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Abstract 
In recent years the considerable interest in the biologically inspired computational paradigm 

of artificial neural networks has led to a drive to realise these structures as VLSI hardware. At 
Edinburgh University research has focused on pulse stream neural networks in which neural 
states are encoded in the time domain as a stream of digital pulses. To date research centred on 
developing analog CMOS circuits to implement neural functions. In this thesis these circuits 
are developed and higher, system level issues addressed in order to produce a neural network 
system suited to use in real-world applications. 

To discover the key requirements for use in real-world applications, examples of application 
based hardware systems are reviewed, as is the field of pulse stream neural networks. These 
requirements led to the design of a VLSI chip, EPSILON H; a pulse stream neural chip 
optimised for use on the boundary of the analog domain of the real-world and the digital 
domain of conventional computing. The EPSILON processor card (EPC) places this chip in a 
system level framework that oversees chip operation and provides interfaces to analog signals, 
a standard digital bus and other EPCs. The system level approach taken provides a versatile 
platform for prototyping applications while operating with minimal host supervision. 

To demonstrate the versatility of this approach several applications were developed that 
utilised this hardware. Foremost amongst these was an autonomous mobile robot that utilises 
the analog nature of the hardware to provide a direct interface to real-world sensors. Also 
presented are a series of experiments investigating back-propagation learning on a variety of 
MLP problems. This study reveals the limits and practicalities of training hardware neural 
networks, in particular the effects of limited weight dynamic range were found to be of primary 
importance. 

From this work conclusions are drawn as to the effectiveness and future development of 
hardware neural computation; specifically the ability to interface to the analog domain and the 
issues involved in interfacing to conventional computing devices are highlighted. 
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Chapter 1 

Introduction 

This chapter discusses the basic concepts of neural networks and the motivation for their 
implementation in hardware. It moves on to introduce the work of this thesis; developing 
hardware neural networks in such a way as to facilitate their use in applications. The chapter 
concludes with a formal statement of the aim of the thesis and an overview of the thesis 
structure. 

1.1 Background and Motivation 

It is self-evident that biological systems routinely carry out computational tasks, such as vision 

and speech, that are beyond the scope of present artificial systems. Fields of science, such 
as neurobiology and neurophysiology, evolved to investigate the structure and mechanics of 
biological nervous systems. These fields revealed that the processing techniques employed by 
biological systems consist of massively parallel and highly interconnected networks of relatively 
simple processing elements - neurons. Neural networks are a computational paradigm inspired 
by these processing techniques observed in biological systems. The field can be traced back to 
the early 1940's when McCulloch and Pitts first proposed a model for the biological neuron[77]. 
The development of a mathematical model, and the later advent of serial computers capable of 

simulating networks of neurons, formed the backbone of neural network development. 

x 
U 

x 

x 
'I 

y 	Heaviside 	 threshold logic 

sigmoid 

(a) Neuron Model 
	

(b) Various Thresholding Functions 

Figure 1-1: McCulloch-Pitts Model of a Neuron 



Introduction 	 2 

Figure 1-1(a) demonstrates the basic McCulloch-Pitts model of a neuron where inputs x 
are weighted by a variable weight w, summed together then undergo a thresholding function f, 
to produce an output y. The thresholding function takes a variety of forms dependent on the 
neural model and learning algorithm employed, some examples are shown in figure 1-1(b). 

The early 1960's saw methods introduced to adapt the weights of the McCulloch-Pitts 
neuron to perform useful functions: 

• Rosenblatt introduced the Perceptron[99], a neural structure with a heaviside non-
linearity. Training of the Perceptron was based on Hebb's Law [48] which relates 
the biological principle that a synaptic junction is reinforced if repeatedly excited. 

• Widrow and Hoff with the ADALITNE' introduced the concept of adapting weights 
proportional to an error term with their learning rule known as the Widrow—Hoff delta rule. 
This structure was able to perform such tasks as adaptive filtering and equalisation[1 161. 

Interest in the field was diminished temporarily when Minsky and Papert showed that the 
single layered neural structures of the day could only solve linearly separable problems[80]. The 
field remained virtually dormant until the 1980's when Rumelhart, Hinton and Williams[100] 
demonstrated the gradient descent back-propagation algorithm for training the Multi-layer 
Perceptron (MLP), a structure consisting of multiple layers of neurons where outputs of the 
preceding layer feed the next. The ability of this architecture to form arbitrary mappings 
between input and output re-kindled interest in neural networks. 

Since this time other network structures and training methods have emerged such as 
Kohonen's self-organising feature maps [62], Radial Basis Functions[10] and Adaptive Reson-
ance Theory (ART)[20]. 

A study of recent literature shows examples of neural networks providing solutions, often 
superior to conventional methods, to problems such as: 

• Image analysis, for example optical character recognition[66,94], medical image analysis [74, 
101]. 

• Optimisation and control, for example the travelling salesman problem[8], the inverted 
pendulum problem[6,107], job scheduling[28] and robotic control and navigation[105, 
95]. 

• Speech recognition or analysis systems[59,75]. 

• Classification, for example classification of sleep patterns [104], aircraft identity from 
radar signals [2 11 or cardiac arrhythmia [58]. 

'ADAptive LInear NEurons 
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It is these types of successes that provide ample motivation for further development of the 
neural network field. 

1.2 Hardware and Implementation 

The fact that neural networks are parallel architectures implies a large computational overhead 
when they are implemented on a conventional serial machine. For this reason much research 
has been conducted into developing dedicated VLSI hardware to assist in neural computation. 
Two major techniques are available to do this: digital and analog. 

Digital technology has produced examples of neural architectures such as the CNAPS[2] 
and HANNIBAL[87] chips. The advantages of digital technology are: 

• High speed operation. 

. Conventional technology. 

. Predictable precision. 

• High noise immunity. 

The disadvantages are that: 

• The technology is suited to a predominately serial architecture. Large bus sizes are 
difficult to distribute in a parallel manner. 

• Operational blocks such as multipliers require considerable silicon area and consume 
significant power. 

• No direct interface to the real-world, thus A/D conversion is required to interface to 
real-world data. 

Analog technology provides the possibility of compact, low power multiplier circuits, parallel 
operation and direct analog interfacing. These reasons make analog implementation the pre-
ferred technology for the applications area studied in this thesis. A variety of techniques have 
been used for analog neural network implementation, for example: 

• Fully analog designs using Gilbert multipliers and EEPROM weight storage[51]. 

• Designs based around multiplying digital-to-analog converters27]. 

• Designs using MOS sub-threshold techniques [7, 112]. 
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• Designs using CCD structures[22]. 

• Switched capacitor implementations [98,1 10]. 

• Designs encoding neural states as pulses (pulse stream)[43,84]. 

• Designs emulating biological structures such as the retina[71,78] and cochlea[72]. 

Yet despite this wealth of hardware research few practical applications have emerged into 
general use. Going back to 1988 a DARPA 2  study of neural networks revealed that of the 
77 neural network applications investigated only 4 had resulted in field tested systems[1 15]. 
Furthermore, none of these used dedicated neural network hardware. The situation at present 
has progressed little. Is this a failure to address the issues of blending conventional computing 
technology with neural networks to produce practical solutions? It is the author's belief that 
this is a major factor. This thesis takes the pulse stream methodology, an implementation 
scheme whereby analog neural states are encoded in the time domain as a digital pulse stream, 
and develops this methodology with the aim of integration into conventional systems for use in 
applications. 

1.3 Applications and Practicalities of Neural Networks. 

Defining the type of applications to be studied is important as neural network technology must 
compete with more conventional digital techniques in solving real-world problems. Neural 
networks must concentrate on areas where their advantages: 

• Parallelism. 

• Speed. 

• Analog nature. 

• Adaptability. 

outweigh their disadvantages: 

• The inability to interrogate a solution fully. 

• Unproven technology. 

• Specialist nature. 

2 Defence Advanced Research Projects Agency 



Introduction 	 5 

Such an area is the boundary of the real, analog world and digital processing, such as pre-
processing/interpretation of analog sensor data or control problems involving real-time analog 
sensor signals. Here a modest neural network can act as an intelligent analog-to-digital 

converter presenting preprocessed information to its host. The key requirements of this tech-
nological development aye that a device must: 

. Work directly with analog signals. 

• Accept digital information from its host. 

Act autonomously from, and interface simply to, the host system. 

• Provide a moderate size network to process data. 

• Have the potential for a highly integrated, low cost solution. 

Examining the pulse stream methodology employed in this thesis, its areas of strength can be 
summarised as: 

• Analog or digital inputs. 

• Digital compatible outputs. 

• Compact, low power. 

• Cheap CMOS implementation. 

• Modest size. 

• Scalable and cascadable design. 

The pulse stream methodology has many of the requirements for the type of applications use 
described earlier, such as the advantage of working on the boundaries of the analog and digital 
domains. That it lacks some of the other requirements, as do all implementation methodologies, 
calls for the necessity of addressing these areas at system level. The EPSILON chip, the 
predecessor of this work, demonstrated this as the lack of several of the requirements listed 
above made its use in practical systems difficult. This thesis evolves strategies and hardware 
to address these requirements to produce a pulse stream neural network implementation that 
operates on this interface between the analog real-world and the digital domain of conventional 
computing. It then investigates the practicalities of such an approach through development of 
simple applications. 
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1.4 Aims of the Project 

Having introduced the field to which it contributes, the aim of this project can be summarised 
as: 

Aim: To study the practical ramifications and issues involved in the devel-
opment of pulsed analog hardware neural networks for use in real-world 
applications. 

This study was approached via a four pronged strategy: 

A study of existing hardware neural network applications was made, examining their 
strengths and weaknesses. 

A development of existing pulse stream VLSI was undertaken to provide a base for 
system level development. 

Major issues raised by the study resulted in system level development to satisfy the 
requirements of applications use. Issues particularly focussed on were; interfaces to 
analog and digital domains and autonomous operation. 

Finally experiments are conducted on demonstration applications to verify and test the 
system and further investigate the practical ramifications of the issues raised. 

The basic premise on which this work depends is: 

Neural networks should be applied at a system level and act on the boundary 
between information domains; specifically the analog "real-world" and digital 
systems. This can be achieved with networks of modest size imbedded in a 
system architecture that allows efficient data interaction with the real world and 
conventional digital processors. 

The approach is summarised in figure 1-2 where the pulse stream based neural system that 
was developed provides an interface between the analog input domain and the digital domain 
of conventional computing. 



Introduction 

Information rich. 
Loosely defined. 
Noisy. 
Parallel structure. 

Analog 
World 

Neural System 

Pulse 

VLSI 

Structured information. 
Rigidly defined. 
Serial structure. 

Computing 

Input Domain 
	 Processing 

	 Output Domain 

Figure 1-2: Project Overview. 

1.5 Thesis Outline 

Part I contains the principal literature review sections of the thesis. Chapter 2 investigates the 
hardware implementation of neural networks using pulse stream techniques, the methodology 
used in the hardware design of the project. 

Chapter 3 examines the use of hardware neural networks in an applications environment by 
reviewing some of the most successful of recent applications directed implementations. 

In Chapter 4 issues raised by the review are discussed and the design methodology presented 
for the hardware specification. 

Part II of the thesis details the design of the hardware constructed; Chapter 5 presents the 
work done at a VLSI design level for this thesis - the EPSILON II chip. The design of the 
chip is presented along with characterisation results. Chapter 6 is devoted to the system level 
development of the EPSILON processor card (EPC). This work embeds the EPSILON II chip 

in system with interfaces to analog data, other EPSILON II chips and a conventional digital 
bus. 

Part HI discusses the use of the EPSILON processor card system for applications develop-
ment. Chapter 7 configures two EPCs as a multi-layer perceptron. This is used to investigate 
the practicalities of training the hardware network in the presence of analog hardware non-
idealities. A variety of problems were used in this investigation: 

I. An artificial character recognition problem which allowed a graded problem complexity 
to aid initial investigation and model development. 
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A more complex real-world problem of a link admission controller for ATM communic-
ations networks. This problem was used to study the performance of the hardware as a 
function approximator. 

The final set of experiments examined the performance of the EPC in solving three 
real-world 1-of-N classification problems. 

Chapter 8 presents an autonomous mobile robot named Kryton which utilises the analog input 
capabilities of the EPC to map analog sensor input to motor control outputs. 

Finally Chapter 9 discusses the issues raised by the thesis and draws conclusions as to the 
success of the work. 

1.6 Areas of Contribution 

The work of this thesis focuses on a study of the issues and practicalities of placing pulse stream 
neural networks into an applications context. As part of this study, design and fabrication of a 
VLSI chip was undertaken to meet the requirements revealed for the intended use on boundary 
of the analog and digital domains. The VLSI section utilises proven circuit structures for 
synaptic and neural functions, however improvements have been made over previous use of 
these circuits through architecture changes and judicious circuit and layout modifications. This 
is described in Chapter 5. 

The key result of this thesis was the system level philosophy whereby the needs of neural 
hardware were addressed in the context of applications. The research revealed the necessity 
to embed neural VLSI in a system framework that is capable of interfacing to larger digital 
systems along with the input domain of the analog real-world. 

The thesis concludes with a series of demonstration applications. These were designed to 
test and evaluate the hardware and study the issues involved with practical application of the 
hardware. 

Chapter 7 studied issues involved in training the hardware under practical conditions. The 
principal issues raised here were the effects that limited dynamic range in the hardware weight 
set had on network performance and problem solving ability. Chapter 8 demonstrated the 
hardware in a situation closely matched to the perceived primary applications area: a direct 
analog interface to real-world data with neural processing, interacting with a higher-level digital 
system. From the success of this the validity of the philosophy developed was confirmed. 
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1.7 Summary 

This chapter has introduced the field of neural network study and discussed the motivation 
of hardware implementation. It concludes that applications best served by hardware neural 
network technology lie on the interface between the analog and digital domains and that 
hardware development should reflect this. Consistent with this the aim of the thesis was 
presented and structure of the thesis summarised. 
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Chapter 2 

Pulse Stream Neural Computation 

2.1 Introduction 

This chapter introduces the principles of pulse stream neural computation as a hardware imple-
mentation methodology. It examines the development of the field and reviews the strengths of 
different methods when compared to other techniques. Following this the EPSILON design 

will be discussed as this forms the basis of the chip-level design of this thesis. 

2.2 Background and Implementation Issues 

Drawing inspiration from the pulse based nature of biological systems together with the engin-
eering practicalities of utilising cheap and available digital VLSI processes, the pulse-stream 
methodology has evolved rapidly since its inception by Murray and Smith in 1987[85]. Pulse-
stream techniques are characterised by their encoding (modulation) of neural states (or occa-

sionally weights) as pulses. There are several techniques used for this: 

Pulse frequency 	Here the neural state is encoded as the frequency of the pulse 
modulation (PPM) stream. It may be done by varying the duty cycle of the signal (as 
JUUIIIJ1JL JUIJIJL shown to the left), or by keeping a constant duty cycle. Modula-

tion of this form is normally achieved with the use of a voltage 

controlled oscillator (VCO). 

Pulse Width 	In this scheme the neural state is encoded in the width (on-time) 

Modulation 	of a pulse. It is generally a synchronous scheme where pulses are 

(PWM) 	 guaranteed to be present in a fixed maximum time interval. 
n 



Pulse Stream Neural Computation 	 12 

Pulse Density 	The value of the PDM signal is defined by the relation between the 
Modulation 	number of high pulses (N+) and low pulses (N_). For example for 
(PDM) 	 the coding 
5ft+  

(N+N) 

when N+ = N_, Si = 0 and the scheme encodes values between 
+1 and —1. 

Stochastic Pulse 	A stochastic pulse train encodes the value of Si in the density of 
Trains 	 stochastic (that is randomly distributed) pulses. This scheme is 

lii HI HIl 	I 11 1 I used mainly in digital pulse stream implementations. 

Encoding neural states as pulses offers several advantages when compared to the use of 
analog voltages or currents: 

• Information is encoded in the time domain and signal levels are digital. This enables 
easy regeneration and distribution of signals by conventional digital methods, such as 
invertor chains. This form of communication is thus much less susceptible to noise than 
analog voltages or currents, providing an efficient method of communication between 
neural chips. 

• Combining analog techniques on-chip with these digital signals, compact analog multi-
pliers can be constructed. This combines the advantages of compact analog computation 
with the ease of digital signal distribution. 

• Although conversion (demodulation) is necessary to interface pulse-stream neural chips 
to digital hosts; this can be done with conventional digital techniques without the need 
for A/D converters. This can make demands at system level easier to realise. 

However there are also disadvantages in using pulse streams: 

• Switching noise introduced by high frequency digital signals can couple with sensitive 
analog circuitry. 

• In all but the PDM scheme multiplication is generally restricted to two quadrants. Four-
quadrant multiplication is considerably more difficult to implement. 

• To interface to analog signals a pulse modulator is needed. 

Different implementations address these strengths and weaknesses differently. Pulse stream 
implementations fall into three broad categories depending upon the method used to perform 
synaptic multiplication, these are: 

I. Digital implementations. 
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Switched-capacitor implementations. 

Analog implementations. 

The remainder of this section will present examples of these implementation techniques and 
discuss their advantages and disadvantages before moving on to discuss the EPSILON chip 
and the pulse stream methodology employed on it. 

2.2.1 Digital Implementations 

Figure 2-1 shows a scheme for digital pulse stream implementation. Here the weight STij  

Excitation 	Inhibition 
IN 1111 	1111111 

IV liii 11111! 	 Tijsign bit 	 I  
I 	 I  

5 
T.j 

Si 

ii- 

VC0 	Si 

Integrator 

Figure 2-1: Digital Pulse Stream Scheme. 

along with the input Si are encoded as a stochastic or asynchronous PFM pulse stream. If the 
weight and the input pulse stream have a probability of a pulse being present such that: 

P(A) = 5T1 andP(B) = Si 

and if P(A) and P(B) are statistically independent, then: 

P(A AND B) = P(A).P(B) = ST, Si 

Thus a simple AND gate provides multiplication. Summation is similarly achieved with an OR 
gate and bipolar weights can be implemented with a sign bit switching the result to separate 
excitatory and inhibitory summation lines. Examples of this type of scheme can be found 
in [32,86,109]. 
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Another digital example from Murray and Smith[86] uses local digital storage and global 
chopping clocks to represent the weight value as shown in figure 2-2. Here the input is gated 
for a fraction of the time T proportional to the weight magnitude with the aid of the global 
chopping clocks. 

TiJ 

* 
Fl 

xcitation 

Figure 2-2: Digital Pulse Stream Scheme. 

All these digital implementations suffer from inaccuracies introduced by coding noise due 
to collisions of pulses: that is when two pulses arrive at a summing OR gate at the same 
time an error is introduced. This is minimised by using a sparse coding of signals and a long 
integration time. Also despite the use of compact AND and OR gates to carry out the synaptic 
multiplication the synapse area is large due to the presence of digital RAM to store the weight 
values. 

2.2.2 Switched Capacitor Implementations 

Switched capacitor circuits are based on transferring packets of charge stored on a capacitor. 
The idea of using switched capacitor techniques for neural networks was first proposed by 
Tsividis in 1989 [110], others have developed implementations such as Brownlow et al[14,15] 
and Jackson[60]. Figure 2-3 shows the basic idea: The weight is stored as a voltage, VT,, and 
for each period of the input pulse stream S i a packet of charge proportional to (VTt. - Vr) 
is transferred to the summation line. Thus if Siis pulse-frequency modulated; multiplication 
of Tij.Si is achieved. The advantage of this implementation is that the transfer function is 
determined by the capacitor ratio -  which is well defined and process tolerant 

Cint 



Pulse Stream Neural Computation 
	

15 

VTIJ 	 I 
Buffer 	 -I- 	1 

V 
ret 

R int 

Si 

Integrator 

Figure 2-3: Switched Capacitor Pulse Stream Scheme. 

2.2.3 Analog Implementation 

The basic technique of most analog pulse stream implementations is summarised in figure 2-
4. Here a current source, 'wt,  proportional to the weight, Tij , is gated by Siwhich may be 
pulse-width or pulse-frequency modulated or stochastic. Summation is achievedfree by virtue 
of Kirchoff's current law. There are several examples of such schemes [97,96,108] including 
the EPSILON methodology, the topic of the next section. These implementations have the 
potential for compact synapse cells but unlike the switched capacitor implementations are not 
inherently process tolerant. The challenge of design is to use analog circuit design techniques 
to produce process tolerant designs. 
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Figure 2-4: Analog Pulse Stream Scheme. 

