
'Edinburgh Pulse Stream Impl ation of a L
Orientated Network

Alister Hamilton and Alan F. Murray

Department of Electrical Engineering
University of Edinburgh
Mayficld Road, EHY 3L

United Kingdom

lalion scheme, requires signals Lo be encoded and de-
coded to present and recover information to and from
the network. ‘The new chip, EPSILON I, und the
EPSILON Processor Card (EPC) presented here have
buen designed wo make Lhis process as Lransparent as
possible to the hosl system.

1t i3 envisaged that analog VI.S! neursl networks
will perform their mnost usefi] tasks on the boundary
between the analog and digital world. For this ruason
EPSILON and the EPC have the ability Lo fuse both
digital and ree! world snalog duta together to work on
this boundary. To demonstrate this approach the EPG
is being used in » robotic control wpplication fusing
digital and real-world analog sensar dats to carry out
the Lask,

2 The EPSILON II Chip

The EPSILON 11 clip is a descendent of the EPSI-
LON chip developesd at the University of Edinburgh,
Internal circuitey of the chip oporates on the same
principles of this earlier cip und has been reported
elsewhere[4] and only a brief summary will be given
here.  The new features of the EPSILON Ll chip
ure presented along with the characterisation results
gained from the chip. A comparison with EPSILON
is also given.

2.1 The EPSILON Synapse

The syuapse circuil incorporales n standard
transconductance multiplier previously used in ana-
log sigha) processing applications[i]. Figure 1 shows
the synapse circuit, llere Lhe transistors M1 and M2
are operaled in their lincar region Lo produce an out.
put current proportional lo the weight voltage Ty,

for analog neural computation”, In Proceedings of the Fourth International Conference on
Microelectronics for Neural Networks and Fuzzy Systems., pages 280-286. 1994.
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This current is gated through M3 under control of the
neural state, V;, to dump charge packels on a summa-
tion line comtnon W all synapses of & neuren.

Figure 1: The EPSILON Distributed Feedback Syn-
npso,

The tranzistors M4 & M5 along with the common
op-amp form a distribuled feedback system which en-
sifei that drain-source vollages of M1 & M2 remain
constant and equal. This has the effect of cancelling
uon-linearities in the transistors responses making fo..
linearly dependent on Vi, and V,,4{6]. V,, is a zero
weight reference derived from automatic bias circuitry
a8 described in [7). Vi, represents the combined activ-
ity of the synapses at a particular moment in time.
‘This voltage is integrated by n voltage integrator to
produce the Lotal synaptic netivily,

Ot il

Figure 2: Synapse Multiplier Characleristics of
EPSILON 11.

Figure 2 show characterisation resulis of the EPSI-
LON 11 synapse. The figure shows the outpui pulse
width over Lhe input state range for different weight
voltages, The figure demonstrales the excellent lin.
earily wilh respect o inpul stite gained from the dis-

tributed feedback synapse. The plot represents an av-

- ernge of 50 excitations amd the amodated standnrd

devintions are essentially constant and of the order of
120us. This characteristic represenls a siguificant im-
provernent over the original EPSILON design (see [2])
tue to judicious architectursl und anslog performance
improverents incorporated into EPSILON 11,

2.2 EPSILON Neurons

When considering pulse stream systems, two mod-
ulation schemes spring naturally to mind, pulse width
modulation (PWM) and pulse frequency modulation
(PFM).

PWM iy essentinlly synehronous in nature ni it en-
tails a fixed period. PFM on the other hand is aspn.
chronous. Neurons perfortning both these modulation
schemes nre incorporated in EPSILON 11, ‘The choice
of which medulation schemne is used depends greatly
on the problem at hand. The asynchronous, lemporal
chiuracteristics of PFM make il the scheme of choice
for fewdback or recurrent netwarks. The synchronous
churacterislies of PWM gusrantee a8 maximutn con-
putation time thus insking it ideal for high speed, re-
petilious applications such nw vision processing and
rontrol.

2.3 Pulse Width Neurons

‘T'he result of the multiplication of neural state by
synaptic weight is n vollage stored on a copacitor.
This voltage may be converted inko a pulse width mod-
ulated gignal by the use of a global ramp signal and
comparalor ay shown in Figure 1. The use of a dual
sloped ranp prevents a large number of synchronised
switehing transients, reducing power supply spikes and
therefore noise within the device, While this approach
is simple and Nexible ~ any neurcn tronsler character-
istic may be employed - it currently requires off-chip
HAM und DAC circuitry to generale the ramp signals,

2.4 Pulse Frequency Neurons

The pulse frequency neuron circuil {Figure 4) uses
» non-syrimetrical differential input stage to perforin
n linear veliage Lo “siginoid™ current eonversion, This
conversion results in a “sigmoid™ activily volinge lo
duty cycls neuron transfer chavacteristic.