2.3 EPSILON Pulse Stream Neural Computation 

The philosophy behind the development of the EPSILON' chip was to design a set of process 
invariant cells for pulse stream neural computation [23,45]. The analog approach was chosen 
over digital or switched capacitor techniques because: 

• Digital implementations are large due to digital weight storage needed and can be inac-
curate due to coding collisions, a problem that increases with network size. 

• Switched capacitor circuits are process tolerant due to the reliance only on capacitor 
ratios but are not scalable without redesign of integrator. Switched capacitor techniques 
are also only suited to pulse-frequency modulation schemes. 

• Analog techniques offered the possibility of compact design, process tolerance with 
design effort and operation under both pulse-frequency and pulse-width modulation 
schemes. 

This section presents the EPSILON cells and the EPSILON chip a 120 input, 32 neuron pulse 
stream neural network chip. As shown in figure 2-4 the primary building blocks of an artificial 
neural network are the synapse and neuron. These will now be considered in turn for the 
EPSILON design. 

'Edinburgh Pulse Stream Implemenation of a Learning Oriented Network. 
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Figure 2-5: Transconductance Multiplier. 

2.3.1 Distributed Feedback Synapse 

The distributed feedback synapse forms the basis of EPSILON and also EPSILON II, the 
chip fabricated in conjunction with this thesis. To analyse the performance of EPSILON II 
an understanding of the building blocks of EPSILON is required. This section presents the 
EPSILON distributed feedback synapse which consists of: 

• Synaptic transconductance multipliers. 

• A voltage integrator, which integrates the voltage output of the synapse array to produce 
the net activity. 

• and a bias generation scheme. 

Synaptic Transconductance Multiplier 

The basis of the EPSILON synapse design is the transconductance multiplier shown in figure 2-
5. This circuit was first proposed for use in filtering applications. [29]. The circuit operates 
the MOSFET transistors in their linear region where the characteristic drain-source current is 
given by: 

1 
IDS__fl 	

VDS2 
[(VCS_VT)VDS_ 	I 	 (2.1) 

2J 
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where fi = 1t11C0W  Cox is the oxide capacitance/area, p o  the surface carrier mobility, W and 
L the transistor width and length respectively. By clamping VDSI = Vjg2 and ensuring Ml 
and M2 are well matched, the non-linear terms in equation 2.1 can be cancelled, that is: 

= 'DSI - '1352 = 0 (V05 1  - V052) VDSI 	 (2.2) 

The above analysis ignores the effect of substrate bias (body effect), that is the threshold voltage, 
VT, of Ml and M2 will be different due to unequal bulk-source voltages. Including this effect 
by defining: 

MIT = 11T,2 - VTMI 
	 (2.3) 

the transconductance expression becomes: 

1= IDS 	I1352 =/3(Va51 —VGS2+AVT)VDSI 	 (2.4) 

This expression is proportional to the weight voltage (VGS2) as wanted, however it is also 
dependent upon 3, a process dependent parameter that will vary across the chip. To make 
the synapse more process tolerant the scheme of figure 2-6 was developed. Here a second 

'7 

Vsz 

 

V 
ret 

V. 
rnitj 

 

VT. 

 

GM 
Vbias 

 

V's  

Figure 2-6: EPSILON Distributed Feedback Synapse. 

transconductance stage (M4,M5) has been added as a buffer and is placed in a feedback loop 
with an operational amplifier located at the foot of each synaptic column. This feedback loop 
ensures that the current sourced from the synapse transconductance stages (I), equals the 
current sunk by the buffer stage (Ibuf).  Solving this equation + 'but = 0), an expression 
for the output voltage, Vou t can be found: 

N—i 

V 	 (2.5) 
N flut j0 
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where N is the number of synapses, fli = Om , = 13Af2 and &f = IJM4 = flM5. Note that for 
the EPSILON synapse Vdd = 1.5V, V58  = 0.5V and Vref = l.OV. 

Distributing the buffer stages throughout the synapse array ensures close matching between 
Ml, M2, M4 and M5, thus 	simplifies to a ratio of transistor WIL ratios - a process invariant 

Obuf 
quantity, more details of this can be found in Baxter[9]. 

Voltage Integrator 

The voltage output 	represents the sum of instantaneous synaptic activity. To produce the 
net synaptic activity, this voltage is integrated over time by the voltage integrator of figure 2-7. 
Here the voltage is converted to a current by a differential transconductance amplifier. This 

Figure 2-7: EPSILON Voltage Integrator. 

current is integrated on the capacitor C to produce the net synaptic activity, Vnetj . Switches 
to enable the integration and reset the initial value of the output are also provided. 

Two global references, V0  and l4,  determine the operating point of the synapse column. 
Setting these as: 

V. = VTjj  + Vref + LSVT 	 (2.6) 

(2.7) 

Gives an expression for the net activity as: 

I t2 
= 	[ 	dt Unt 'ti 

ft
grn (Vout  —V 0 )dt 

I 

N—I 
- (t2—t1) ---- 	 [(VTj —VTj) xDC8] 	(2.8) 
- 	C N I3buf >  j=O 
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N-I 

= k 	 (2.9) 
j =0 

where VTiiZ  is the weight voltage representing a zero value weight, Yin  is the gain of the 
transconductance amplifier and DCs is the duty cycle of the input pulse stream which encodes 
the input value. Thus Vne t  is the sum of weights, Tij = (VTj - VTji Z ) 

times inputs, S = DCs. 

Bias Generation 

The distributed feedback synapse minimises the operational reliance on process parameters, 
however the two global references, V0  and V, are dependent on AVT, itself a process dependent 
parameter. Thus the value required of these references will vary from chip to chip. To remove 
this problem an on-chip generation scheme was devised as shown in figure 2-8. A dummy 

Vdd 

Ml 
(M4) 

V 

(Vbias) 

Tij z 	 M2 
(M5) 

V 
ref 

Vsz 
(Voz) 

vss  

Figure 2-8: EPSILON Bias Generation Scheme. 

column of synapses is used to provide transistors closely matched to those in the synaptic array. 
Solving the characteristic equations of these circuits the reference values generated are those 
of equations 2.6 and 2.7. 

2.3.2 EPSILON Neurons 

The second principal building block is the neuron. The distributed feedback synapse column 
produces a net output activity voltage, Vnet , which is converted by the output neurons to a pulse 
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Figure 2-9: EPSILON PWM Neuron. 
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Figure 2-10: EPSILON PWM Neuron Ramps and Transfer Functions. 

modulated signal. Two pulse modulation schemes were included on EPSILON; a pulse-width 
modulation scheme for use when fast computation time is important and a pulse-frequency 
scheme to be used when asynchronous computation is the prime consideration. 

Pulse-Width Neuron 

The pulse-width modulating (PWM) neuron is used to modulate both analog inputs to the 
network and to produce pulse-width outputs. The neuron itself consists of a conventional 
comparator which compares net synaptic activity (or the analog input in the case of an input 
neuron) to a reference ramp waveform (figure 2-9). It is this reference ramp waveform that 
determines the shape of the neuron transfer function. Shown in figure 2-10 are ramp waveforms 
for a linear (blue) and sigmoidal (red) transfer function. The ramp waveforms used are double-
sided to minimise switching noise which would otherwise be increased by all neurons switching 
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together if the ramp was single-sided. The comparator is a process invariant device and the 
ramp waveform is produced off-chip from values stored in digital RAM, this makes the pulse-
width neuron largely invariant to process variations. This flexibility and invariance is achieved 
with a trade-off to added complexity off-chip in terms of RAM and DAC circuitry for ramp 
generation. 

Pulse-Frequency Neuron 

The basic principle of the operation of the pulse-frequency neuron design is shown in figure 2- 
11. The high time of the output pulse is constant and determined by the current 'H  charging 

Vnet 

vsj  

vss  

Figure 2-11: Basic Principles of EPSILON PPM Neuron. 

the capacitor C 0 . The low time of a pulse is determined by the voltage controlled current 
sink, 'L  discharging C 0 . This current sink is formed by a differential stage to give a sigmoidal 
transfer function with respect to the net synaptic activity, Vnet with a maximum current equal 

to 1H. This in effect varies the duty cycle of the resulting pulse stream between 0% (IL = 0) 

and 50% (IL = 'H). The actual voltage controlled current sink is considerably more complex 
than this as it incorporates techniques to vary the sigmoid gain or temperature, for more details 

on this see Hamilton [44]. Also to promote process tolerance a reference generation scheme 
using phase-locked-loops (PLL) is used to set the maximum current 'H  and the reference to 

vary the sigmoid gain[44]. 
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2.4 EPSILON Chip Results 

Table 2—I summarises the features and specifications of the EPSILON chip. All modes of 

EPSILON Chip Specifications 

No. of state input pins 30 
No. of actual state inputs 120, MUX'd in banks of 30 
No. of State outputs 30 Directly pinned out 
Input mode programmability All analog/All digital 
Input Modes analog, PW or PP 
Output modes PW or PF 
No. of synapses 3600 
No. of weight load channels 2 
Weight load time 3.6ms 
Weight storage Dynamic 
Maximum speed (cps) 360Mcps 
Technology 1 .5pm CMOS 
Die size 9.5mm x 10.1mm 
Packaging 144 pin PGA 
Maximum power dissipation 350mW 

Table 2—I. Comparison of EPSILON Chip Specifications 

operation performed satisfactorily, though design imperfections resulted in a degradation from 
expected results. The most serious problem was in power supply distribution to the synapse 
array which led to offsets in the synapse characteristic[9]. This can be seen in figure 2-12 which 
shows the synaptic multiplication characteristic in the PWM output mode. The characteristic 
in the PPM output mode shows similar behaviour (figure 2-13) though this mode experienced 
more noise variations due to the many edges inherent in a pulse-frequency modulated signal 
coupling with analog references. These problems are discussed further in Chapter 5 when the 
development of the VLSI component of this thesis is presented. 

2.4.1 FENICS - EPSILON at System Level 

Despite the shortcomings present in the EPSILON device, the performance was still sufficient 
to warrant development of a system level test bed to use the chip for neural computation. 
This system, named FENICS 2 , performed support functions to enable a neural network to be 

2 FENTCS: Fast Electronic Neural Information Computing System 
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Figure 2-14: FENICS: EPSILON System Level Board. 

implemented using the EPSILON chip. The general system architecture is shown in figure 2-14. 
The pulse RAM is a bank of memory used to store pulse streams, either sampled from EPSILON 
outputs for later processing, or generated by the system to apply as inputs to EPSILON. Sub-
systems for ramp generation and weight refresh were also included. Control of the system is 
carried out by a microcontroller which transfers data around the system using an 8 bit data bus. 
Communication with the host system is over the microcontroller's serial link for commands 
and a 30 bit parallel bus for data. The overall system performance was restricted by the slow 
speed of the microcontroller and the serial nature of generation and processing of pulse streams 
over the 8 bit microcontroller bus. These issues are further discussed in Chapter 6. 

Three test problems were implemented on the FENICS system: 

An image classification task to label scenes as roads or not roads was performed on a 
45:12:2 MLP trained with the back-propagation algorithm[24]. 

A speech processing task involving classification of II vowel sounds from a database of 
33 speakers. This was performed on a 54:27:11 MLP trained using the virtual targets 
algorithni[44]. 

The travelling salesman problem (TSP) using a Kohonen network[9]. 

For the first two problems the hardware network was trained chip-in-loop (CTh), a technique 
whereby inaccuracies present in the hardware can be partially compensated for by training with 
these non-idealities present. The Kohonen network was trained off-line in software and the 
weight set downloaded and used on hardware. 

Host Communications: 

Serial link -e 

30 bit parallel bus -c 



Pulse Stream Neural Computation 
	

26 

Hardware Software 
Problem results Results 

% Correct (% Std. Dev.) 

Image 63.57 (4.86) 67.56 (8.33) 
classification[24] 

Vowel 65.34 (N/A) 58.21 (4.25) 
classification[44] 

Variation 	between 
Kohonen TSP[9] 

Correct Solution? hardware 	and 
software 

5 city pass pass -16.2% -40% 
9 city pass pass -5.4% -> 6.6% 
10 city fail pass  

Table 2-2. Summary of Problems Implemented on EPSILON. 

Table 2-2 shows the results of these experiments. It demonstrates the potential performance 
of EPSILON style pulse stream processing for CE. training as results from hardware compare 
well with software networks. For the ease of the Kohonen TSP; hardware non-idealities caused 
the network to fail for problem greater than 10 cities. The large variations seen between 
software and hardware networks indicates that weights evolved for an ideal software network 
are not suitable for use on hardware. 

2.5 Summary 

This chapter has introduced pulse stream neural computation. It has shown that pulse stream 
techniques offer advantages for system integration in that network outputs are digital signals 
that can be buffered, transferred and processed with digital technology rather than requiring 
an AID conversion overhead. The EPSILON distributed feedback synapse was examined as 
a process tolerant synapse design with the flexibility of operation with either PWM or PFM 
pulse streams. The PWM output neuron scheme was shown as a very accurate and flexible 
synchronous modulation method and the results of problems implemented on EPSILON showed 
promise of effective solutions in a chip-in-loop training situation. 



Chapter 3 

Neural Networks for Practical 
Applications 

3.1 Introduction 

The aim of this thesis is to develop pulse stream neural hardware suitable for implementing 
solutions to real world applications. To illustrate some of the issues associated with this 
objective, this chapter focuses on other hardware neural network implementations. 

To gauge the need for specialist neural hardware, a brief outline of hardware implementation 
using conventional technology is first discussed. Following this, to focus on application issues, 
four implementations have been selected for study. While not an exhaustive examination 
of the available implementations, these represent the most successful of applications—oriented 
hardware implementations. The chapter is structured around case studies of these four hardware 
neural network implementations: 

I. The Adaptive Solutions CNAPS system. 

The Intel ETANN chip, a generic neural processor chip. 

The Synaptics Inc cheque reader system. 

The Kakadu project in which a hardware neural network was developed for detection of 
cardiac arrythmia. 

The objective of this review is to determine how the examples above interact with larger 
systems, in order to provide a focus three areas are addressed for each case study: 

Target application: The target application is discussed to define the context in which the 
example was developed. 

Neural structure: The neural structure defines in what way neural network interacts with 
larger systems. Three factors define this structure: 

27 
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I. Synaptic multiplication determines the input characteristics (e.g. analog/digital 
single-ended/differential) along with internal data representation of the neural net-
work. 

The weight storage technique used determines how the neural network is adapted; 
this is done most often under control of an outside system. 

The neuron structure determines the output characteristics of the neural network. 

The choice and design of these three elements have a strong influence on such metrics as 
speed, area and power consumption of the network. 

System Performance: The performance of the neural architecture in use gives an indication 
of the success of the implementation. Key factors here are: 

• System support required for chip operation. 

Training methods suitable for network use. 

. Success of the implementation for the target application. 

After presentation of the four case studies the issues raised by the comparative methodo-
logies are discussed. It is these that play an important role in Chapter 4 which deals with the 
specification of the hardware content of this thesis. 

3.2 Using Conventional Technology to Implement Neural 
Networks 

To assess the need for dedicated neural hardware, this section outlines the effectiveness of 
how conventional off the shelf hardware can be used to implement neural networks. The 
obvious technology to accomplish this is DSP' technology as a neural network requires fast 
numerical operations to implement the multiply and accumulate functions of the synapses. For 
example, the TMS320 series can perform such multiply—accumulates at a rate of 40MHz, this 
is equivalent to neural performance of 0.040 billion connections per second. As will be seen 
in the following case studies, this is at least an order of magnitude less than all but one of 
the implementations reviewed. The throughput of such a hardware implementation would be 
dependent on network size as the parallel neural structure is being implemented on a serial 
processing device. Though this lower throughput in itself is perhaps justification for dedicated 
hardware development, further justification derives from the nature of the application areas 
the neural technology targets. That is, the defined application area lies on the boundary of 
the analog and digital domains. To interface a DSP to analog signals a large A/D hardware 
overhead is required. 

'Digital Signal Processing 



Neural Networks for Practical Applications 	 29 

3.3 Case Study: Adaptive Solution's CNAPS 

The Adaptive Solutions CNAPS 2  chip-set is a fully digital parallel processing system designed 
primarily for neural network implementation. The system is based on two custom chips: 

i. The CNAPS chip, an array of parallel processors. 

2. The CNAPS Sequencer Chip (CSC) that controls one or more CNAPS chips. 

Together the processor and sequencer form a single-instruction, multiple-data (SIMD) computer 
where each processor from the CNAPS chip(s) executes the same instruction on multiple data. 
This maps neatly to the neural network structure of each neuron (processor) performing multiply 
and accumulate operations in parallel (multiple) streams of input data. 

3.3.1 CNAPS Structure 

The powerhouse of the CNAPS system is the parallel processor chip the CNAPS-1064 which 
has an array of 64 integer processors called Processor Nodes (PN's). Figure 3-1 shows how 
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Os Bus 
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,31 ¶4 

PN 
64 

Figure 3-1: A CNAPS System Consisting of CSC Controller and Multiple CNAPS Chip 

CNAPS chips connect under control of the CSC chip to form a parallel system[82]. Each 
CNAPS chip has 64 PN's. The structure of individual PN's is shown in figure 3-2. Each 
PN has a multiplier (up to 16 bit x 16 bit) a 32 bit adder/accumulator, a logic/shifter block, a 
32 word register and a 12 bit address unit accessing 4K Bytes of local (e.g. weight) memory. 
The data representation is fixed-point, two's complement arithmetic. This generally has 16 bit 

2 Co-processing Node Architecture for Parallel Systems. 
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Figure 3-2: Internal Block Diagram if a CNAPS Processor Node. 

internal resolution with extra head-room given to multiply/accumulates. Two broadcast busses 
supply data (8 bit) and instructions (32 bit) to all PNs on the chip. Output busses are also 8 bits 
and PNs place data onto it via one of several arbitration schemes. Most operations take only 
one clock cycle, exceptions are 16 bit I/O and high resolution multiplications which take two. 
PNs communicate with their nearest neighbours via a 4 bit bus used amongst other things for 
arbitration and winner-take-all evaluations [3,2,46]. 

3.3.2 CNAPS System Performance 

Adaptive Solutions manufacture CNAPS boards for PCs and VMEbus as well as a dedicated 
server system. Extensive software is also available including a dedicated 'C' compiler, binary 
libraries, an assembler and applications development packages. At board level, the VMEbus 
board for example, allows the up to 8 CNAPS chips (512 PNs) and the addition of an application 
specific mezzanine board for custom 110. Neural network algorithms such as backpropagation 
have been demonstrated on CNAPS systems to be up to 69 x lO times faster during learning 
and 38 x lQ times faster in feedforward mode than a SUN 3 workstation [76]. 
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There are several reported applications running on CNAPS systems [42,47,54,79,75,821. 
Gruber et al[42]  describe a neural network classifier that is used as a trigger in a physics 
particle collision experiment. Here VMEbus based CNAPS computers take input data from 
a 20MHz bus carrying data from various detectors involved in the experiment. The CNAPS 
system was able to process this data in the required 201,ts. 

Holt et al[54] describe a speech recognition system for automated telephone operator 
systems. Here the CNAPS computer performs other parallel operations such as Fourier analysis 
as well as a neural network classifier with 128 PNs to achieve classification in I lOOms. 

Matsuura et al[75] describe a speech recognition system based on phoneme extraction. 
The system utilises a CNAPS processor to do spectral feature extraction followed by phoneme 
recognition using a 135:220:23 MLP trained by back-propagation then word recognition by 
DTW matching. It achieves a 97% recognition rate on test set data for a vocabulary of 100 
words. 

3.3.3 CNAPS Summary 

The CNAPS system offers neural network processing within a conventional digital systems 
environment. It is an expandable system where extra chips can be easily added to increase 
network size. Each processing node stores multiple weights locally and acts as a column of 
synapses. The network architecture is also variable, but for sparsely connected networks, due 
to the nature of the SIMD architecture, efficiency of processor use decreases substantially [47]. 
The CNAPS architecture offers little possibility of a highly integrated solution but rather is used 
as a parallel accelerator. As CNAPS has no fixed architecture it is not limited to any particular 
neural network architecture; it can also be used to implement other functions that benefit from 
parallel operation such as Fourier analysis[54] and image processing[2]. 



I: 

Wij = AVfg 	:c17iij = 	'out 

= f(E :rv') = voltage 

AVA 

Neural Networks for Practical Applications 	 32 

3.4 Case Study: Intel ETANN 

Intel's Electrically Trainable Artificial Neural Network was the first serious commercial attempt 
at providing hardware for generic neural computation. As such there is no specific target 
application associated with its design. The chip utilises analog EEPROM cells for weight 
storage and fully analog representations for input and output. The chip has two 80x64 synapse 
arrays consisting of 64 inputs plus 16 bias synapses fully connected to 64 outputs. One array 
takes inputs from 64 external analog inputs while the other is a feedback network fed from the 
analog network outputs. This feedback array can also be used as a second layer. 

3.4.1 Neural Structure 

The basic ETANN neural structure is shown in figure 3-3. The design utilises fully differential 

Figure 3-3: ETANN Neural Structure. 

signals to enhance noise immunity and temperature invariance. A NMOS Gilbert-multiplier 
produces an output current AI, proportional to a multiplication between the weight stored on 
the floating gates tXVjg  and the input signal LWm. The stored weight is changed by adding or 
removing electrons from the floating gate by Fowler-Nordheim tunnelling between the gates 
and diffusion. The resolution of this weight is dependent on how accurately this floating gate 
voltage can be set and how well the weight is retained. Results from [5 11 show that for long term 
( 15 year) storage 4 bits of resolution is possible. Using "bake—train" techniques, whereby 
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the chip is baked at high temperatures after training to promote the relaxation of the weights 
then re-trained[103], up to 7 bits of long term resolution is possible. 

Figure 3-4 shows the block diagram of the Intel ETANN chip highlighting the input, output 
and weight storage channels along with the references and controls needed by these functions. 
Input and output to the chip is in the form of individually pinned, single ended analog voltages. 
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Figure 3-4: Block diagram of the Intel 80170NX ETANN 

Internally, representation is differential with respect to the reference voltages Vrefi  and  Vefo' 
for input and output respectively. The input synapse array takes inputs from the 64 analog 
voltage inputs. The network architecture can be varied by using the feedback array of synapses 
in one of three ways: 

I. Network output can be fed-back under control of the clock signal allowing implementa-
tion of Hopfield networks. 

2. Two layer operation is possible: The first layer is evaluated with the feedback layer 
disabled and the input array active. The outputs are then sampled and held while the 
feedback array evaluates the second layer with the input array disabled. 
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3. Up To 128 inputs to a single layer are possible by disabling the neurons via the neuron 
disable pin and the 64 output pins can be used as an additional 64 inputs. 

Weight Adaptation 

The ETANN chip is addressed by 14 address lines to access all 10240 weights. The present 
state of the addressed EEPROM cell can be monitored via the single weight output pin of 
figure 3-4. The host processor must decide on the pulse-width and heights necessary to change 
the weight to the new desired value. These will be in the range of 12-20V and 1018—lms. After 
a weight change pulse is applied the weight can be sampled again and an iterative process used 
to fine tune the weight. Obviously this can entail a lengthy process if learning is over thousands 
of epochs. Thus, normal procedure would be to train a software simulation, download the 
weights and tune the weights with the ETANN chip in loop. 

3.4.2 System Performance 

Several papers describe use of the ETANN chip in systems [50,61,69,102,103]. One that 
demonstrates potential difficulties (or inappropriate use) of ETANN is from the Naval Air 
Warfare Centre in California[61]. Here the goat was to embed ETANN into a digital system 
for real-time use; primarily for local area processing on 2-dimensional images. To achieve 
this, 128 channels of D/A conversion and 64 channels of A/D conversion are needed. It was 
found that with this overhead it was very hard to run the system at ETANN's full speed and it 
presented a very large hardware overhead. An analog communications bus was ruled out due 
to low drive capability of the ETANN output buffers (0.375mA) and unavailability of suitable 
analog memories for storing data[61]. 

The application of Lindsey a al[69] in drift chamber tracking is more appropriate. Here 
analog sensor readings from a drift chamber experiment are fed directly to ETANN. Training 
was carried out chip-in-loop (Cifi) using Intel's PC based ETANN board and development 
system. 

Tam a al[ 102] demonstrate the multi-chip ability of ETANN using an analog bus. They used 
the ETANN Multi-chip prototyping Board (EMB) from Intel, along with supporting software 
which develops a set of weights for ETANN off-line then trains in loop to adjust weights. To 
gauge the complexity of training ETANN, an 8 ETANN system took over 12 hours to perform 
4 CIL training epochs! 

3.4.3 ETANN Summary 

ETANN provides a solution to the vexing problem of on-chip non-volatile weight memory by 
using analog EEPROM. It does this at a cost of a long and computationally intensive training 
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time. The fully analog 110 preserves the parallel nature of the network and is ideal for problems 
with analog data. However for digital data or interfacing to digital systems a high overhead 
must be met in A/D and D/A conversion. Commercially the ETANN chip was unsuccessful; 
Intel's neural networks group has now been disbanded and the chip withdrawn from sale. 

35 Case Study: Synaptics Corporation OCR Cheque Reader 

The Synaptics Corporation has been developing neural network systems for commercial use for 
nearly a decade. One product that illustrates technical success, though not commercial success, 
is their OCR' system for hand swiped cheques. Table 3-1 shows the basic specifications of the 
required system[34]. 

Table 3-1. OCR system for hand-swiped cheques 

FONT: 
SPEED: 
ACCURACY: 
COMPLEXITY: 
MANUFACTURING VOLUME: 
MANUFACTURING COST: 

El 3B 
< 1000 characters/second 
> 99.995% correct classification 
Custom chip plus micro-controller. 

100,000 units/year. 
<$175 per system. 

An engineering solution to this problem is quite difficult due to the presence of many free 
parameters, such as: 

. Unknown X & Y position of character. 
• Unknown and variable velocity of cheque. 
• Unknown and variable reflectivity of cheque (brightness). 
• Unknown and variable ink density of cheque (contrast). 
• Presence of corrupt or damaged characters. 
• High input data rate, 23 megapixels/sec. 

3.5.1 Neural Structure 

System Architecture 

The basic architecture of the system is shown in figure 3-5 consists of a neural network chip 
(11000 chip) which incorporates a photo-sensor array for direct optical input and a digital 

3 Optical Character Recognition 
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Figure 3-5: Architecture of Synaptics OCR cheque reader system 

interface to a micro-controller for output. The internal architecture of the neural network chip 
is shown in figure 3-6. One neural network is used to locate the character to be classified which 
triggers the scan control section to present the character to a second classification network. A 
third neural architecture performs a winner-take-all (WTA) function along with a confidence 

Circuitry to convert the network outputs into signals compatible with the micro—controller 
bus is also included on the chip. 

11000 Circuits 

The 11000 was custom designed to provide a solution to the single fixed problem defined in 
table 3—I, this allowed the use of fixed weights in the network as adaptability was not required. 
The weights are encoded as the width-to-length ratios of the synaptic connection transistors 
shown in figure 3-7(a). 

The winner-take-all circuit of figure 3-7(b) consists of a series of commoned current 
conveyors [7,65,l 12] and operates on the following principle: The bias voltage V, 03  produces 
a reference current, 'bias All the lower NMOS transistors are controlled by a common gate 
voltage V. At equilibrium, in the case where one input current is significantly higher than all 
the others (Im), V will stabilise such that the lower transistor conducts 'ma  in saturation. As 
all other currents are less than Im., all other lower transistors must leave saturation, drastically 
reducing their output voltages V,, and shutting off the upper NMOS transistors. Consequently 
virtually all of 'bias  is sourced from the upper NMOS transistor of the winning input. Thus 
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Figure 3-6: Neural network configuration on 11000 chip. 

the output voltage 17max associated with 'max  is much greater than all other outputs which 
are approximately zero. Also, for operation in the sub-threshold region, Vmax logarithmically 
encodes 1... [65]. 

If two inputs are approximately equal (say 10 	ii), more comparison of V and the 

output voltages produces a confidence measure for the decision - if they are very close, a low 
confidence is implied. 

Figure 3-7(c) shows a pixel of the silicon retina. This circuit, derived from Carver Mead's 
work at Caltech[78], has a very fast response time to cope with the up to 40 thousand frames 
per second input rate. The logarithmic characteristic of a MOSFET in sub-threshold is useful 
for compression of the input and an adaptive element is added to account for device mismatch 
and variations in optics, illumination and temperature[34]. 

3.5.2 System Performance and Success 

Despite the technical success of the Synaptics OCR the product did not meet with commercial 
success. According to Faggin[33], the director of Synaptics, reduction of the unit cost after 
the contract was finalised made the product uneconomical. Other Synaptics projects have 
also had considerable technical success but little commercial success, such as address locator 
systems for the US postal service. The current product which the company is hoping will find 
commercial success is a touch pad mouse for portable computers which uses neural techniques 
to convert C/V 4  characteristics of a touch pad into mouse movement signals. 

This lack of success shows the difficulty in bringing neural products to the marketplace, 

4Capacitance/voltage characteristic 
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Figure 3-7: Circuit Blocks of OCR system 

for despite high technical quality and even cost competitiveness, proven technology is usually 
adopted in preference to unproven neural technology. 

3.5.3 Synaptics Summary 

The Synaptics 11000 demonstrates that neural network hardware can be custom designed for 
applications solutions. The static nature of the problem allows for a fixed weight solution 
leading to very compact synapse layout. The chip also incorporates direct optical input and 
bus compatible digital output and control leading to a highly integrated solution with high 
throughput. 
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3.6 Case Study: Kakadu - A low power neural network for 
tachycardia detection 

The Kakadu design was developed by the SEDAL group at Sydney University, Australia in 
order to classify intracardiac electrogram (ICEG) waveforms in the context of implantable 
cardiac defibrillators. The need to ensure long battery life and the limited size of implantable 
defibrillators means there are strict power and area requirements on the chip. A very low 
power analog/digital hybrid CMOS design, operating in the sub-threshold region, was evolved 
to solve this problem. 

Classification of ICEG involves monitoring a time varying signal that represents the func-
tioning of the heart. The goal is to detect a dangerous situation (ventricular tachycardia) and 
trigger the defibrillator to correct this. Conventional digital time series analysis techniques are 
too power and area intensive for an implantable device and the present solution which classifies 
tachycardia on timing information alone fails to classify all situations correctly. 

3.6.1 Neural Structure 

The basic neural structure of the Kakadu chips is shown in figure 3-8. In this design synaptic 
multiplication is performed between the differential input voltage Avi = (17+  - V_) and the 
current 'DAC  which represents the weight. 

+IDActanh 
(c(V+--V_)) if 135=1 

A'out = 	- '..t- = 
	 (3.1) 

( k(v+_V)  ) \ 
if 135=0 'DAC tanh 	2  

The current 'DAC  is generated by the binary weighted currents 1144 that originate from a 
current reference block on-chip. Six bits of local storage in the form of static flip-flops hold 
the weight in a digital form, B5 being a sign bit switching the output current. The differential 
output currents 'out+  and 1-,,t- are commoned with other synapses and fed to a resistive neuron. 
Network non-linearity is distributed across the proceeding layer of synapses by virtue of the 
tanh non-linearity of the synapse transfer function equation 3.1. Several circuits to implement 
the resistive neuron have been fabricated and tested[26] culminating in a design utilising 
common-mode feedback to provide the necessary range for large fan-in networks[27]. 

The latest chip of the family includes a bucket brigade device (BBD) to sample and present 
the continuous time ICEG to the network. It also includes a variable gain neuron and winner-
take-all circuitry as well as the necessary reference generation and decoding circuitry[27]. 

Power consumption of the chip is kept extremely low by cycling the current references of 
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Figure 3-8: Kakadu synapse design 

the bias circuitry achieving a total chip power dissipation of 1 86nW from a 3V supply for a 
nominal heart (i.e. classification) rate of 120bpm. 

3.6.2 System Performance of Kakadu 

A range of benchmarking test problems, such as XOR, four bit parity and a simple character 
recognition were successfully trained on Kakadu test chips[67,68] demonstrating its viability as 
a general neural network architecture. Several learning techniques were used to train Kakadu 
including modified backpropagation and weight perturbation. The most successful method 
was the combined search algorithm (CSA). The CSA uses the twin minimisation strategy of a 
modified weight perturbation combined with a random search[67,1 17]. 

The functional blocks of the final chip are highlighted in the floorplan of figure 3-9. Note that 
with the BBD input device the ICEG waveform is sampled directly into the chip. The winner- 
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Figure 3-9: Floorplan of the Kakadu chip. 

take-all network produces a digital output which allows direct interfacing to the defibrillator. 
This chip has been trained on the individual morphology data of seven patients. In six cases 
the chip was able to correctly classify dangerous tachycardia in the test set. Interestingly, the 
seventh patient, in which the network was not successful, proved to have a morphology of 
ventricular tachycardia that even a human expert had trouble distinguishing[27]. 

3.6.3 Kakadu Summary 

Kakadu demonstrates a medium sized network (9 neurons and 78 synapses) successfully solving 
a rather complex classification problem. The low power, fully integrated design approach has 
led to a hybrid scheme of digital weight storage and analog state representation. With the 
addition of the BBD input structure, continuous time analog input is fed directly to the chip. 
Output from the WTA circuitry is essentially digital. 

3.7 Discussion 

The four examples described in the previous sections were chosen to illustrate neural net-
works designed for real-world applications. Table 3-2 summarises salient features for each 
implementation. 

Included also are the figures for EPSILON, reviewed in Chapter 2, the starting point for 
hardware developed in this thesis. These case studies have been chosen to be representative, 



Neural Networks for Practical Applications 
	

42 

Synaptics ETANN Kakadu CNA_PS EPSILON F OCR  

Connections 
per second 1 2.5 0.0015 1.2 0.36 
)< 109 
Neurons not known 64 9 64 processor 30 

nodes 
Synaptic 20,000 10,240 78 3,600 
connections 
Weight fixed by Analog Digital Digital Dynamically 
storage transistor EEPROM refreshed 

geometry  capacitor 
Technology 1.6pm 1pm CMOS 1.2pm 0.8pm 1.5pm 
and Size CMOS EEPROM CMOS CMOS CMOS 

5x4.6mm I l.6x7.6mm 2.2x2.2mm 26.2x27.5mm 9.5x10.lmm 
Weight not known <7.5 bits 6 bits 8 or 16 bit 8 bit 
Resolution fixed point  
Synapse 
Density ct800 500 83.5 11.26 100 
(per mm 2)  

Power 10mW 1W 200nW 7W 350mW 
Consumption  

Table 3-2. Summary of features of chips reviewed 

though the best of, other designs presented in the literature. Interpreting the data from table 3-2 
some generalisations on implementation of hardware neural networks can be extrapolated. 

3.7.1 Neural Structure 

Analog v Digital 

Taking the CNAPS system as being representative of digital architectures we can see that it 
offers a high degree of flexibility in terms of network architecture as well as the ability of 
implementing learning algorithms. It also interfaces directly to conventional digital systems 
but requires extra sub-systems to interface to analog signals. In terms of power and silicon 
usage it is the least efficient of the cases studied. 

5 Design is optimised for a low power consumption, for higher bias, thus faster settling times, greater 
speed can be achieved. 
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Analog/Hybrid Architectures 

The analog/hybrid architectures all have lower power, greater chip density and, in general, 
lower resolution than their digital counterparts. Resolution of multiply—accumulates is often 
hard to judge and dependent upon the noise floor of internal or even support circuitry[41]. 
Other factors delineating various designs include weight storage and interface ability. 

Weight Storage 

The four most common forms of weight storage are represented in the designs of table 3-2. 
The geometrically fixed weight storage of the Synaptics design is a specialised case where we 
can achieve very high space and power efficiencies at the expense of losing the adaptability 
often sought in neural solutions. Other fixed weight schemes include resistive arrays of binary 
valued amorphous silicon resistors[40,56], resistors in thin film technology[ 16], or use of fixed 
ratio capacitors[25]. 

EEPROM offers analog storage in a slightly more expensive process than standard CMOS. 
It is compact and essentially non-volatile but comes at the expense of slow programming. 
Other EEPROM schemes have been demonstrated apart from ETANN such as the compact two 
transistor cell of Kramer et al[63]. 

Kakadu and EPSILON both use digital techniques for primary weight storage. Kakadu 
incorporates this on-chip while EPSILON uses external memory to dynamically refresh on-
chip capacitors. 

It is fair to say that neural implementations are still waiting for technology to provide a 
better solution to analog weight storage. Some possibilities underdevelopment such as SONOS 
devices which offer lower programming voltages than EEPROM in smaller cells[ l 14]. Another 
technology that shows promise is amorphous silicon (a-Si:H) structures. These devices may 
offer much faster programming times in a very compact size[53]. 

3.7.2 System Performance 

Interface Considerations 

Other differences between the neural network architectures of the four case studies lie in how 
they interface to both their target problems and systems. A dedicated solution such as the 
Synaptics 11000 shows the most efficient situation. Here input is highly parallel in the form of 
direct optical input. Output is a micro-controller compatible digital bus. 

Kakadu also has an efficient analog front end where an input signal is captured in real-time 
by a BBD obviating the need for expensive (in terms of area and power) A/D conversion. 
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For generic usage, 110 is not so readily defined. Two issues are important here: Firstly 
the interfacing to target problems such as real-time analog signals or digital data and output 
interfacing to conventional digital systems. The second issue concerns cascadability where it 
is desirable for network outputs to be compatible with inputs. 

Section 3.4.2 presented several examples of interface schemes to ETANN. It demonstrated 
that using analog busses an efficient interface could be developed and the massive D/A overhead 
needed to interface input to a digital bus. All ETANN applications required A/D conversion to 
interface output to a digital system as would be expected. 

EPSILON offers analog or pulse modulated input (but not a mixture). Advantages of 
pulse modulated schemes is the digital signal levels obviate the need for A/D and D/A voltage 
conversion. Magnitude of signals is encoded in time so digital processing is still needed to 
convert values to and from integer values. If done by the host system this can be computationally 
expensive. 

Suitable Applications 

In looking at the problems that all the architectures reviewed have been applied to, definite 
trends emerge: Most are interfaced to real-world analog data. Even in most digital cases data is 
generated from real-world sources (such as speech) through AID conversion perhaps followed 
by preprocessing (such as DFT analysis). 

The most successful applications provide smooth interfaces between the neural component 
and input and output domains. The 11000 and Kakadu are good examples of this. All 
applications reviewed process data and pass it on to some conventional digital system for use 
and/or further processing. These factors tend to suggest that suitable applications for neural 
solutions are ones requiring processing of analog data and an interface to conventional digital 
computing. 

3.8 Summary 

The case studies presented in this chapter demonstrate the non-trivial nature of designing neural 
network hardware for applications usage. It was seen that analog/hybrid architectures offer 
compact, low power, high speed solutions when compared to digital implementations. Interface 
considerations were shown to be of primary importance as principal factor in the success of an 
architecture was how easily and efficiently it interfaced to target problems and systems. 

Other researchers such as Vittoz[l 131 also expound this view that compact, low power 
circuits coupled with ease of interfacing to real-world data make analog techniques the principal 
choice for parallel neural computation. 

The case studies also show neural networks are rarely used in a stand-alone fashion, but 
rather perform as part of an overall system, often pre-processing analog data. 



Chapter 4 

A System Specification for Hardware 
Neural Network Development 

4.1 Introduction 

This chapter presents the general specification for the hardware to be designed in this thesis. 
This specification was arrived at by considering the issues raised in the last chapter as well 
as experience gained from working with the original EPSILON chip. The specification was 
further focused by an examination of potential applications. Finally these are combined to 

outline a system specification that is realised in the subsequent hardware design work of the 
thesis. 

4.2 Issues Raised by Case Studies 

In the previous chapter some recent examples of neural network hardware were reviewed. The 
Kakadu chip and Synaptics cheque reader are examples of very application specific devices and 
although they have proved successful in providing solutions to their tasks, have not met with 
commercial success. The ETANN system had the goal of providing generic neural computation 
support, however in searching the literature for proof of its effectiveness one finds few examples 
of use to justify such a claim'. 