Phuse lock loop techniques have been employed [7,
2] to fix the capacitor charge current, 1H, nnd therefore
the output pulse widih of the neuron to a constant |
microsecond,
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Figure 3: Pulse-Width Modulation Neuron

Figitee 4: Pulse-Frequency Modulation Neuron

The curremt, 1L, deterinined by the differeatial in.
put voltages is used Lo discharge the capacitor and sets
the output pulse spacing.

A further extension of this circuit (nol shown in
Figure 4 for carity, but implemented en EPSILON[?])
allows linited electronic gain control of the sigmoid
tharacteristic using phase lock loop techniques.

2.6 EPSILON 1I Input/Output Modes
and Pulse Recovery

We have alroady discussed EPSILON II's various
outpul modes, Lthat is either pulse widih or pulse fro-
queney. The versatility of EPSILON 11 is further en-
hanced by offering a choice of input modes, ‘The two
choices offered are either o digital pulse stream in-
put or an analog vollage, Each input is individually
pragranunable to either of these modes Lo allow Loth
analog and digital data Lo be fused within Lhe nebwork.

‘The pulse steenm dats can be cither PW or PF
moditlated. Dia soures can be pulse slreanw generated
by other cirenitry, other EPSILON 11 chipa or feedback
connections from the current culpul stales Lo ullow
rexuirrent configurations. The analog input range is

a voltage between 0=V, Inlerieally within the chip
Hhieme values are converted to pulse widthe vis 4 global
ramp and comparator scheme siinilar lo Wst used In
the pulse widih neuron (see section 2.3).

e wddition, the chip incorporabes & “pulse recov-
ery” mode. This allows pulse widths from analog con-
versions to be fed off chip via the neuron outputs to
recover Lhe analog values, Thus muliiple analog val-
ues can he converled to digital form in parallel in &
very eflicient manot, » highly desirable feature when
many learning algorith s require knowledge of inpul
states Lo operale.

2.6 EPSILON 11 SPECIFICATIONS

The EPSILON 1T chip was fabricated uvsing the
European Silicon Structures (ES2) ECPDIG (1.6pum
double metal n-well) CMOS process. The dimensiona
of the EPSILOK 11 chip were thosen Lo ba 32 inputa
by 34 outputs giving a synaptic array of 1024 syn-
aplic conneclions. This configuration was chosen to
enhance Lhe ease with which EPSILON 11 may be
interfaced Lo external hardware while maintaining a
“useful” size. A tahle showing the salient features of
the EPSILON 11 device and comparing theen with the
original EPSILON chip is given in table 1

3 Neural Processing at System Level

Let ua book at the relutionship belween analog VLSI
wenral awtworks in general, EPSILON in particular,
and conventional cormputing:

‘The EPSILON chip is 8 neural array. [4 conthing {at
present) no in-buill learning mechanism or algorithm.
At system level this overall control on how the network
evolves or learns is the responsibility of sorne other
conventional processing device,

EPSILON can take as inpul direct analog zighals,
Fed through o trained network, EPSILON can per-
forr semne type of clasification, recognition of pre-
processing task and presenl s resulls in digital form.
This davs can be acted on by conventional digital pro-
wnsore of ised we u starting point for further pro-
cessing. Thus ab system level, the neural processor
is only one part of the whole. An example of this
systemn level frammework wherein the neural network
tevides i shown in figure b Choosing » standard bus
synlem ullows the use of cheap, powerful and readily
available digital systems to be floxibly integrated with
the neural hardware. To maximise the efficiency of
such o system the operation of the neural processor
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EPSILOK Chip Specifications

EPSILON [

EPSILON 1]

No. of Stale [npul Pius
No. of Actusl Stale lnputs
Input Modes
Input Mode Progranunability
No. of Stale Quiputs
Quiput Modes
1yigitu]l Recovery of Analogue lnputs
Nu. of Synapses
Additional Aufobias Synapues
No. of Weight Load Channels
Weight Load Tine
Weight Stornge
Progrummable Activity Voltage
Maxtmue Speed (cps)
‘echnology
. 1Yie Size
Pucknging
Maximum Power Dissipation

a0

120, MUX'd in banks of 30

analogue, PW or PF
All analogue/All digital
30 Directly Pinned Qut
PW or PF
No
RN
None
2
RETT
Dy namic
Neo
JG0M eps
LAgern CMOS
0.5mm x M lmm
144 pin PGA
$allm

g
32
analogue, PAY or FF
Bil programanatil;
32 Directly Finned Oul
PW or PF
Yey - PW Modulaled
1024
4 per outpul nevron
|
LY
Dynartnic
Y
102.4M eps
1.5 CMOS
G.9mm x Tmn
120 pin PGA
320mW

Tuble i: Comparison of EPSILON 1 and EPSILON 11 Specifications

st be transparent Lo the rest of the system, o Lhis
end the EPC has been designed.