The CNAPS system perhaps comes closest to generic neural computation support. It 
achieves this with the cost of large silicon area and high power consumption. Its interface cap-
abilities to digital systems is transparent but to analog/real-world data it requires large hardware 
overheads. Another disadvantage of this type of architecture with respect to applications is that 

there is no possibility of a highly integrated solution. 

To aid the specification, the following generalisations are drawn from the case studies: 

'In a search through the BIDS ISI database from 1985 to 1995 only 10 publications, of which 3 were 
from Intel claimed use of the system. 
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Large generic neural processors such as ETANIN fail to interface effectively to problems 
they might be used to solve. This lack of interface makes their advantages over con-
ventional digital signal processing techniques or software implemented neural networks 
negligible; especially as their performance is static while the performance of software 
solutions increases with digital processor speed. This means their desirability is limited 
as little advantage is gained by providing a hardware solution. 

• The modest size networks of the Kakadu and Synaptics class give an effective and efficient 
solution to a fixed problem. They have the advantage of interfacing closely to their goal 
tasks. 

• Specialised hardware (such as the Synaptics cheque reader) fill a narrow niche that must 
be chosen carefully if the application is to be successful. Other considerations than pure 
technical merit may cause the implementation to be considered non-ideal. 

• Successful implementations often appear in the area where we are dealing with real world 
(analog) data. 

• Neural networks are most attractive where the possibility of a highly integrated solution is 
of great benefit. For example low power, single chip, small physical size for the Kakadu 
chip and mass production for the Synaptics cheque reader. 

• Examples have been shown of problems where modest size networks offer good solutions 
for non-trivial problems. 

• Analog based computation offers significant power and silicon density advantages over 
comparable digital based architectures. 

4.3 Search for Suitable Applications 

As the primary aim of this thesis is to use hardware neural networks in applications, the scope 
was not to limit the design to a particular application but keep the system generic so that it would 
be useful for prototyping a variety of applications. The danger of designing neural networks for 
the sake of themselves is that, while contributing significantly to our understanding of hardware 
issues, they often become unusable in applications, EPSILON and ETANN support this. 

Consequently, throughout the project, a vigorous search was conducted for suitable applic-
ations to demonstrate the hardware and ensure the hardware was useable and useful. 

Several possible applications were researched and successful demonstrators are presented 
later in the thesis. Defining a variety of target applications also assisted and focused a system 
specification, the applications considered were: an autonomous mobile robot, a character 



System Specification 	 47 

recognition system, a link admission controller and inverted pendulum controller. These are 
discussed in the remainder of this section. 

Autonomous mobile robot 

This application, one that was followed to completion involves a controller for an autonomous 
mobile robot and is presented in Chapter 8. The control scheme is based on a software 
exemplar developed by Nehmzow[88]. The neural network hardware requirements for this 
controller are modest: a single layer network with four output neurons and 10's of inputs. 
Inputs consist of analog sensors along with generated digital data. Outputs must be available to 
a microprocessor for further processing. Advantages of a hardware solution to this problem are 
real-time operation and processing directly analog sensor signals on the limited power budget 
of an autonomous vehicle. 

Simple character recognition 

In preliminary work to gain familiarity with the original EPSILON/FENICS system, a demon-
strator of a simple digit recognition MLP was implemented. While this problem is purely 
artificial it served to extract valuable lessons at chip and system level from the previous EPSI-
LON work. The problem used purely digital 110 and the major lesson learnt was that data 
bottle-necks in transferring this digital data limited system speed and that these were all rooted 
at system rather than chip level. This problem is useful for testing the system and as a 
comparison to the original EPSILON system. 

ATM routing 

This function approximation and classification problem stems from work by NordstrOm and 
Gällmo et al [92]. It uses a MLP to approximate the probability of data packet loss in an ISDN 
network to facilitate the decision whether to accept new connections. A hardware solution 
is advantageous for this problem as this function needs to be carried out in real time in each 
network router. 

Inverted pendulum controller 

This was another real-time control problem considered. It again involves direct analog sensor 
input along with digital sensor and historical data. A substantial amount of time was spent in 
prototyping this problem but the mechanical difficulties of the system prevented completion of 
a fully working demonstrator. 
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4.4 System Specification 

The generalisations made in Section 4.2, the experience extracted from the case studies of 
Chapter 3 and the lessons gained from the original EPSILON device all merge to create the 
following list of axioms around which the system specification evolves: 

I. The system must have the ability to deal with analog inputs. 

The system must have the ability to deal with digital data. 

The system must interface with conventional serial machines. 

The system can be of modest network size yet large enough to solve useful problems. 

The system must be able operate independently without external control. 

The system must be cascadable. 

The system must have the potential for a highly integrated solution. 

The remainder of the section expands these points. 

Analog inputs 

The most suitable niche for neural network technology is in interpreting or preprocessing real 
world data. This data is, in general, inherently analog in nature. Thus to avoid an unnecessary 
external hardware overhead, any system must be able to accept analog data inputs. 

Digital inputs 

If the system is to interface to a conventional computer, the network must be able to accept data 
generated by its host. Also, the most effective means of data storage available to us is digital 
so historical information is most likely to come in this form. 

Interface considerations 

Consider the neural network as a data preprocessor; the data must be freely available to the next 
stage of computation. It is generally envisaged that the neural network will be a slave device 
of a serial based host machine, thus a digital bus interface common to other 110 peripherals on 
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the system seems sensible. The danger with highly parallel neural technology is that system 
performance can be degraded by data-flow bottle necks. 

Size 

Examples of networks of modest size (10's of neuron as against 100's or more) were seen in 
Chapter 3 performing useful tasks. Conversely, larger neural network chips become unwieldy 
in terms of smoothly integrating with a digital system. It is these two factors along with a 
restricted silicon budget for this work that the specification calls for a modest size networks 
instead of "massive" one. 

Autonomy 

As an effective sub-system of an overall system a neural network processor must demand as 
little computational overhead from its host as possible. Ideally the only functions a host should 
provide are overall control signals and an interface to 110 data. To achieve this a neural network 
must provide its own support functions such as weight storage and 110 control. 

Cascadability 

As the goal of this work is to provide hardware support for prototyping neural network applic-
ations, it is highly likely that for some problems, network size will be greater than the physical 
network on chip. For this reason it is important that chips can be cascaded to increase network 
size or depth. The major requirement needed to meet this specification is compatible input and 
output representations. 

Integration 

Chapter 3 demonstrated that many applications demand a highly integrated solution for success. 
While not proposing to produce a fully integrated system designed for a specific application, 
design choices leading to possibilities of further integration should be favoured. 
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4.5 Summary 

This chapter has drawn together the research conducted through literature survey, the first 
hand experience and knowledge of the EPSILON system and the requisite needs of possible 
applications to produce a coarse specification of the hardware to be developed. In the next two 
chapters these specifications will be expanded and implemented in the design of the chip level 
and system level hardware which underpins the work of this thesis. 



Part II 

Hardware Development 



Chapter 5 
The EPSILON II Chip 

5.1 Introduction 

In previous chapters we have introduced pulse stream methodology and circuits, examined how 
and where to apply neural network hardware to applications and evolved a specification on how 
that may be achieved. This chapter presents the VLSI hardware that forms the foundation for 
later system level work. it will start by reviewing the original EPSILON design and detailing 
improvements to the device. Following this the specifications of Chapter 4 will be addressed 
and changes outlined to satisfy these. VLSI improvements occur either at a circuit level or 
architectural level; these improvements are presented next. The final section will present 
characterisation results from the chip, assess the success of the design and offers solutions to 
the problems encountered. 

5.2 EPSILON Background 

The EPSILON chip represented a significant achievement in the evolution of pulse stream 
neural networks. It realised a network of sufficient size for use on real world problems 
and was demonstrated performing such tasks as vowel recognition with MLP5[44], image. 
classification [24] and optimisation with Kohonen networks[9]. It did however have several 
shortcomings that interfered with predicted operation, these are presented below along with the 
solutions implemented: 

Multiplier Error: Synaptic multiplication exhibited an anomaly in the characteristic close 
to and at zero input (see figure 2-12). This was attributed by Baxter in [9] to a power 
supply distribution problem arising from the non-zero sheet resistance of the long metal 
power tracks that supplied the synaptic array. 

Solution: Minimise power track length from pad to core and make distribution into core 
symmetrical. Thicken power tracks through core. 

Neuron Offset: Device matching problems caused a random offset that affected neurons 
by producing variation in their zero reference level. The extent of this affect was hard 

WRA 
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to quantify due to the distortion of the neuron characteristic by the power distribution 
problem. 

Solution: For practical use of EPSILON a number of synapses were used as bias to alleviate this 
effect reducing the total number of synapses available to the network. For EPSILON II 
additional autobias synapses were added to remove neuron zero offsets. This is achieved 
by adjusting the autobias synapse weights to produce a zero neuron output for zero input. 

Ineffective On-chip Biases: Feedback bias generation circuitry (dummy synapses) failed 
to produce the correct values of bias for operation. 

Solution: With the power distribution problem it was difficult to assess the extent of this 
problem; however bias array was located on the edge of the chip. To cancel edge effects 
and get a better match to operational synapses dummy synapses should be placed in the 
middle of the array. 

Injected Digital Noise: Shift registers for the weight refresh operation caused large spikes 
on the supply rails injecting noise into the synaptic array. 

Solution: Design shift registers with smaller transistors to draw less transient current and 
isolate power supplies. 

Coupling of Pulses and Analog References: Routing problems on the chip led to excess-
ive coupling between digital pulse modulated signals and sensitive analog references. 

Solution: Develop chip floorplan and architecture to minimise signal path length of analog 
references and isolate digital signals form analog ones. 

Incorrect Control Signal: Phase locked loop (PLL) circuitry for pulse frequency neurons 
needed an extra inversion of signal for correct operation. 

Solution: Add an extra inversion to PLL. 

The details of these solutions is presented in the architecture and circuit design sections of this 
chapter. 
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5.3 System Level Requirements 

A number of the system level requirements outlined in Chapter 4 have a bearing on chip level 
design. This section describes the areas that were addressed in the design: 

Mixed signal inputs. 

Recovery of analog inputs. 

Minimising control signals. 

Access to neuron activity voltages. 

5.3.1 Mixed Signal Inputs 

The need to deal with both analog and digital inputs has been specified. EPSILON could be 
configured to have all analog inputs or all pulse stream inputs. It has been noted that many 
problems in the target application area lie on the boundary of real-world and digital systems 
and require a mixed signal approach whereby analog and digital data is fused in neural network 
processing. For this reason it was decided to re-design the input neuron structure of EPSILON II 
such that each input could be individually configured as an analog or pulse modulated signal. 

5.3.2 Analog Recovery 

Section 4.4 specified a high level of autonomy and integration. One requirement for operation 
as an analog interface is a knowledge of inputs states as this is required for many learning 
schemes, for example backpropagation. This is obviously non-trivial in the case of analog 
inputs as an extensive overhead of A/D conversion would be needed to extract this information. 
To overcothe this the facility of recovering analog inputs as a linearly pulse-width modulated 
output was also designed into the chip. This is relatively trivial as input neurons carry out this 
function to present data to the synaptic array. All that was required was to route this signal to 
output pads. 

5.3.3 Control Rationalisation 

As highly parallel designs such as neural networks are essentially pad limited, a rationalisation 
of control signals was undertaken to integrate control logic for the weight refresh operation, 
mode selection and chip control. 
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5.3.4 Activity Preset 

Some potential applications examined used Flopfield networks[70], a fully fed-back architecture 
where inputs are imposed at the output and the network allowed to settle in a stable state. To 
allow this a facility to preset individual neuron activity voltages was added. 

5.4 EPSILON II Specifications 

EPSILON Chip Specifications 

Major Design Changes 

EPSILON EPSILON II 

No. of state input pins 30 32 
No. of actual state inputs 120, MUX'd in banks of 30 32 
No. of State outputs 30 Directly pinned out 32 Directly pinned out 
Input mode programmability All analog/All digital Bit programmable 
Digital recovery of analog inputs No Yes - PW modulated 
Additional autobias synapses None 4 per output neuron 
Programmable activity voltage No Yes 
Number of control signals II 6 

Secondary Specifications 

No. of synapses 3600 1024 
No. of weight load channels 2 1 
Weight load time 3.6ms 2.3ms 
Weight storage Dynamic Dynamic 
Maximum speed (cps) 360Mcps 102.4Mcps 
Maximum input sampling rate 50kHz 50kHz 
Technology 1.5im CMOS 1.5pm CMOS 
Die size 9.5mm x 10.1mm 6.9mm x 7mm 
Maximum power dissipation 350mW 320mW 

Table 5-1. Comparison of EPSILON and EPSILON II Specifications 

The previous sections outlined the majority of the circuit changes required to meet the 
specifications of EPSILON II. What remains is the choice of network architecture. The silicon 
area available for the design was 49mm 2  which formed the major constraint on the design. 
It was decided that for efficient interfacing to digital systems 110 dimensions should be a 
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multiple of eight. This, together with the area available, led to a 3202' network architecture. 
Table 5-1 summarises the specifications of the EPSILON II device and highlights the major 
changes between it and its predecessor EPSILON. The details of how these specifications were 
implemented is the topic of the next two sections; the first presents architectural details while 
the second presents circuit level design. 

5.5 EPSILON II Architecture 

Results from Baxter[9] and studies undertaken by the author point to many of the EPSILON 
shortcomings being attributed to layout level architecture. This section examines the archi-
tecture of the original EPSILON chip then presents the architecture of the EPSILON II chip 
discussing the improvements made. 

Figure 5-1 shows the general architecture of the EPSILON device and highlights signal 
flow through the chip. The following points can be derived from this figure: 

• Routing of analog references is very long and crosses all pulse stream inputs or outputs 
contributing greatly to unwanted signal coupling. 

• Power routing is long and asymmetric. 

• Many routing paths are unnecessarily lengthened by poor pad placements. For instance 
analog references are padded onto the chip from the opposite side from which they are 
used. 

• Bias generation dummy synapses are on the edge of the array: For more representative 
operation under conditions of a systematic variation in threshold voltage across the die, 

these should be in a central location. 

• Some digital control signals have long signal paths that cross analog references promoting 
coupling to these sensitive analog signals. 

• Routing of synaptic input signals (green) proceeds to the top left hand corner before 
being distributed back down the chip to input neurons. This forms unnecessarily long 
signal paths (these can be a mixture of analog or digital signals) and leads to coupling 
with analog references (this was demonstrated in Hamilton [44]). 

• Neuron outputs (dark blue) originate from the bottom of the core and are routed to the 

right hand edge pads. Again signal paths are long and this leads to coupling with analog 
references. 

1 When stating network size in this manner we are referring to input dimension x output dimension. 
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Control 

Figure 5-1: Signal flow through EPSILON 

Figure 5-2 shows how these architectural points were addressed in the design of EPSILON II. 

• The 3202 synaptic matrix is split into four 32x8 arrays and placed symmetrically about 
the chip centre. 

• Input neurons, routing, as well as input pads are all along the left hand side of the chip 
minimising signal paths from pad to input neurons. 

• Dummy bias synapses are located in a vertical column through the centre of the chip to 
obtain a better match to synapse array. 

• Output neurons are located and padded out, sixteen each, on the top and bottom edges 
of the chip. This minimises routing distance and isolates pulse outputs from the noise 
sensitive analog references. 
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• Analog references for the synaptic arrays along with synapse power supplies all originate 
along the right-hand side of the chip well away from and digital signal routing. 

• 'X' shift registers run horizontally through the chip centre while 'Y' registers run vertic-
ally along the right-hand edge along with power routing. Power to these is isolated from 

the analog supplies. 

These architectural modifications are designed to reduce or alleviate the non-idealities Found 

in EPSILON as outlined in Section 5.2. 

Control 

Pulse outputs 

Figure 5-2: Signal flow through EPSILON 11 
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5.6 EPSILON II Circuits 

This section presents the circuit changes made to address the remaining problems of Section 5.2 
and the system requirements of Section 5.3. These are presented as functional blocks: 

I. Input neuron. 

Synapse. 

Output neuron. 

Shift register. 

Control logic. 

5.6.1 Input Neuron 

The specification for the input neuron is for the cell to be programmable as either an analog or 
pulse modulated input. To accomplish this the circuit if Figure 5-3 is used. The SRAM cell 

Analog or 
PM input 

sample 

due Mode 
Analog 
Pulse 

Vj to synapse 
array 

Figure 5-3: EPSILON II Input Neuron Circuit 

of cross-coupled invertors is loaded with the value of the associated synaptic input when the 
load-mode signal is high. The invertors are scaled such that this can be done through a single 
NMOS transistor (circuit details are given in Section A.2). 

In analog mode ('I' loaded) the signal from the synaptic input pad is sampled onto the 
capacitor C when the sample signal is high. This value is held on C when sample goes low 
and a linear dual-sided ramp is applied as explained in Section 2.3.2 to produce a pulse-width 
modulated output to the synaptic array. 
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The layout of the cell is pitch-matched for the synapse array, implying that two input neurons 
occupy a cell 100pm in height. The layout is shown in Appendix A, figure A-3 highlighting 
the various circuit components. NAND gates are scaled to provide the necessary drive to the 

synapse array. 

5.6.2 Synapse 

The synapse used was basically that in the EPSILON device. The only changes made were to 
the horizontal metal I routing to provide thicker power rails and the addition of two vertical bus 
lines to route input pulse-widths to output pads for the analog recovery mode. These two lines 
are utilised by an "overlay" cell containing a pass transistor which is placed on the diagonal 
axis through the array. Figure A-4 in Appendix A shows the layout of this cell. 

5.6.3 Output Neuron 

Basic circuitry is again similar to that of EPSILON and includes the feedback operational 
amplifier for the synapse array[9], pulse-width modulating neuron[24] and pulse frequency 
modulating neuron[44]. A cell for control of the activity capacitor allows it to be reset to a 
mid-point or accessed and programmed similarly to a weight refresh operation. A new cell to 
multiplex the output modes was also designed. This cell selects the neuron output as either 
pulse-width mode, pulse-frequency mode or the pulse-width modulated analog recovery mode. 
Layout of the output neuron in included in Appendix A, Figure A—S. 

5.6.4 Shift Register 

The operation of the raster-scan weight refresh requires shift register cells pitch matched to 
the X and Y dimensions of the synapse array. As previously mentioned, the shift register in 
EPSILON caused large power supply transients and so re-design was undertaken to prevent 
this. Simulation and layout were performed by a Napier University undergraduate project 
student, Alan Clark, under supervision of the author and Dr Alister Hamilton. Layout for these 
cells can be found in Section A.6. 

5.6.5 Control Rationalisation 

The pad-limited nature of an 110 dense chip such as EPSILON II meant that pad usage had to 
be kept to a minimum. Coupled with this was the desire to keep external support circuitry to a 
minimum, this led to design of logic to minimise the number control signals. The EPSILON 
chip contained eight pads for control of the weight refresh system. This was reduced to four 
pads on EPSILON 11 by designing the refresh control logic of Figure 5-4. External signals 
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Refresh control logic 
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Figure 5-4: EPSILON II Shift Register Control Logic 
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are now reduced to a two phase clock, 01 and 02,  which clock the X direction shift registers, 
a refresh and preset control signal. The application of the refresh signal starts a refresh cycle 
coincident with 4. The preset signal is used to reset the X and Y registers and along with 
refresh is used to start a preset operation on the activity capacitors. 

5.7 EPSILON II Characterisation Results. 

This section performs basic characterisation tests on the EPSILON II device to gauge the 
success of the design changes. Several series of tests are described in in this section: 

Initial verification tests. 

Characterisation of the pulse-width neuron. 

Testing of reference generation circuitry. 

Neuron variation for zero input response: a test to examine the spread of offsets in the 
neuron characteristics. 

Tests to judge the performance of the autobiasing scheme in removing the above offsets. 

Characterisation of the synaptic multiplication. 

An investigation into an anomaly in neuron zero response. 

5.7.1 Initial Testing 

The EPSILON II chip was fabricated using European Silicon Structures 1 .5im double metal 
CMOS process. A photomicrograph of the chip is shown in figure 5-5. After fabrication a 
series of tests were performed on the chip to verify that it functioned correctly. These tests 
were performed using the FENICS board designed for the EPSILON chip[44] by constructing 
a prototype board containing EPSILON II to plug into the EPSILON chip socket. Tests done 
included: 

• Testing of weight download system. 

• Simple characterisation runs to test synapse operation. 

• Testing of PWM and PPM neurons to confirm correct operation. 

These tests proved successful so the design of the EPSILON processor card (EPC) described in 
Chapter 6 was undertaken. The results presented in this section were taken using of the EPC. 
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Figure 5-5: EPSILON II Chip Photograph 

5.7.2 Pulse-Width Neuron Characterisation 

The output mode of operation used throughout this thesis is the pulse-width modulating mode 
as it offers substantial flexibility in control of the neuron transfer function. To test this mode 
and verify its operation the reset voltage (shown in figure 2-7) was swept across the input 
range, centred on 2.5V, and the pulse-width of the output pulse measured. The circuit proved 
linear with a maximum of 1 bit offset to the S bit resolution of the measuring system (the 
EPC); confirming the linearity of the ramp generation circuitry and the robust nature of the 
pulse-width comparator neuron. 

5.7.3 Reference Bias Setup 

The synapse circuitry requires two global reference voltages that set the synapse characteristic 
zero or mid-points. The first of these is V,, which determines the zero weight voltage (see 
figure 2-6). The second reference V 7, sets the voltage integrator mid-point such that for zero 
synaptic current the integrator output produces a nominal lOis output pulse-width. Both these 



The EPSILON H Chip 	 64 

references have feedback generation circuitry as explained in Section 2.3.1. To test these 
references all synaptic weights were set to zero value (Tij = 3.75V) and the neuron output 
pulse-width measured with a linear ramp for: 

A zero input (Si  = Ops) pulse-width (zero input response). 

A Si = 10ps input pulse-width (zero weight response). 

For correct operation both these inputs should yield the nominal midpoint of S j  = I Ops as net 
synaptic activity should be zero in both cases. 

Unfortunately, despite the architectural changes made in EPSILON II, these circuits failed 
to generate suitable references for correct operation. This implies that the power supply 
distribution problem and edge effects (Section 5.2) of EPSILON was not wholly responsible 
for malfunction of these reference generators. 

To investigate these references they were set manually by adjusting V0  to get a nominal 
Sj  = iOps output for a Si= 0is input pulse then adjusting V to get a nominal S = lOps 
output for a Si= lOps input pulse. Results from these tests indicate that a variation of lOmV 
in V0  led to a large ( 21Ls) change in neuron output'. This indicates that the circuitry is 
very sensitive to this reference - the effects of this is discussed further in Section 5.8. For the 
remainder of the experiments presented here V and V0  are set manually. 

5.7.4 Zero Input Response Variation 

With 14 and V01  set to produce an average Si = lOps output, it is possible to examine the spread 
of neuron offsets by measuring their zero input response. This offset is due to the mismatches 
between the distributed feedback amplifiers and voltage integrators for each neuron. 

The variation of the zero input response for the seventeen operational chips was measured 
and the results summarised in figure 5-6. The figure is a histogram showing the frequency of the 
zero output response for 5,100 measurements (5,100- 17 chips x 32 neurons x 10 repetitions). 
As the graph shows, there is a wide spread of zero input response values, most lying in the 
range of 5ps—i5ps. This large spread indicates a poor matching between neurons. To confirm 
that this is not due to an architectural problem as on EPSILON, where power supply variations 
caused large variations, in figure 5-7 each neuron is plotted separately for the seventeen working 
chips. In this graph average values of the zero input response along with the standard deviation 
is shown. From this it can be seen that there is no gross trend according to geographical 
position on the chip as was the case with EPSILON. This implies that while the architectural 
changes made were successful in alleviating problems in EPSILON, these problems masked 
other non-idealities now apparent in the spread of zero input response. The two circuit blocks 

2 10mV was the smallest increment measurable with available equipment. 
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Figure 5-6: EPSILON II Characterisation - Zero State Histogram. 
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Figure 5-7: EPSILON II Characterisation - Zero State of Neurons. 

responsible for this characteristic are the distributed feedback amplifier(DFA) and the voltage 
integrator. Their contributions to these non-idealities are discussed in Section 5.8. The next 

section determines how effectively these offsets can be removed by using the autobias synapses 
included on EPSILON II. 

5.7.5 Autobias Characterisation 

That offsets (due to component mis-matches) in neuron zero input response would be present 
was a known problem; for this reason autobias synapses were included as a way of removing 
these. This section details the results of the tests performed using the autobias synapses to 
determine their ability to reduce zero input offsets. This reduction is achieved by adjusting the 

weights of the autobias synapses iteratively until the neuron zero input response is the desired 
lOps. Figure 5-8 shows this process in operation whereby all neurons characteristics are shifted 
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Figure 5-8: EPSILON II Autobias Settling Response. 

to the defined zero point. The autobias neurons can shift the characteristic by approximately 
+6ts, which means that some neurons lie outside this range as seen in figure 5-6. These 
neurons can either be used as they will now lie closer to the ideal zero point, or not used 
decreasing the number of neurons available. 

Table A—S gives a summary of the twenty chips received from fabrication, their functionality, 
and how many neurons lie out of autobias range. The majority of chips have less than four 
neurons out of autobias range. In Chapter 7 it is shown that learning with the chip in loop can 
accommodate such hardware non-idealities. The aim of removing offsets as far as possible 
is to achieve close matching between chips and to allow the possibility of off-line evolution 
of weights sets in software. This section has shown that the addition of autobias synapses to 
EPSILON II removes all but a few of the zero input offsets associated with neurons. 

5.7.6 Synapse/Neuron Characterisation 

This section examines the multiplication characteristics of the synapses. Due to the nature of 
the chip it is not possible to characterise individual synapses. Instead, columns of synapses 
are characterised by applying identical weights and inputs to all synapses and reading output 
from a linear pulse-width modulating neuron. Figure 5-9 shows the characteristic as input 
pulses are swept from Si= 0 —4 20ps for various weight voltages. Similarly, figure 5-10 
shows the characteristic as weight voltage is swept from T1 = 2.5 -* 5.OV for various input 
pulse-widths. Both these graphs plot the average of 30 run samples for a single column of 
synapses, in this case column 1 on chip 2. 

From both these sweeps it can be seen that the EPSILON II synapse achieves good linearity. 
To further examine the spread of these values figure 5-11 and figure 5-12 show error bars 
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of the standard deviation and maximum and minimum values respectively of these sweeps. 
These results show the spread of values becomes progressively greater with increasing input 
pulse-width. This is as expected as the spread is primarily due to noise inherent in the synapses, 
which is only fed through when an input is active. 

An additional point to note from these graphs is the tight zero point; that is all sweeps 
converge to a single point at the lOzs output pulse. This is in contrast to EPSILON where 
power supply problems caused great distortion in this region (see figure 2-12). This implies 
that the power supply distribution problem of EPSILON has been solved. In similar char-
acterisations performed on EPSILON a maximum (minimum) absolute standard deviation of 
857ns (517ris) was recorded[9]. The maximum (minimum) absolute standard deviation for 
the characterisation of figure 5-11 is 5 l7ns (I 7ns). This tighter standard deviation represents 
a significant improvement in the noise response indicating that isolation of analog references 
has been successful in reducing noise coupling. 

The trace for a zero weight value (i.e. Tij = 3.75V) is not perfectly horizontal. This varies 
from synapse column to column as the value of the global zero reference Y z  needed to anull the 
zero weight current varies with process parameters and device mismatch. This is not considered 
a major problem and in Chapter 7 it is shown that chip-in-loop learning can accommodate such 
variations. 

5.7.7 Neuron 0 Anomaly 

In the course of testing the chip an anomaly in the characteristics of neuron 0 (bottom left-hand 
corner of figure 5-2) was revealed. Investigation proved that response of neuron 0 was being 
affected by the weight values present on neuron 31 (top right-hand corner of figure 5-2). This 
implied some coupling of the weights on neuron 0 with those on neuron 31. It was discovered 
that the delay induced by an extra logic gate, along with the long signal path from weight refresh 
logic to the Y-shift registers, produced a delay in the clocking of the Y-shift register. Thus in 
the transition between addressing weight T31 , and To,+j an overlap caused by the delay path 
momentarily addresses To,, affecting its stored value. Though this does not fully overwrite the 
column 0 synaptic weights, in practice column (neuron) 0 was not used in experiments. 

The solution to this problem for future fabrications is to simply add a dummy X-shift register 
after column 31 to allow the Y-register to change rows without inadvertently addressing any 
synaptic weights. 
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5.8 EPSILON II - Unresolved Issues 

Two major unresolved issues remain in the performance of EPSILON II circuitry: 

The failure of bias generation circuitry to produce the correct values of V0  and V. for 
chip operation. 

The large spread in offsets of neuron characteristics that was observed as quantified in 
the zero input response measurements. 

It is believed that these two non-idealities are linked and this section discusses possible causes, 
concludes what is the major contributing cause and offers a possible solution. 

5.8.1 Investigating Neuron Offset 

It is relatively easy to narrow down candidate blocks to investigate neuron offset characteristics: 

• Synapse transconductance pairs are eliminated as they are isolated from the circuit for 
the zero input response measurements. 

The pulse-width comparator was shown in Section 5.7.2 to have minimal offset. 

The remaining two candidates are: 

The voltage integrator. 

. The distributed feedback amplifier. 

Voltage Integrator 

The voltage integrator is simply a differential transconductance device which subtracts the net 
synaptic activity, V0utj  from the output zero reference, V0  and converts this to a current, loutj  
which is integrated in the integration capacitor, C 0  (see figure 5-13). The transconductance 
stage consists of a differential stage followed by acurrent minor. As with any CMOS differential 
stage mismatch between "identical" MOS devices, along with bias errors from mirror matching, 
will produce an input offset. Allen and Holberg[4] quote this as being typically in the 5mV - 
20mV range. 

SPICE simulations show that the predicted transconductance, 9m  of the stage is: 

gm =1.lpS 	 (5.1) 
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Figure 5-13: EPSILON II Voltage Integrator. 

Thus for a worst case input offset of +20rnV: 

= +22rtA 	 (5.2) 

This current charges the integration capacitor Ci1 t  = 3pF giving a voltage change in the 20ps 
integration period of: 

Alnet = 
	

= + 147mV 	 (5.3) 
cint 

with the linear ramp used in the characterisation experiments having a slope of 0.1 VIPs this 
produces a zero input response spread of 

= 10+ 1.47ps 
	 (5.4) 

This figure is too small to account for the spread encountered thus the voltage integrator is not 
the major contributing factor to the spread. 

Distributed Feedback Amplifier 

The effect of mismatch in the distributed feedback amplifier is more difficult to calculate. 
Expansion of the transistor equations while modelling Voff  as shown in figure 5-14 leads to a 
complex expression. Instead a SPICE simulation was used to investigate the effects of input 
offset voltage on V.utj  and The simulation used extracted circuit values and included the 
synapse, feedback amplifier and voltage integrator. To investigate the effect that an offset in 
the distributed feedback amplifier would have on the zero input response, the offset voltage 
was swept +20mV measuring V.uj  and I. Results of this are shown in figure 5-15(a). 

Performing similar calculations to the previous section: 

= —lI8nA -+ +Jl2nA 

'outi  t 
AVnet. 	 = — 786mV 746mV 

—'int 
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Figure 5-14: EPSILON II Distributed Feedback Amplifier Offset Experiment. 

= 2.14-17.4616 
	

(5.5) 

This spread is slightly larger than the observed spread in zero input response, thus demonstrating 
a typical input voltage offset in the distributed feedback amplifier is sufficient to produce the 
observed spread in zero input response values. 

To investigate the effect of input offset voltage on the synaptic multiplication characteristic 
the synapse was included in the simulation and weight voltage on the synapse was swept 
for l/ff = +20mV. The results of this simulation are shown in figure 5-15(b). The black 
horizontal line in the centre of the response corresponds to the zero input response results. 
That the points at either end of this line, corresponding to V0 ff = +20mV, do not coincide 
with the zero weight response marked on the characteristics shows a difference between zero 
input response and zero weight response as observed in the experimental results. The different 
slopes on the plots also show that input offset voltage has an effect on synaptic multiplier gain. 

The feedback bias generation circuitry uses identical circuit blocks of a transconductance 
pair and distributed feedback amplifier to generate 14 and V 0 , it is no surprise therefore that 
these do not produce appropriate values. To balance the integrator: 

V. = VbI + Vref + V0ff + AV + V(AVD5) 	 (5.6) 

where A14 is the difference in threshold voltage between Ml and M2 due to substrate bias and 
V(AVDS) is a function of unequal drain-source voltages between Ml and M2 and is zero for 

= 0. Thus any input offset will affect both the V0  value required to balance any particular 
integrator and also the V0  reference produced by the feedback bias generation circuit. 

To balance the synaptic transconductance multiplier: 

V. = VTIJ Z  + V + 1/off + AV + V(AV05) 	 (5.7) 
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Figure 5-15: Effects of Op-amp offset on EPSILON II Response. 

This again shows a dependence on input offset voltage of the DFA. The error introduced by 
the unequal drain-source voltages also effects the gain of the transconductance pair as seen in 
the varying slopes of characteristics in figure 5-15(b). 

Thus the effects of moderate input offset voltage can account for a portion of all the major 
types of non-idealities observed in the EPSILON II response; zero input response offset, Zero 
weight response offset, gain variation and bias generation failure. 

5.8.2 Removing Input Offset 

The previous section showed that input voltage offsets on the distributed feedback amplifier 
have large effects on EPSILON II response. It is therefore important that a method is developed 
to minimise these offsets. 

With the pulse-width modulation scheme a calculation is performed in three steps: 

1. Inputs are applied and synaptic activity integrated. 
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Output ramp is applied and pulse-width is generated. 

Integration capacitor is reset for next operation. 

In steps 2 and 3 the distributed feedback amplifier is unused and an autozeroing operation can 
be implemented. One such scheme is shown in figure 5-16. Here during 01 the offset voltage 
is sampled and stored on 0az, this could take place during the integration reset operation. 

From synapse 
Toutj 

Itage integrator 

Figure 5-16: Autozeroing Scheme for Distributed Feedback Amplifier. 

During 02  the amplifier is used as normal but the charge stored on 0az effectively cancels the 
input offset voltage. To use this scheme the amplifier must be stable in unity gain negative 
feedback, simulations on the amplifier used in EPSILON II confirm that it is. Using this type 
of autozeroing offset can be significantly reduced, it will not however be completely removed 
as effects such as charge injection from the MOS switches and decay on C will prevent ideal 

operation[39]. 

Implementation of such a scheme holds promise of greatly improving EPSILON II matching 
and feedback bias generation. 

5.9 Summary 

This chapter has presented the EPSILON II chip, its design, testing and characterisation. The 
architecture of the chip was developed to overcome problems encountered in the previous gen-
eration EPSILON chip such as power supply distribution problems, excessive signal coupling 
and poor performance of automatic bias generation. Other changes were incorporated to make 
the new device more amenable to system level integration for use in applications such as an 
analog recovery mode, programmable inputs and control rationalisation. 

In comparing characterisation results to the previous generation EPSILON chip significant 
improvements were noted; specifically the synaptic multiplication characteristic is now linear 
around zero input and noise on output is less due to less coupling of analog references with 
digital signals. 
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A significant spread in neuron offset for a zero input response was observed. Autobias 
synapses were able to remove this offset in most cases. The key contributing factor to this 
neuron offset was identified as due to input offset voltage in the distributed feedback amplifier. 
This was also implicated in the observed incorrect operation of reference bias generation 
circuitry and imperfections in the zero weight characteristic. A solution to minimising this in 

future chip designs was also presented. 



Chapter 6 
The EPSILON Processor Card 

6.1 Introduction 

The previous chapter presented the EPSILON II chip. This device in itself however is insuf-
ficient to fill the system specification of Chapter 4; it requires additional circuitry to provide 
such support operations as weight refresh, ramp and reference generation and 110 management. 
This calls for a sensible system level framework. In this chapter such a solution is presented, 
the EPSILON Processor Card (EPC). The EPC is a peripheral device designed to interface to a 
standard digital bus and provide data channels to the analog world and the pulse stream domain 
of EPSILON H. 

This chapter begins by presenting the necessary system level functions needed to support 
the EPSILON 11 chip. Following this, the architecture and design of the EPC is presented 
leading to a discussion of the use of the EPC. 

6.2 System Level Considerations 

The EPC operates as a peripheral in a digital environment. It must also fulfil functions of pulse 
stream communications between EPSILON II chips and control direct analog signal access to 
the chip. Along with this 110 management role, the EPC must also provide support functions 
necessary to operation of the chip. A summary of the functions implemented on the EPC along 
with data and control flow between them is shown in figure 6-1. These functions, which are 
discussed in this section, are: 

Weight refresh of on chip dynamic storage. 

Ramp generation for pulse-width modulating neurons. 

Pulse conversion of inputs and outputs. 

Analog reference generation. 

Analog signal interface to access analog input data. 

76 
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Figure 6-1: Block Diagram of EPC Operations. 

Pulse stream interface to allow cascading of boards via pulse stream communication 
between EPSILON II chips. 

Bus interface to map the EPC onto a standard digital bus system. 

System control to oversee operation of functional blocks and EPSILON II chip. 

6.2.1 Weight Refresh 

As EPSILON II uses dynamic weight storage, the weights are stored on the EPC in digital 
RAM which are used to periodically refresh on chip weights via D/A conversion. There is 
no provision on EPSILON H for on-chip learning, thus weights must also be accessible to 
an external processing device for modification. The functions necessary to carry out weight 
refresh are shown in Figure 6-2. The functional block is under control of the Refresh Control 
block which generates RAM addresses, control signals to the weight RAM and DAC, arbitrates 
access to the weight RAM for bus requests and generates the timing signals to drive the on-chip 
refresh circuitry of Section 5.6.5. The logical implementation of this block is included in 
Section B.3 and figure C-4. 

6.2.2 Ramp Generation 

The pulse-width modulation (PWM) employed on EPSILON H requires analog ramp signals to 
operate. These ramps may be linear or some arbitrary function. Figure 6-3 shows a functional 
diagram to implement such a function. The ramp waveform is stored in RAM; to generate 
the ramp this data is fed sequentially to the DAC for conversion to an analog waveform. The 
ramp control block arbitrates bus requests to modify data in the ramp memory and generates 
the address sequence and control signals to memory and DAC to produce the ramp. In 



The EPSILON Processor Card 
	

p1.1 

Access Request 
System 
Control 	 address Refresh ref, esh 

R/W Control 
-  add •ess Weight 

4 - Memory 	EPSILON II 

15 data 	
DAC r. 	 - [ 	:'u 

di to 
 

• • Weight Refresh 

Figure 6-2: Block Diagram of Weight Refresh Operation. 

Control 

dd 
-4 res5l  Ramp ControI 	

Ramp 
	Control 	

EPSILON II I ! 	Memory 	 4' 
data 

j  >L- Ramp  Generation 

Figure 6-3: Block Diagram of Ramp Generation. 

practice, generation logic is part of the pulse conversion as ramp generation occurs along with 
pulse conversion. The logical implementation of this function is included in Section B.2 and 
figure C—s. 

6.2.3 Pulse Conversion 

Data representation at the interface of EPSILON II is in the form of pulse streams. Data 
representation of digital systems is binary words of set resolution. To provide bus compatible 
110, data conversion between these data representations are necessary. 
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Binary to pulse-width conversion 

To enable data generated by digital systems to be processed by EPSILON II a conversion 
between binary words and pulse-widths is required. Figure 6-4 shows such a scheme. This 
scheme is analogous to the pulse-width neuron on EPSILON II: a linear reference ramp (signal 

255 _______ 	 B 

data Di. D0Ut data  A 

Latch 	 0 

load 
5v 	 ____________ 

Ov ___ 	 B<A FDigital ramp 	 ___ time 

Figure 6-4: Block Diagram Binary to Pulse Width Conversion. 

B) is generated and the data (A) is compared to this. The result (RcA) is a pulse-width 
proportional to the magnitude of A. The same ramp (B) can be fed to a DAC to generate the 
ramp used in the input neurons that converts analog inputs EPSILON II to pulse-widths. The 
logical implementation of the binary to pulse-width conversion is included in Section B.2. 1. 