4 The EPSILON Processor Card

The principle overhead of & pulse stresm system
arises from the large amount of data communication
and data conversion that this modulation entails. To
prevent this becoming the principle processing hol-
Uisheck, hardware nust be dedicated to supporting
Lhis pulse code mmodulution and control such that the
neural computation is transparent to the host pro-
cessor.  Other support funclions necessary for oper-
ation, such as weight refresh and ramp generation,
must also be handled locally. To this end the EP-
SILON Procasor Card (EPC) has hieen designed.

4.1 Design Specification

The EPC has been designed Lo tneel the following
specifications:

+ Operate on a conventional digital bus system,

« Be transparent Lo the host processor, that is carry
out all the necessary pulse encoding and decod-
ing.

Curry out the refresh operations of the dynamic
weights stored on the EPSTLON chip.

Generate the ramp waveloring necessary for pulse
width coding.

Support the operstion of mulliple EPC's such
that larger networks or multilayer networks can
be synthesised using pulse code cormnunication.

Allow direct input of analog signaly as un interface
1o the real world,

As all data used and generated by the chip iy of-
fectively of 8-bit resolution, the STE bus, an industry
atandard &bit bus, was chosen for the bus system.
T"his i3 also cost effective and allows the use of readily
wvailable support cards sueh as processors, DSP cards
und anwlog snd digital signal conditioning enrds.

To allow the transparency of opetalion Lhe card
must perforn a variety of functions. A block dingram
indicating these Minctions is shown in figure 6.

A substantiu] smowt of digital procossing ¥ re-
quired by the card, especially in the pulse conver-
sion circuitry. ‘To conform o the Furocerd stand-
ard size of the STE specification sn FPGA device is
used Lo “souk” up most of the digital logic. A twin
notherfdaughter board design is also used Lo isolate
sensitive aualog circuitry from the digita] dogic. The
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. Industry Standard Digltal Bus

Real World Data

Figure §: A systern level framework for neural processing,

use of the FPGA makes the card extremely versat-
ile as it is now easily reconfigurable to adapt to spe-
cialisl application. The dotted box of figure 6 shows
functions implemented by the FPGA device. An on
board EPROM can hold multiple FPGA configura-
tions such thal the board can be reconfigured “on the
fly". ANl EPSILON support functions, such as ramp
generation, weight relresh, pulse conversion and inter-
face control are carried out on the card. Also the use
of the FPGA means that new ideas are easily lested
an all digital signal paths go via this device. Thus a
card of new functionality can be designed without the
neell Lo design a new PCH.

4.2 Pulse Conversion Techniques

The basic logic needed for the pulse width conver-
sion hardware is shown in figure 7. YFor 32 channels
of information as on the EPSILON 1I chip a parallel
implernentation of this would require 32x8-bit coun-
ters, J2x8-bil comparators plus Lhe ramp generator,
Despite Lhe fact thal the Xilinx FPGA used has the
equivalent of approximately 500U gates and 768 flip-
fiops, a Tully parasllel implementation is nol practical.
Thus a tnultiplexing scheme is used to carry out blocks
of conversions. The FPGA can be reconfigured lo of-
fer Lhe grealesl degree of parallelism consistent with
the control requirements of any particular application.
For the worsl case, that is a lolally serial approach,
a conversion lakes 32x256 clock cycles or Jlus at
24M Hz. Done in parallel blocks of 8 channels the
conversion lakes 85ps.

% Input State

N

Gutput
Ramp Generator

N I - Outpul Sute

Pulse Stream
nput

He-hit Coumer
L2MHz

()

Fignre 7: (a) Binary to pulse width convemsion, (b)
Pulse width to binary conversion.

4.3 Specialist Buses

The digital pulse bus is buffered out under control
of the FPGA Lo the neural bus along with lwe con-
trol signala. Handshaking between EPC's is done over
these lines to allow the transfer of pulse stream dala
belween processors. This implies that larger nelworks
can be implemented with little or no increase in com-
putalion fime or overhead.