Pulse-width to binary conversion 

To utilise the results from EPSILON II, outputs need to be converted from pulse streams 
to binary words. Already available from the ramp generation block is a clock signal and 
the sequence of addresses which scans the ramp memory to produce the output pulse-width 
neuron's ramp. One scheme to calculate output pulse-width would be to use the rising and 
falling edges of the pulse-width to latch ramp memory address values. The pulse-width is then 
calculated by subtracting these two values. The disadvantage of this scheme is that any noise 
or spikes on the pulse-width signal can severely distort the result. An alternative scheme not as 
susceptible to noise is shown in figure 6-5-a. Here the pulse-width is used to enable a counter 
clocked by the reference clock. The counter output is thus proportional to the pulse-width. 
For the EPC a word length of 8 bits was chosen as the vesolution. Thus for a 20ps ramp a 
reference clock frequency of 12MHz is used. Logical implementation of the pulse-width to 
binary conversion is included in Section B.2.2. 

Pulse frequency to binary conversion 

If EPSILON II is operated in pulse-frequency output mode a different conversion is needed. 
One such scheme is shown in figure 6-5-b. Here a counter is used to count the incoming pulses 
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Figure 6-5: Block Diagram Pulse Stream to Binary Conversion. 

for a sample time tf to produce a digital output. The pulse-frequency output of EPSILON II 
is a pulse stream of fixed high time (lps) with a duty cycle varying from zero to 50%. Thus to 
convert to a resolution of 8 bits (256 levels): 

tref = Max. number steps x period of max. output 	 (6.1) 

= 256 x high time x 	
100 

max. duty cycle 
= 256 x 2ps = 512ps 

6.2.4 Analog References 

For the purposes of experimentation, most references on EPSILON II were pinned directly 
off-chip rather than tied to a global reference on-chip. Thus a total of 5 current references and 4 
voltage references must be supplied to the chip. Also the failure of the feedback bias generation 
circuitry for V0  and 14 implies these voltages must be supplied as well. Along with these 
references the non-standard synapse power supplies of 0.5V and 1.5V are produced locally. 
The details of producing and setting up these references and supplies are given in figure C-6 
and Section C.4. 

6.2.5 Analog Signal Interface 

The number of analog neural inputs to the EPC is variable and application dependent. Analog 
input to EPSILON II is via the same 32 inputs as pulse modulated input. On the EPC, these 
32 inputs are also commoned with the 32 outputs (which can take a high impedance state) to 
form a pulse bus. The analog input to the EPC must be able to be isolated from this bus. Thus 
analog inputs enter the bus through analog switches. These are configurable by a software 
controlled input mode mask which maps which inputs are to be analog (mode 1) and which 
pulse modulated (mode 0). Figure 6-6 shows this arrangement. The Mask register stores 
the configuration of the inputs. To initialise the EPSILON 11 chip, load-mode is brought high 
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Figure 6-6: Block Diagram of Analog Signal Interface. 

which loads the configuration into the the latches of the EPSILON II input neurons. Analog 
input data is sampled when sample is high and held when low. In practice, inputs on the EPC 
are configured as groups of four to reduce the chip count on the board. 

6.2.6 Pulse Stream Interface 

The pulse stream interface addresses the system specification of cascadability. The pulse 
stream interface allows the internal pulse bus of the EPC to be extended to other EPCs. To 
do this a dedicated bus for neural pulse streams was designed with control signals to allow 
communication and synchronisation between boards. The scheme is summarised in figure 6-7. 
The System Control block configures the board to accept inputs from the neural bus, or place 
outputs on the bus, by controlling the bi-directional tn-state buffer. A system controller placing 
data on the bus indicates it is doing so via a control signal. A controller waiting for inputs uses 
this to start an EPSILON II processing cycle. 

6.2.7 Bus Interface 

The system specification calls for an interface to a standard digital bus. Some suitable bus 
standards include the PC-bus, VME-bus and STE bus. As one target application, specifically the 
instinct-rule robot, requires a stand-alone processor the STE bus was chosen for the following 
reasons: 

. A wide range of inexpensive processor cards and other peripheral cards were available. 
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Figure 6-7: Block Diagram of Neural Bus Scheme. 

• Compact size of Eurocard standard size boards was ideal for the robot application. 

• Asynchronous 8 bit data bus was sufficient for the essentially 8 bit resolution data of 
EPSILON II. 

In order to interface to this bus the EPC must: 

• Decode addresses. 

• Interpret STE control signals such as address & data strobes and read/write control lines. 

• Provide a data acknowledge (DTACK) signal to indicate completion of a bus cycle. 

Schematics of hardware to do this are included in Section B.4 and figure C-1 1. For more 
details on the STE bus architecture see Mitchell [81]. 
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6.2.8 System Control 

The System Control block addresses the system specification of autonomy. It holds overall 
control of the previously described functional blocks as well as providing the control signals 
for the EPSILON II chip. It synchronises and sequences all the operations carried out on the 
EPC and will be discussed further in Section 6.5.3. 

6.3 EPC Architecture 

In the previous section the functional blocks of the EPC were presented. What remains to 
be discussed is how these blocks were implemented in hardware. To gain an insight into the 
design decisions let us return to the FENICS system designed to support EPSILON. This 
system employed a combination of a micro-controller and standard 74 Series logic to perform 
similar functions to the EPC, however it suffered from several major drawbacks. Firstly there 
were major data bottle-necks in the system due principally to 30 bit data (the output dimension 
of EPSILON) being processed over 8 bit buses. Transferring data over lower dimension busses 
adds an extra overhead that on the EPC is minimised by transferring data over the internal 32 bit 
pulse bus. 

Pulse conversions on FENICS were intended to be carried out by the micro-controller. This 
serial processing device, with a relatively slow clock speed, proved too slow and conversion 
was found to be quicker by up-loading raw sampled pulses to a PC for processing. To alleviate 
this type of problem, the hardware for processing pulse conversions was designed. However if 
this was to be implemented with standard logic packages, the chip count on the board would be 
enormous. Along with this, other functions such as weight refresh and ramp generation, which 
were also performed on FENICS required several chips to realise. 

To prevent an unacceptable chip count a FPGA' was used to implement much of the digital 
logic and processing. Figure 6-8 shows the distribution of functions on the EPC highlighting 
those implemented on the FPGA. The FPGA chosen was a re-programmable device to allow 
the EPC to be customised to various applications. For instance, if pulse conversion is required 
for all inputs and outputs, then the size of the FPGA is insufficient to implement all pulse 
conversion circuitry in parallel. In this case pulses are stored or sampled in a a block of 
RAM 32 bits wide (the pulse RAM of figure 6-8) and processed after an EPSILON II cycle 
has taken place, in the case of outputs, or before and loaded into RAM in the case of inputs. 
This is the most generalised case of the EPC and is what is presented in Appendix B. For an 
application such as the instinct-rule robot, not all output neurons are used: in this case only four 
- thus pulse conversion can be implemented in parallel on the FPGA. Similar optimisations 

'Programmable Gate Array 
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can be implemented if many inputs are analog, reducing the demand on binary-to-pulse-width 
conversion, and allowing processing to be done in a fast, parallel manner if possible. 

6.4 EPC Design 

The EPC was designed to conform to the STE bus standard and was laid out on Eurocard 
size boards. To achieve this and to provide good noise isolation between analog and digital 
functions a twin board approach was taken. A mother-board carrying out digital functions and 
containing the FPGA is mated to daughter-board via an 80-way bus (see figure 6-9—a). The 
daughter-board contains the EPSILON II device and all D/A circuitry, analog references and 
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b) EPC Daughter-Board. 

Figure 6-9: EPSILON Processor Card Boards. 

power supplies (see figure 6-9—b). A photograph of the EPC is shown in figure 6-10 with the 
key components highlighted. 
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Details of the board layout and the set-up procedure for the board can be found in 
Appendix C. 

6.5 Using the EPC 

This section describes the practicalities of using the EPC as part of a system. Firstly the issues 
of data representation are discussed and a set of state variables is defined for the different data 
representations used in the EPC. Next the 110 and control of the EPC is presented from the 
point of view of the host system. Finally with this information available the system control 
block of the EPC is explained. 

6.5.1 Data Representation 

Data communication between the EPC and its host is via the 8 bit STE bus. Data communic-
ation to and from the EPSILON II chip is in the form of analog voltages or pulse modulated 
waveforms. The EPC carries out data conversions between these two domains. To avoid confu-
sion, table 6-1 defines state variables for the various data types and summarises the conversion 
undertaken on the EPC. These variables are used throughout the remainder of the thesis such 

Table 6-1. Data Representations in EPC and EPSILON II 

EPC 	 EPSILON II 	 Conversion 
inputs 	Xi E [0, OxFF] Si e [0, 20ps] pulse-width Xi = 8-bit PW conversion 
outputs 	Yj E [0, OxFF] Sj E [0, 20ps] pulse-width 1', = 8-bit PW conversion 
weights 	E [0, OxFF] Tij  e [2.5, 5V] voltage 	Tij = 8-bit AID conversion 

that the data type is implicit in the name. The state variables for EPSILON II (Si, Si & T) 
have already been used in Chapter 5. These are mapped by the EPC into 8 bit integers (Xi, X 
& W) for use by the host system. 

6.5.2 Memory Mapped 110 

The I/O of the EPC is memory mapped onto the STE bus. The location of the EPC in memory 
is determined by setting jumpers on the board to define the base address of the device. The 
memory map of the EPC relative to this base address is shown in figure 6-11—a. The principal 
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Figure 6-11: EPC Memory Map and Operational Flow. 

memory blocks are: 

Weight memory - write only. 

• Neural state memory - State inputs (Xi) are written to this block and state outputs (}j) 
are read upon completion of processing. 

Control register (on write) and status register (on read). 

• Mask register - 4 bytes which hold the mask that determines whether an input is analog 
or pulse modulated. 

• Ramp memory - 256 values that define the shape of the pulse-width output neuron's 
ramp. 

Control of the EPC is via the control register which determines what function the EPC is to 
perform. The status register is read to determine the current status of the device. The functions 
of individual bits are given in figure 6-12. Bits 0-4 of the control register are common to all 
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Figure 6-12: EPC Status and Control Registers. 

FPGA customisations while bits 5-7 are user definable for particular applications; in this case 
motor control signal for the mobile robot presented in Chapter 8. Setting one of bits 0-2 sets in 
motion the corresponding EPC function. When this is complete an interrupt is flagged either 
on bit 3 of the status register or on a user selectable interrupt line of the STE bus. This interrupt 
is acknowledged by setting bit 3 of the control register. 

A flow chart example of running the EPC is shown in figure 6-11—b. These are the 
operations that a host performs in using the EPC, namely: 

. Load the mask register that configures inputs as analog or pulse stream. 

• Initialise (CR[0]) is then set to perform an initialisation function that downloads this 
mask to the EPSILON II chip. 

• When this function is complete the interrupt bit (SR[3]) goes high. This is acknowledged 
by the host by setting the acknowledge bit (CR[3]) high. Further functions can be carried 
out once interrupt goes low. 

• To start a network run inputs are loaded to the board then run (CR[2]) is set high to begin 
cycle. Cycle is finished by the same interrupt and acknowledge procedure as above. 

• Outputs are now available and can be read from the state memory. 
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6.5.3 System Control 

The core digital processing of the EPC is accomplished in the Xilinx FPGA. The firmware 
code to initialise this device is loaded at power-up from an on board EEPROM or during 
development via a special Xilinx serial cable. The FPGA design performs the functions 
outlined in Section 6.2 such as weight refresh, pulse conversion, STE interface, bus control 
and system control. The system control consists of a master state machine which sequences 
and provides control signals to the functional blocks within the EPC. An example of this state 
machine (as it can be customised for various applications) is shown in figure 6-13, while logical 
implementation can be found in Section B.5. Each state of the state machine triggers an EPC 
function: 

WAIT 	Idle state - waits for change in control register. 
INITIALISE 	Initialises the EPSILON II chip by down-loading the mask register 

to the EPSILON II chip input neurons. 
B-TO-PW 	Binary-to-pulse-width conversion - Triggers the binary-to-pulse- 

width conversion function and waits for the BTPfin signal from 
that block. 

SAMPLE 	Sample and hold analog inputs. 
FIRE INPUT 	Apply input ramp and any pulse modulated inputs to EPSILON II. 
FIRE OUTPUT Apply output ramp to EPSILON II and capture output pulses. 
PW-TO-BIN 	Convert pulse-width modulated outputs to binary numbers. These 

are stored in the state RAM for the host to read. 
INTERRUPT 	Generate an interrupt to signal processing finished. This interrupt 

is cleared by host via setting the acknowledge bit of the control 
register (CR31) high. 

This approach of allowing customisation of internal logic gives the EPC great flexibility. 
For instance in Chapter 7 two EPCs are cascaded. In this case the system control state machine 
is modified to start a cycle on receipt of control signals over the neural bus. 

6.6 Summary 

In this chapter the EPSILON Processor Card was presented. It constitutes a platform whereby 
access to the EPSILON II chip is made transparent to a host device. All support functions 
necessary to the operation of the chip are carried out independently of the host and the use of 
FPGA technology allows customisation of internal functions for different applications. The 
EPC communicates with external data via three channels: 

Its host via a STE bus. 

Analog data via an analog input bus. 
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3. Other EPCs via a neural pulse stream bus. 

This structure means the EPC can communicate effectively in an applications environment rather 
than decreasing the host system performance by transferring large quantities of unprocessed 
data across the system bus. 
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Figure 6-13: EPC Control State Machine. 
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Chapter 7 

Hardware Issues in Back-Propagation 
Training 

7.1 Introduction 

To use the EPC in applications a network structure must be imposed on the hardware and a 
training algorithm used to develop a weight set for a solution. In this, the first of the applications 
development chapters, the use of the EPC as a multi-layer perceptron (MLP) is explored. The 
MLP is the most widely used of network structures; the most common training algorithm used 
to train MLPs is the back-propagation training algorithm. The non-idealities present in analog 
hardware raises issues concerning the performance of the network as well as the ability to 
effectively train it. In this chapter the back-propagation algorithm is used to train the hardware 
forward pass network and the empirical effects of hardware non-idealities associated with this 
are investigated. This investigation explores the practicalities and limitations of using the EPC 
as a hardware neural network. 

7.2 Experimental Approach 

The emphasis of this chapter is on the practicalities of training the EPC chip-in-loop rather than 
a theoretical study of precision and accuracy issues. For this reason, rather than implementing 
simulations to model the effects of individual hardware non-idealities, the approach is from 
a system level. To perform comparisons, each application of the EPC is compared against 
a floating point software model. For most experiments a second software model is used to 
model the effects of limited precision and dynamic range in the weight set. The results from 
these simulations are compared to actual hardware results to gauge the limitations of practical 
hardware. 

In the first section of this chapter the hardware configuration is described and a software 
model is developed to form a baseline for comparison - this entails determining the data 
transformation necessary for communication and matching between hardware and software. 
Following this techniques of maximising dynamic range and accuracy are outlined. The 

93 
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hardware non-idealities that effect network performance are introduced and the results of work 
by others investigating these effects are reviewed. 

The remainder of the chapter presents the experimental work to investigate the practicalities 
of using the EPC. The first problem used is an artificial character recognition task. While not 
truly representative of the problems likely to be found in the defined applications area of the 
EPC, it allows an approach of graded complexity to probe hardware performance. This study 
reveals practical aspects of hardware use particularly in relation to weight dynamic range and 
choice of learning parameters. 

The lessons learnt in this investigation are next applied to more difficult real-world problems: 

. Link admission control in an ATM (Asynchronous Transfer Mode) network. 

A speaker identification problem. 

. A medical data classification problem. 

A region classification problem. 

The ATM problem investigates the EPC as a function approximator while the others involve 
I-of-N classification problems. These problems are more representative of the types of tasks 
found in the real-world. They have been chosen to provide a spread of difficulties from the 
easier speaker identification problem to the difficult ATM and medical data problems, to the 
very difficult region classification problem. The three 1-of-N classification problems were also 
used by Cairns of Oxford University[ 181 in a study on the effects of analog precision in learning, 
with the speaker identification problem being implemented on a pulse stream hardware network. 
This allows comparisons to be made between the work of this thesis and that of Cairns. 

7.3 The EPC as a Multi-layer Perceptron 

Training a multi-layer perceptron (MLP) with back-propagation consists of two distinct oper-
ations: firstly a forward pass which propagates network inputs through one or more hidden 
layers to the output layer. This operation is implemented on the EPC hardware. The second 
operation occurs only during the training phase and compares the output results to target values 
producing an error term which is propagated to previous layers to determine weight updates. 
This error calculation and back-propagation is done in software forming a chip-in-loop system. 

Data representation in hardware is implicit in various physical quantities such as voltages 
and currents. These are all bounded quantities and subject to quantization when generated by 
digital means via the EPC. The data in software can be represented as a high precision 32 bit 
floating point number. As such various transformations and models are needed to interchange 
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data and simulate the hardware network. The remainder of this section describes the hardware 
system and the transformations of data between the hardware and software domain. 

7.3.1 Hardware Configuration 

Data Bus 
Neural Bus 

PC 

Figure 7-1: Two EPC System for the Character Recognition Problem 

To configure the EPC as a multi-layer perceptron (MLP) a system consisting of two EPCs 
with a common digital bus and neural pulse bus is used as shown in figure 7-1. One EPC is 
configured as a master board and processes the input-to-hidden layer of the network while the 
other is configured as a slave and processes the master's outputs as inputs, thus implementing 
the hidden-to-output layer. The EPCs are under the control of the PC via a 40-way 110 card 
mimicking the STE bus. 

7.3.2 Data Transformation 

Table 7-1. Data Representations in EPC and PC 

PC 	EPC 	 Conversion 
inputs 	xj  E [0, 1] 	Xi € [0, OxFF] 	Xi = (int)(x * OxFF) 
outputs 	Yj E (0,1) 	Y e [0,OxFF] 	yj = (1' + 1)/0xi01 
weights Wij E float Wij € [0, OxFF] Wij  = (int) (w + 128) 

In order to train and simulate the neural network the PC needs an internal data representation. 
For this reason data is transformed into floating point numbers for use in the software. These 
transformations are shown in table 7-1 and allow the back-propagation learning algorithm and 
network simulation to operate on high precision floating point data. These data transforma-
tions follow on from those presented in table 6-1 which showed the transformation between 
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EPSILON II and the EPC. Note that for an ideal sigmoidal activation function the output (y) 
never reaches 1 or 0, rather it approaches these as network activity approaches plus or minus 
infinity. To approximate this behaviour the transformation for y j  is such that 

Yjrn < I and 	>0 	 (7.1) 

This is important for hack-propagation learning as weight change is proportional to y: if 
yj  = 0 or 1 	= 0 which prevents any weight change. 
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Figure 7-2: Synaptic Multiplier and Sigmoid Characteristic 

To match the PC simulation of the EPSILON Ii chip, PC software characterises each EPC 
to determine a multiplier constant. Consider the transfer function of a column of synapses: 

	

J. 
 ( 

X j  w) 	 (7.2) 

This is modelled in software by: 

= .f ( 
	

kX.w) 	 (7.3) 

where k is a multiplicative constant. In actual fact this is only a first order approximation of 

the multiplier characteristic as the synaptic multipliers are not perfectly linear or matched. To 
calculate this factor f(x) is set to a linear function and all weights and inputs are set to the 
same value, that is: 

iJj = kNxywj 

kNx 	 (7.4) 
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where N is number of neurons, and x i  = x , wij  = wj  V i 

By sweeping xj and wj through vi different values (x, yj)  pairs are obtained as plotted in 
figure 7-2—a. By using a linear least squares best fit[64] the "best" k for the neurons on a chip 
can be calculated: 

NnE(x) 2— Ex 

The line corresponding to this calculated k is also plotted in figure 7-2—a. 

Back-propagation training generally uses a sigmoidal transfer function of the form: 

I 
f = 1 + c_AT 

(7.6) 

where \ is the sigmoid gain. This function is implemented by loading appropriate values into 
the EPC ramp generator. Figure 7-2—b demonstrates the match achieved when the software 
model (solid line) is adjusted using the calculated multiplier constant. 

7.3.3 Maximising Dynamic Range 

Weights in hardware are restricted in the range and value they may take. For the EPC the 
dynamic range is limited by the physical [2.5,5V] range synapse circuitry allows while the 
precision is limited by the 8 bit resolution of refresh circuitry'. 

To maximise the dynamic range of the network implemented all available inputs and neurons 
should be utilised. For instance a single weight on the EPC can take 256 independent values, 
i.e. is of 8 bit precision. If there are spare inputs to a layer then they can be used to increase 
the available dynamic range. If two inputs are connected in parallel to two synapses then the 
dynamic range of that weight can be doubled, giving an effective weight of 512 independent 
values. If the number of inputs, vi, to a layer is less than half the number of available inputs 
(N = 32), this is done for all inputs. 

A bias unit is a network whose input remains at a fixed positive value. Any remaining 
inputs are designated bias units thus utilising the full available dynamic range of the hardware. 
The software controlling the EPC does this automatically given the network dimensions. 

7.3.4 Accuracy Maximisation 

In characterising the EPSILON II device in Chapter 5 some aspects of device accuracy were 
discussed, in particular the technique of autobiasing was presented to improve the zero offset of 

'The ultimate limit to precision on EPSILON H is limited by capacitive decay and refresh rate 
coupled with noise level. 
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neurons. This technique improves the matching of the software model and the actual hardware; 
thus a weight set evolved on the software model is closer to the desired solution than would 
otherwise be the case without autobias. Autobias also alleviates an area of variability between 
chips; allowing a solution evolved for one chip to be close to the desired solution in another[44]. 
For these reasons autobias is performed in the experiments presented here to maximise accuracy 
and repeatability. 

7.3.5 Summary 

In this section: 

. A first order software model of the hardware has been developed. 

• A consistent set of data transformations was developed to allow communication and 
comparison between software and hardware. 

• Matching of software model and hardware was demonstrated for linear and sigmoidal 
transfer functions. 

• A technique for utilising the full available dynamic range of the EPSILON II chip was 
presented. 

• The use of autobias was presented as a means to gain a more accurate matching between 
hardware and software solutions. 

7.4 Back-propagation and Hardware Non-Idealities 

The learning algorithm used in these experiments is the back-propagation or generalised delta 
rule algorithm[ 100,1O]. Other training techniques such as weight perturbation [57], node 
perturbation[ 181 and stochastic error descent[5] have been developed more specifically for 
hardware use and have been shown to work well with chip-in-loop learning[18]. However 
all these methods require training times of at least an order of magnitude longer then back-
propagation to produce only slightly better solutions[ 181. In practice back-propagation is much 
faster for chip-in-loop training and produces comparable results. For these reasons it is used 
here. 

Back-propagation seeks to minimise the network error by comparing actual outputs to given 
target values. The mean square error of a network is given by: 

E= 	—t) 2 	 (7.7) 
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where yj  is the j1h component of the network output and t j  similarly the target. yj  is a function 
of the inputs, xi and the connection weights, w ip What back-propagation does is to attempt 
to decrease this error by adapting weights in proportion to the gradient of the error in weight 
space: 

wjj OC ---- 	 (7.8) 
Wj 

= 1)xioj 	 (7.9) 

where 17 is the learning rate, a constant and 6j is given by: 

I (t—yj)f'(net) 
83 

= 	
f'(netj)8kwk 

if layer is an output layer. 

if layer is a hidden layer. (7.10) 

where 8k  and Wjk refer to the layer following the layer being calculated. For a derivation of 
these equations see [100]. 

7.4.1 Assumptions Concerning Hardware Non-Idealities 

In this chapter back-propagation is applied to a hardware network. In doing this several 
assumptions and approximations are made. First of all note that equation 7.10 requires the 
values of the weights, w. When weights are downloaded to hardware the exact value of 
the weight as represented in the hardware is not known, either through noise being present or 
component variation producing an offset or scaling in the weight. In this series of experiments 
it will be assumed that value of the weight is that stored in software. 

Another area of uncertainty can be the neuron transfer function f(x) and its derivative 

f' (x). For the pulse-width modulating neuron of EPSILON II, it has been shown that the 
neuron function is well defined (Section 5.7.2). That is the non-linear function (such as 
a sigmoid) closely matches the desired function as it is determined by the reference ramp 
waveform rather than physical device characteristics. 

Another assumption in the derivation of the back-propagation algorithm is that the error 
space is a continuous function. Of course when using hardware this is not the case as all values 
have a limited dynamic range and resolution as summarised in table 7-1. To limit the effects of 
quantization on the learning algorithm weights are manipulated in software at high resolution 
and only quantised as they are downloaded to the hardware. 

7.4.2 Related Work 

This problem of hardware uncertainty and limited precision has been studied for other analog 
hardware implementations [18,17,30,35,36,83,117] and by simulation for limited precision 
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digital networks [19,49,55,87]. Results from these studies have influenced the decisions made 
here. Frye et al [35,36], Hollis et al [52] and Holt et al [55] have all presented studies showing 
that successful back-propagation requires resolution in the range of 12-16 bits. However it has 
also been shown that with lower precision (6-8 bits) in the feed-forward component, coupled 
with high precision for the back-propagation of errors, effective training can be achieved [18, 
36,44,55]. These results led to the chip-in-loop system used here of the EPC performing the 
forward pass at hardware resolution and the host performing error back-propagation at floating 
point precision. The studies above are further referenced when the results presented here relate 
to their results. 

7.4.3 Summary 

This section has introduced hardware non-idealities which may, or are known to, effect back-
propagation training: limited dynamic range, mismatches, offsets, quantization and precision. 
The remainder of the chapter presents experimental work to investigate the ramifications of this 
on practical use of the EPC. 

7.5 Character Recognition Experiments 

This section presents a series of experiments carried out using the system explained above. 
Each experiment was designed to test various assumptions regarding the hardware and software 
emulation and determine the limits of the EPC. Three experiments are presented where the 
complexity of each subsequent one is increased by way of increasing the number of training 
patterns. The first experiment uses a simple problem to investigate the matching of software 
simulation and the neural hardware. The second experiment investigates the effects of limited 
dynamic range and sigmoid gain on the ability to train the network; while the third attempts to 
compare performance of the software and hardware networks after training. 

7.5.1 Simple Character Recognition Problem 

The problem used for this investigation is the artificial 1-of-N character recognition system 
shown in figure 7-3. Input data consists of a 5 x 5 pixel array on which characters are 
represented. These inputs are mapped to a hidden layer of a variable number of neurons. These 
then feed an output layer of one neuron for each of the N training patterns. This artificial 
problem offers several advantages in terms of experimenting with the EPC: 

. Highly controlled problem. 

. Easily generated training sets of varying size and complexity. 
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. Problem represents a vehicle for investigating training hardware neural networks. 

• Allows comparison of software (high resolution/accuracy) and hardware (low resolu-
tion/accuracy) neural networks. 

• Allows exploration of the limits of the hardware using a problem of graded complexity. 

7.5.2 Experiment One: Three Character Recognition 

Table 7-2. Experimental Summary: 3 Character Recognition 

Aim: Using a minimal problem look at the matching of the software model and 
hardware reality. 

Network Structure: 25:14:3 

Training: Error back-propagation training algorithm[10] on training set of 
'IC ,  

Stopping criteria: MBE < 0.05 

Learning Parameters: 
Learning rate tj = 50 
sigmoid gain A = 0.05054 

Results Summary: A comparison was made between the hardware and simulated 
networks for this simple problem. 

• Both the ideal software model and the hardware evolved a solution in 
similar manner. 

• Analog hardware non-idealities present translated to hardware training 
times that were longer than the ideal software network. 

• When the hardware network was trained from the weights evolved in the 
software model, initial error was very high but further training quickly 
trimmed weights to a low error solution. 

These points demonstrate that the software model of the hardware network is a 
reasonable first order approximation. It was demonstrated that weights evolved 
in software could be trimmed on the hardware to get a fast solution. 

Initial experiments were performed on a training set of three input vectors, those representing 
'H', 'J' and 'K'. These were chosen as input vectors easy to distinguish. The aim of these 

experiments was to investigate the software model of the network and compare results gained 
with runs performed on the hardware. 
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Figure 7-4: Results of Three Character Recognition Experiments 

Results 

Figure 7-4 shows the salient results from these experiments. The graphs show the evolution 
of the mean square error (MSE) and the maximum bit error' (MBE) of the network for each 
epoch or presentation of the training set. Results from three networks are shown in these 
graphs: 

The benchmark for comparison is a software network in which all data is evaluated at 
32 bit floating point precision. The error evolution of this network is shown in the green 
curve. The training proceeds smoothly to a low final error. 

In the second network (blue curve) the weight set evolved by the software network is 
quantized and downloaded to the hardware then the network is trained. The fact that 
there is a low initial error which quickly trains to the target error demonstrates that the 
software model is a reasonable one. As expected non-idealities in the hardware introduce 
differences between the software and hardware networks as manifest in the initial error. 

These differences can be seen in the third experiment where the weights are initialised 
to the same random values as the first software network. Here the forward pass is done 
on the hardware (red curve). The error characteristic follows the software closely at first 
but as differences due to hardware non-idealities accumulate, the characteristic departs 
from the idealised case. 

2Maximum bit error is the maximum of the absolute error of any of the output neurons i.e. 
maxj 0a - tJ) 
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The effects of noise, offsets and gain variations are manifest in the fact that the char -
acteristic is not smooth and monotonic as with the ideal case. These effects are most 
prevalent at high errors where the neurons are operating in the steep, high gain portion 
of their sigmoid characteristic, effectively amplifying the noise present. As the weights 
evolve, pushing outputs towards the flat, low gain, sections of the sigmoid these effects 
are less prevalent. 

Performing multiple runs of the experiment confirms the general trend that the hardware 
network, due to the non-idealities present; takes substantially longer to train than the ideal 
software model. 

Conclusions 

From this series of experiments we can conclude that: 

. The software model is a reasonable first order approximation of the hardware. 

• Weights evolved in the software can be used as a starting point for quick hardware training 
(trimming). 

• Training fully on hardware is possible and takes substantially longer than the ideal 
software case. 

These results are comparable to those found on other hardware systems such as the optically 
controlled system of Frye a al [35] and the EPSILON system[44]. 

7.5.3 Experiment Two: Ten Character Recognition 

The first series of experiments introduced three networks: a benchmark high resolution software 
network, a hardware network trained from software evolved weights and a hardware network 
evolved from random weights. All three converged to a similar final training error leading to 
the conclusion that the model and assumptions made were at least valid for simple problems. 

In this series of experiments the complexity of the problem is increased by presenting a 
training set of the first ten letters of the alphabet. The problem is more difficult as not only are 
there more patterns to classify but certain characters (input vectors) in this set lie very close 
in input space. For example 'C' and '0' differ by only two pixels and are thus difficult to 
distinguish. This serves to highlight the effects of limited dynamic range of weights as weights 
are forced to the extremes of their dynamic range. To model this a software network with 
similarly limited weights is introduced. 

The first series of experiments concentrates on the effects of dynamic range limitations; to 
accomplish this a method of introducing variations in dynamic range is first presented. 
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Table 7-3. Experimental Summary: 10 Character Recognition 

Aim : Using a more difficult problem, look at the effects of limited dynamic range: 
on network performance. 

Network Structure: 25:14:10 

Training: Error back-propagation training algorithm[10] is used on the training set 
of the characters 'A'—'J'. 

Stopping criteria: epoch = 7,000 

Learning Parameters: 
Learning rate 77 = 150,1000 & 2000 
sigmoid gain A = 0.05054 and 0.0382 

Results Summary: A new software model developed to model the effects of limit-
ations in precision and dynamic range in the weight set. 
It was shown that the dynamic range of the weights directly effects the final error 
of the solution. By increasing sigmoid gain, dynamic range could be effectively 
increased resulting in a better solution, while with the low gain sigmoid error 
was large and variable. 
It was also demonstrated that the stability of the hardware network was more 
sensitive to the learning rate parameter ij than the software model. This was 
principally due to larger 77 values producing larger weights which were then 
clipped in hardware representation. The implications of this are that the min-
imum training time of the hardware is longer than that possible on software. 

It was also found that the hardware network was more sensitive to the learning rate parameter 
ij. This is the focus of the second set of results. 

Weight saturation 

In the previous experiment the weights of all the networks remained within the hardware's 
boundary of wij e [-128, 127]. For the problem presented here, as several input vectors 
are separated by small distances in input space, larger weights evolve to separate these close 
patterns. In the case of the hardware this process is limited by the saturation of the weight 
as it reaches the physical limit of Tij E [2.5, SV] that is wij e [-128, 127]. The precision 
of the weights on the EPC is 8 bits. To better investigate the effects of this a new software 
model is introduced with a likewise finite precision bqunded weight set. This is done simply 
by hard-limiting or clipping the software weights to this range and quantizing the weights to 
8 bit values for the forward pass. 
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Limited dynamic range 

The physical characteristics of the hardware network imply a limit on the dynamic range of 
synapses and neurons. In an ideal network any single synapse may change a neuron's output 
from off to on. This is not the case with hardware as the effect of any single synapse is limited 
by the maximum weight value it can assume. If classification depends on a small change in 
only a few inputs, the dynamic range of these synapses may be insufficient to influence the 
result appropriately. There are ways by which this dynamic range can be altered however: 

I. Alter the sigmoid gain A (equation 7.6). If sigmoid gain is increased, a small change in 
network activity produces a larger swing in output. Effectively this means the neuron 
is more sensitive to the contribution of each individual synapse. This is equivalent to 
an increase in dynamic range. In practical terms, increasing A compresses the reference 
ramp waveform. There are obviously limits to this in how accurately a compressed ramp 
waveform can be generated. Also a high gain sigmoid effectively amplifies any noise 
present in the network activation. Thus the trade-off here is increased dynamic range 
for a decrease in noise tolerance and a decrease in accuracy of ramp waveform and thus 
neuron transfer function. 

2. While the physical value of weights in chip are limited, values of inputs are encoded 
in the time domain as pulse-widths. If the pulse-width of inputs is doubled, so is the 
effective dynamic range of synapses. Thus a trade-off of increased dynamic range for 
increased computation time can be made. 

Note that in both these cases precision is unaffected; that is, there are still the same number 
of discrete values between maximum and minimum extremes. Frye et al looked at the effects 
of decreasing precision in [35] while keeping dynamic range constant. The effect of dynamic 
range in the analog network is analogous to the effect of dynamic range in fixed point digital 
implementations as studied by Hoehfeld et al [49] and Vincent et al [1111. In both these 
cases auto-scaling schemes are presented to increase dynamic range when necessary. In the 
experiments presented here dynamic range enhancement is performed manually by adjusting 
the sigmoid gain. 

Results: Dynamic range limitation. 

Figure 7-5 presents results for four network training runs which are: 

1. An idealised floating point software simulation with ij = 150'. 

3The 77 values here may seem high to the reader - this is because of the small values of the multiplier 
constant k and the sigmoid gain 2', both usually unity in software simulations 
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A software simulation where the weights are hard-limited to the same range as the 

hardware, 71 = 150. 

A hardware run continuing from the above evolved weights. 

A hardware run from random weights. 

The effects of dynamic range are investigated by repeating the experiments at sigmoid gains 

of A = 0.0382 (figure 7-5 (a) and (b)) and A = 0.05054 (figure 7-5 (c) and (d)). 

Several key observations can be made concerning these results: 

• The evolution of the software model and hardware networks is again similar and the 

network trimmed from the software model again finds a solution quickly. This indicates 

that the network models developed still form a good approximation of the hardware. 

• For the low gain sigmoid (A = 0.0382, figure 7-5 (a),(b)) weights become saturated 

before synaptic activity is sufficient to push neuron outputs to the relatively flat extremes 

of the sigmoid where the solution lies. This is indicated by the final, near flat, portion of 

the error graphs having relatively high maximum bit and mean square error. 

• With neuron outputs in this high slope area of the sigmoid characteristic the effects of 

small weight changes are large, as is the effect of noise. In figure 7-5(b) several distinct 

levels of maximum bit error can be seen. This is due to limited dynamic range and 

quantization. The ideal solution lies outside the limits of the weights. The boundary 

around weight space forms several local minima which the network visits as the back-

propagation algorithm tries to push the solution past the boundary of the limited weight 

set. This is what is seen in figure 7-5(b) as a small change in weights jumps the solution 

to different minima with different maximum bit error. 

• When A is increased (figure 7-5 (c),(d)) final mean square error is reduced significantly 

and maximum bit error reduces to under 0.2. Thus the network is much closer to an ideal 

solution implying that increasing the sigmoid gain has increased the dynamic range of 

the weights and promoted a better solution. 

It can be seen that while the limited dynamic range and quantization of the hardware has a 

significant effect on the final solution of the network it is still able to reach a stable solution. 

Effects of limited dynamic range can be minimised by making the neurons more sensitive to 

small weight changes. This can be done by compressing the output ramp to the comparator 

neurons by way of the sigmoid gain, A. 

4mese numbers are chosen due to hardware ranges - a A of 0.0382 utilises the full voltage swing 
of the output neuron comparator, numbers greater than this reduce this voltage swing hence make the 
neuron more sensitive. 



Hardware Issues in Back-Propagation Training 	 109 

0.14 

0.12 
r 	

0.1 

0.08 

006 

1 	0.04 

0.02 

fi 

	

11 1000 	 Hardware from software 0 

Hardware from random + 

Idealised software 
Limited weight software ------ 

* 	0 0 
O 	 0 0 	

0 	8 	
0 	 0 

0 	 500 	 1000 	 1500 
	

2000 
Epochs 

0.14 

P 	0.12 
r 	

0.1 

I 	0.05 

0.06 

0.04 

0.02 

- 	 =200O 	 I  

0 
	

500 	 1000 
	

1500 	 2000 
Epochs 

Figure 7-6: Results of?] Variation Experiments 

Effect of learning rate,?] 

The learning rate parameter -il determines the magnitude of steps taken along the error gradient 
(equation 7.9). Hoehfeld and Fahlman [491 showed that with limited precision in the hack-
propagation path these steps could be quantised to zero and thus no learning occur. For the 
hardware here the back-propagation path is performed at high precision in software. If ;' is 
increased eventually the algorithm becomes unstable as the weight step jumps to a region with 
a radically different error gradient rather than taking small steps along the gradient to a minima. 

For the hardware network, calculation of the error gradient is less accurate than the ideal-
ised and limited weight software model case. This is because the neuron outputs used in this 
calculation are quantised. Thus the error function, rather than being smooth and continuous, 
is also quantised. The effects of this are apparent in figure 7-6. Here the character recogni-
tion problem has been run with y set at 1,000 and 2,000. The key observations from these 
experiments arc: 

• For both i = 1000 and 'q = 2000, the idealised software network evolves a solution, thus 
ii in itself is not too large. 

• The hardware networks are unstable for both?] values and do not evolve a solution. 
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• For ij = 1000 the weight limited software model also evolves a solution while the 
hardware networks do not. This indicates that hardware non-idealities which are not 
modelled, such as neuron quantization and weight uncertainty, have a significant effect. 

• For ij = 2000 the weight limited software model is also unstable indicating that the 
hardware non-idealities modelled are responsible also for this instability. 

A partial explanation was gained by examination of the weight sets. This revealed that larger 
?7 values led to larger values of individual weights. For 77 = 2,000, many weights are clipped 
and the training becomes unstable. At 77 = 1,000 only a moderate proportion of weights in the 
weight limited software model became clipped and a solution was evolved, however hardware 
failed to converge and became unstable. This tends to indicate that the effects not modelled 
in the software model, namely weight uncertainty and offset and quantization of inputs and 
outputs, are also limiting training performance. The effect of large ij producing larger weights 
has been noted by Cairns in [18]. 

The ramifications of this are that the hardware neural networks are slower to train than 
high precision software networks where a larger ij can get to a solution faster. Note that no 
experiments have been done here with other back-propagation derivatives designed for faster 
convergence, it would be interesting to see the effects of hardware non-idealities on these. 

Summary 

This section has introduces a new software model that includes the hardware non-idealities of 
a weight set limited in precision and dynamic range. 