A separate analog bus is included to bring analog
inpuis direcily onto the chip.
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Figure 6: EPSILON Processor Card
SENSOR INPLTS
; . . ; FXAMPLE INSTINGT HULES...
At all control and pulse streamn signals are gener- L J\ Ko crash e Sactpue”

ated by the FPGA the EPC stands ready to accepi tlie
next generation in the EPSILON chipset. By judicious
chip design, chips incorporaling on-chip learning or
non-volatile analog storage currently being developed
at Edinburgh (see [8}) will readily plug jato the EPC
for evaluation in a stable environment.

5 Applications

Thie ultimate reason for the development of the
EPC is to allow the easy development of hardware
neural network applications. The first test of this
philosophy is in antonorrous mobile robotic control.

5.1 “Instinet” Rule Robot

The “ingtinct-rute” robotic control philosophy is
hased on a software-controlled exemplar in the Uni-
versity’s Department of Arlificial Intelligence [9] (see
Figure 8). The robot will incorporale an EPC fo
implement the esseniial programinable neural link
between Lhe analogne sensors and the instinct rule
hase that underpins Lthe robot's adaptive hehaviour.

‘The original instincl-rule robol used two feelers
mounted at the front of the robol and a simple de-
leckor on the front free-rotating castor 1o register for-
ward motion, The feelers are implemnented as simple
binary switches piving the robol an indicalion of

“Hrep hyhl wenwor selive”,
[k bord - Changs ilirecting®.

Mewal Nerirk
Z2EEN

Ruke vivhitivas
A Light sotwwr.

Nearul Nebwrort.

Ty

DRIVE ACTUATURS

FRIITIVE PROTOTYPE ROBOT

Figure 8: “Instinct Rule” Robot

chatacles in ils path. A pattern associator newral net-
work links the sensor data Lo the instinci-rule controi-
ler. Instinct-rules such as “keep crash sensors inact-
ive", “get bored — change direction” allow the rohot
to learn corridor following. The addilional use of his-
torical juformaiion allows maze following tusks to be
accomplished.

Cur infention is to exlend the sensitivity and range
of sensors interfaced to the neural network and in-
crease the scope of the instinct-ritles. For example,
the use of force sensitive resistors as bend sensors will
allow the implementation of an analogue feeler. The
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use of u smasll camers of an array of pholo-sensors and
wppropriale instincl-rules such as “keep )ighl sensor
active” will allow the robot Lo learn tasks such as fol-
lowing a light source.

6 Discussion

The EPSILON 11 chip and the EPSILON Pro-
cesor Card have been designed o proces dals on
the boundary between the analog resl-wortd and the
digita) world of conventional computing. ‘The nnalog
V1.5! nature of the neural hardware inake it extremely
veralile for Lthis type of purpose. Iteasons for this in-
clude:

1. Direcl interfocing to anelogue signals without
the requiremnent for analogue-lo-digital convert-
crs and analogue signal multiplexing. This has
implications for the size, speed and power con-
sumption of the system.

2. The ability to fuse direct snslogue sensor data
with digital seusor data procesed elsewhere in
the systetn. In the case of the robot application,
this may be historical sensor data or data conven.
tionally processed from a camera.

. Hardwired newrasl algotithm, There i 1o tequire
mett Lo progrem the neural algorithm in software
us it is hardwired in VLSL Learning is currently
performed off-chip by a hosl proceasor.

.

. Distribuled procesding. Several EPC's may be
embedded hn a system to allow mulliple networks
andfor mulii layer networks, The real-time ap-
plications environment described makes this an
atlractive possibility,

5. Spewl. Guaranieed calculation times defined in
Table | in connectiona per second. The spead
of software solulions is not o readily defined or
achievable in a compact unit. This has implica-
Lions for real-time applications.

t. A flexible system level development environinent
han evolved where additional EPC's can be easily
incorporaled 1o incrense neursl processing power.

-

. The EPC requires very litlle computntional over-
hend from the hoat syster allowing efficient solu-
Lions to problems wlhere a neural processor can
perform significant portions of the computational
processing.

L i envisaged thal the robot control application
of the EPC will be Lhe first amongst many. The flex-
ihle real-time environment has been designed with this
consideration, Purther advances in non-volatile ana.
logue memory techmology ond on-chip learning cur-
rently being investigated sl Edinburgh University will
further ¢nhance the capabilities of our neural network
VILSL. :
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