It was shown that the dynamic range of the weights directly effects the final error of the 
solution. By increasing sigmoid gain, dynamic range could be effectively increased resulting 
in a better solution, while with the low gain sigmoid error was large and variable. 

It was also demonstrated that the bounded nature of the weights has an effect on the speed 
that the network can be trained in that the hardware becomes unstable with increasing ij well 
before an idealised software network does. 

All these results indicate that the hardware can produce adequate solutions but care must 
be taken in setting network parameters to achieve the best possible solution. 

7.5.4 Experiment Three: Generalisation and Character Recognition 

The final set of character recognition experiments takes the problem to its logical conclusion 
of the full twenty-six character set then compares the results of the experiments performed thus 
far. Following this the issue of generalisation ability is discussed. 
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Table 7-4. Experimental Summary: 26 Character Recognition and 
Response to Noise Generalisation 

Aim: The experiment is performed with the 26 character alphabet and tested with 
noise corrupted inputs to compare the software and hardware networks 

Network Structure : 25:14:26 

Training: Error back-propagation training algorithm[10] on training set of 'A'—'Z'. 

Stopping criteria: epoch = 10,000 

Learning Parameters: 
Learning rate ij = 50 
sigmoid gain A = 0.05054 

Results Summary: The full training set of 26 characters was trained on the network 
which was able to produce a solution, albeit with a higher error level. The four 
networks were then compared for generalisation ability and were found to be 
virtually equivalent. - 

Twenty-six character recognition 

The results of training the character set 'A'—'Z' are shown in figure 7-7. The results are similar 
to those obtained in the ten character case except, as would be expected, the maximum bit 
error is greater still. A summary of average final error from the experiments presented so far is 
shown in figure 7-8. 

It is possible to see some general trends in relation to back-propagation learning on hardware 
networks from these results: 

• As the complexity of the problem increases so does the achievable minimum error. This 
is true for software as well, but with the further limitations placed on hardware the effects 
are manifest earlier. 

• The dynamic range of the neurons is critical. This can be seen from the 10 character 
experiment where error was very large for the small dynamic range case. 

• That the software model with limited weights exhibits an increase in error indicates the 
limited weight dynamic range is a significant factor in the performance of the hardware 
neural network. 

• That the hardware error is greater than the limited software simulation indicates the other 
hardware factors, such as weight uncertainty, limited output resolution, offsets etc., also 
limit the performance of the hardware solution. 
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Generalisation performance 

For a real-world problem a training set is not as readily defined as in the artificial problem used 
here. In such a case the training set consists of only a sub-set of inputs that the network may 
encounter. The ability to classify inputs the network was not trained on is called generalisation. 
To gauge generalisation ability an examples database is subdivided into a training set and 
a generalisation set. The network is trained using the training set and then tested on the 
generalisation set. For the contrived problem presented here there is no generalisation set, 
instead the "generalisation ability" of the network may be gauged by testing the network on 
inputs corrupted by adding random noise. For the experiments presented here the peak value 
of this random noise is expressed as a percentage of full scale input. At each noise level 3000 
trails are performed and the results are averaged over 10 training runs. Figure 7-9 shows the 
results of these experiments where the percentage of correct classifications is plotted against 
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Figure 7-9: Noise Generalisation Experiment 

the percentage of peak added noise. Surprisingly, considering the different final errors achieved 
by each network, the performance of each of the networks is almost identical. This tends to 
suggest that the increased error present in the hardware network has not significantly effected 
its generalisation ability. This will be further tested in the next section where a more complex 
problem is implemented on the network. 

7.5.5 Summary 

This Section has used the artificial character recognition problem to study the effects of hardware 
non-idealities on performance and training of the EPC. It was found that learning rate must 
be kept small to form solutions with the limited hardware weight set and that dynamic range 
limitations had a strong effect on network performance in terms of final training error achievable. 
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For the character recognition problem, this larger training error did not adversely effect the 
generalisation ability. 

The rest of this chapter continues by applying the lessons learnt thus far to more difficult, 
real-world problems. The next section examines the use of the EPC as a function approximator 
and classifier while Section 7.7 examines a range of I-of-N classification problems. 

7.6 Link Admission Control 

This section tests the EPC on a more difficult real-world problem. This problem is that of link 
admission control in an ATM (Asynchronous Transfer Mode) communications network router, 
the neural solution of which has been developed by Nordstrom and Gallmo et al at Uppsala 
University, Sweden [37,38,91 ,92,93]. The problem is more demanding than the character 
recognition problem in that inputs and outputs are real valued rather than digital, coupled with 
a non-linear mapping. Here we investigate the performance of the hardware in providing a 
solution to this problem. The problem is first described, then a metric is introduced to evaluate 
network performance leading to the experimental results. 

7.6.1 The Problem 

In an ATM network the problem of link admission control is to determine if a new connection 
can be accepted on a link in the network. This is achieved by calculating an estimation of 
the probability of losing a data packet, P,0 , based on the current load present on the link 
along with traffic parameters that characterise the new connection. If this probability exceeds 
a certain set limit, F 0 , = lO u , then the new connection is rejected, otherwise it is accepted. 
Hardware implementation would be an advantage in this case as each link must perform such a 
function and exact methods of calculation are too time consuming for real time operation[91]. 
For further background on this problem see [91,92]. 

The neural network solution to this problem involves estimating the probability of loss (F1055) 

from six statistical measures of aggregate traffic on the link[93] along with three parameters 
defining the connection. These are processed by an MLP of 9:6:1 architecture. Hidden layers 
have a sigmoidal activation while the output neuron is linear as the network is performing a 
function approximation. 

7.6.2 Network Performance 

Though the decision to accept or reject a connection is a classification problem, the network 
performs as a function approximator to estimate Floss  as this estimate is useful elsewhere in 
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the ATM system. Performance of the network can be judged on a variety of measures; the 
most basic being whether the network classifies the input on the correct side of the decision 
boundary (P,1135  = 10). This is not necessarily a wholly effective measure of performance 
as wrong decisions near the boundary are not as detrimental to performance and ones further 
away. To take this into account a width statistic w is defined by Gailmo in [38] that measures 
the mean square distance of a bad decision from the decision boundary: 

E (log to (Pm ) - log 10 00)) 2  
V errors 

I'iler,vrs  

> 	(log 10 (P,5 ) + 
9)2  

V errors 

'V errors  
(7.11) 

Where P105 is the estimated probability of loss and Nerrors  is the total number of bad decisions. 

These measures of performance will be used to compare the networks constructed here with 
results from Gallmo et al [38]. 

7.6.3 Training and Test Data 

A database of traffic situations has been compiled by researchers at Uppsala University, 
Sweden[38,93]; the author is indebted to Jey Ngole and 011e Gallmo for arranging access 
to this data. In this data-set, a fluid flow model has been used to accurately calculate targets 
for a set of over 100,000 random traffic situations. A subset of 500 of these is used for training 
and a further 5000 for testing/generalisation. The input data for these sets is normalised on a 
[0,1] interval. Target values are normalised as shown in figure 7-10. 

Log(Ploss) 

Normalised 
Target 
Value 

accept _C 	I 	> reject 

Figure 7-10: Normalisation of Target Values 
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Table 7-5. Experimental Summary: ATM Link Admission Control 

Network Width 
W 

Decisions 
Correct 

Mean Sq. 
Error 

Swedish results [381 0.66 88.5% - 

Idealised Software 0.36 89.0% 0.0060 
Weight Limited Software 0.48 88.4% 0.0091 
Hardware 1.06 85.6% 0.0163 

7.6.4 Results 

The link admission control data was used to train three networks: 

An idealised software network. 

The weight limited software model. 

The hardware neural network. 

The results presented are the average performance on the generalisation test data of 10 training 
sessions per a network each trained for 5000 epochs 5 . Table 7-5 shows the results of these 
experiments while figure 7-11 shows the distribution of incorrect decisions. 
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Figure 7-11: LAC Classification Experiment 

5 The Swedish results came from networks trained for 1000 epochs, however with the low 27 values 
used for hardware compatibility, the networks here were trained longer to converge to a low error. 
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The key observations from these experiments are: 

• The results from Sweden and the idealised software model show similar performance. 
The larger width measurement, w, stems principally from the poorer performance in the 
pilm = [10_t0 , 10-9 ) region. 

• The weight limited software model shows a small degradation in performance and w 
value. 

• The hardware network shows a substantial degradation in performance both in the total 
percentage of correct decisions but more specifically in the spread (width measurement 
w) of bad decisions. 

The performance of the hardware is encouraging on this much more realistic and difficult 
problem. The decrease in performance in terms of total correct decisions is not very large 
(4.4% below the idealised software). The principle variation between hardware and software 
is in the width measurement w. The w measure for the hardware is more than double that of 
the software. Examining the histogram of figure 7-I1 the reasons for this become clear: 

• Firstly bad decisions at the extremes of the P show a marked increase for hardware 
compared with software, this increases w. This difference can be partly explained by the 
dynamic range limitations present in the hardware, confirmed by the increase in error for 
the limited weight simulation. 

• A more significant difference in bad decisions is in the interval [lO, lU} close to the 
decision boundary on the bad accept side. Here hardware is significantly worse than any 
of the software simulations. 

This second area of difference can be explained with reference to the normalisation of targets 
values as shown in figure 7-10. The steeper slope of the reject side (an incorrect reject is a bad 
accept) makes the network more sensitive to small variations of P,,,., on the reject side. This 
is coupled with the fact that there are more training and generalisation examples on the reject 
side. For the software network this encourages better performance on the reject side, as can be 
seen by the low number of bad accepts. The hardware network follows this trend further from 
the decision boundary, but close to it.shows much worse performance than the software. The 
effect manifest here is noise; that is any noise present close to the boundary can easily push the 
output past the decision boundary. 

The effects of noise combined with linear ramps highlights a weakness of hardware when 
used as a function approximator. When used with a sigmoidal output noise effects are minimised 
as outputs are generally at the extremes of the sigmoid which has low gain and noise is 
suppressed. With the linear response, noise has the same effect everywhere and this leads to 
incorrect classification when it effects outputs close to the decision boundary. 
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Despite the degradation of performance, hardware results are encouraging and such a 
degradation may be offset by the benefits of real-time operation a hardware solution can 
provide. Having used the EPC to prototype a hardware solution, if a dedicated solution was 

considered feasible a highly integrated solution would be called for. As the network size for 
this problem is small support functions, such as the pulse conversion, could be integrated along 
with the EPSILON II neural circuits. It must be noted however that this problem, having purely 
digital 110, is not in the primary applications area as outlined in Chapter 1. This implies that 
a dedicated digital solution would in all likelihood be more feasible. The problem though 
demonstrates a class of problem, function approximation, which occurs within the target area 
of analog/mixed signal problem - for example inferring a plant transfer function from sensor 
readings. This section has shown that the presence of noise in analog hardware significantly 
degrades the performance of such solutions. Edwards' [3 1] theoretical work on noise in MLPs 

also noted the detrimental effects of noise in networks with neurons operating in a linear 
fashion. 

7.7 1—of—N Classification 

The remainder of the problems implemented on the EPC are 1-of-N classification problems. 
Here the goal is to classify input space into one of N possible classes as was done- in the earlier 
artificial character recognition problem. An example within the target applications area of the 
EPC would be sensor monitoring to classify operation of an engine as 'correct', 'uneconomical' 
or 'dangerous'. Three test problems are presented here in order of increasing difficulty': 

Speaker identification. 

Medical data analysis. 

Robot region classification. 

These test problems are the same as used by Cairns [18] in his work on precision in analog 
MLPs. They were chosen as a good representation of 1-of-N classifiers and to allow a direct 
comparison to the work of Cairns. The data for the problems is in digital form, though it 
originally comes from analog sources followed by some pre-processing. A brief outline of 

each problem is given followed by the experimental results gained in implementing these on 
the EPC. 

6This order is as presented by Cairns [18], the author considers the ATM problem to be of similar 
difficulty to the speaker identification problem. Problem difficulty is not easy to quantify as it is a 
combination of factors such as the number of inputs, resolution of data and sharpness of decision 
boundary. 
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Figure 7-12: Robot Localisation Problem 

7.7.1 Problem Outlines 

Speaker identification 

The objective of the speaker identification problem is to classify which one of three speakers was 
speaking given a short sample of speech input. The speech input is pre-processed to produce 
eight inputs and applied to an 8:8:3 MLP - more details on the problem and pre-processing can 
be found in Cairns [18]. 

Medical data analysis 

The task of this problem is to classify the sleep state of patients from measurements derived 
from electroencephalogram (EEG) readings. A data-base of measurements classifying patients 
as 'awake', 'dreaming/light sleep' or in 'deep sleep' is used to train a 10:6:3 MLP. Five 
hundred random data points are used for training with a further 1,000 used for generalisation 
tests. Further details of this problem can be found in Tarassenko [104] and Cairns [181. 

Region classification 

The goal of this problem is to classify which one of six areas of a room a hypothetical robot is 
in. The floor-plan of the room is shown in figure 7-12. The room contains two obstacles and 
the six regions are divided on the basis of the nearest visible corner. A set of eight features 
extracted from a 3600  range scan are presented to a 8:25:6 MLP. The problem is extremely 
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difficult as at the boundaries of the regions, input data vectors are very similar. Further details 
of this problem can be found in Tarassenko [106] and Cairns [18]. 

7.7.2 Results 

The experimental method used was similar to that of the ATM problem. Results are evaluated 
using the method used by Cairns [18] such that direct comparisons can be made. A summary 
of the experiments performed follows: 

. Three networks were evaluated: 

An ideal floating point precision software network. 

A weight limited software network. 

The hardware network. 

. Each experiment was repeated five times with different initial weights. 

• Performance was evaluated on the correct classification of the generalisation set. This 
evaluation, or validation, was done every 200 epochs. 

The results of the experiments are shown in table 7-6. For each problem and network, two 
metrics are presented 7 . These are the percentage error of classifications on the validation set 
(in bold type) and the mean square error on the validation set. These values are an average of 
the best validation results of each of the five runs. The key observations from these results are: 

• A degradation of performance occurs as the problem complexity is increased. This 
degradation is present both in the limited weight software model and the hardware. 

• For the speaker recognition and medical data problems, hardware performance is very 
close to the limited weight software simulation. This indicates that the principal factor in 
reduced performance here is the limited precision and dynamic range of the weight set. 

• The very poor performance of the hardware on the region classification problem, much 
below that of the limited weight software model, demonstrates that for very difficult 
problems other hardware non-idealities have large effects and prevent a good solution. 

7Note that it is not the absolute values of these metrics that is important but rather the degradation of 
performance between the different network types. The achievable error rate is problem dependent and 
does not necessarily reflect the difficulty of the problem - for instance the software network achieves 
an error rate of 6.5% on the difficult region classification problem but only 19.2% on the easier speaker 
identification problem. 
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Table 74. Experimental Summary: 1-of-N Classification Problems. 

Problem Software Weight EPC Oxford Oxford Oxford 
Results Limited Hardware Software Software Hardware 

Software results Results Model of Results 
Results Hardware 

Speaker 19.2% 22.3% 22.9% 18.8% 21.8% 20.3% 
Recognition 0.114 0.114 0.151 
Medical Data 17.5% 28.2% 29.2% 19.0% 22.6% - 

Analysis 0.087 0.133 0.146 
Region 6.5% 20.5 0/c 36.3% 6.8% 11.4% - 

Classification 0.018 0.055 0.085  

Bold font - % error on validation set 
normal font - mean square error on validation set 

• The speaker identification problem was the only problem small enough to be implemented 
on the hardware of Cairns. This hardware employed 12 bits of weight precision refreshing 
on-chip dynamic capacitors and utilised a pulse-width modulation scheme similar to the 
EPC. The results of the two hardware implementations are comparable showing a similar 
drop in performance over floating point networks. 

7.7.3 Discussion 

Two areas warrant further discussion here: The first is the poor performance on the region 
classification problem and the implications of this with respect to the types of problems suitable 
for hardware. The second area is, for the successfully solved problems, what are the the principal 
factors limiting the hardware performance. 

Region Classification: High resolution problems. 

The region classification problem was the toughest problem attempted on the EPC. Not only 
was performance of the hardware poor but also the weight limited software model performed 
poorly and did not provide a reasonable match to the hardware results as it did for the other 
problems. 

Basically the problem is too difficult. Decision boundaries are straight hyper-lines through 
decision space so on either side of a classification region input vectors are virtually identical. 
This requires a very high resolution to distinguish; the poor solution provided by the weight 
limited model shows that the hardware can not provide this. In the hardware case, noise present 
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Table 7-7. Experimental Summary: Gain Variation Experiments for Medical Data Ana-
lysis Problem. 

Network gain= 0.1 1 gain= 0.2 1 gain= 0.4 gain= 1.6 
Ideal software 17.3% 17.5% 17.1% 16-6% 17.0% 
network 0.088 0.087 0.087 0.086 0.088 
Weight limited 29.5% 28.2% 23.2% 21.2% 17.2% 
software network 0.139 0.133 0.113 0.105 0.099 
Hardware - 29.2% 28.7% 26.6% - 
network 0.146 0.136 0.133 

Bold font - % error on validation set 
normal font - mean square error on validation set 

in the network will make close vectors indistinguishable - this explains the degradation in 
performance of the hardware compared to the weight limited model. 

The data for this problem was generated artificially, allowing exact demarkation of regions. 
If the problem was implemented in the real-world, such sharp boundaries would be unrealistic 
as inevitable noise on sensor readings would blur boundaries. Still this problem does highlight 
a fundamental limitation of analog hardware: while lower resolution analog hardware can 
perform well for many problems, if input data is of high resolution and classification boundaries 
are arbitrary, low resolution solutions will be poor and noise will greatly affect the solution. 

Limiting factor: Dynamic range or precision? 

Turning to the problems where the hardware produced a good solution, the first point to note is 
that hardware and the weight limited model performed comparably. This indicates that effects 
such as noise, input/output quantization, offset and gain variations, have had minimal impact. 
This raises the question of which factor modelled in the weight limited software, dynamic range 
or precision, has the most significant effect on the solution. To investigate this some further 
simulations were carried out varying the dynamic range. The software models were kept the 
same and the multiplicative constant k was varied (see equation 7.3) to vary dynamic range of 
the weights. The medical data problem was chosen for these experiments as it was the most 
complex of the successfully solved problems. The results of these experiments are shown in 
table 7-7, the key observations are: 

Varying the gain has a minimal effect on the ideal software solution, both in terms of 
correct classification and mean square error. 

• As gain is increased in the weight limited model both classification and mean square error 
improved. At a gain of 1.6 (8 times that of the hardware gain) classification performance 
was comparable to the ideal model. 
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These experiments demonstrate that dynamic range is the principal factor limiting performance 
in this problem and that low precision is acceptable. 

To further test this the gain of the EPC was similarly increased by scaling the duration of 
the input pulses as outlined in Section 7.5.3. Inputs were scaled by a factor of two and four to 
produce gains of approximately 0.4 and 0.8 respectively. The bottom row of table 7-7 shows 
that S improvement in classification performance was achieved but not to the extent predicted 
by the weight limited simulation. The most likely reason for this is that in scaling the inputs the 
noise present is also increased along with the effects of offset and gain variations, this is due to 
the longer integration times. Despite this the general trend of increased weight dynamic range 
resulting in increased performance was shown. It is not envisaged that this increase would meet 
the software performance as effects of increased noise would soon outweigh the benefits of 
increased dynamic range. To further investigate dynamic range effects a mechanism whereby 
dynamic range can be increased without substantially increasing noise and inaccuracy needs to 
be devised. 

7.8 Summary 

This chapter began by investigating the practical aspects of back-propagation learning on the 
EPC by using an artificial character recognition problem. The graded complexity of this 
problem allowed easy investigation of: 

. Software models to compare hardware results. 

. Effects of dynamic range on training performance. 

. Effects of the learning parameter ij on network training. 

The investigation showed that: 

. With a high precision back-propagation path, back-propagation learning could be applied 
successfully to the non-ideal EPSILON II hardware. 

• The effects of hardware non-idealities were manifest as slower training times and higher 
final training error. 

• Limited dynamic range was highlighted as an issue in network performance and the need 
to vary this according to problem was demonstrated. The PWM scheme of EPSILON II 
offered a simple method of accomplishing this through variation of sigmoid gain. 

• Generalisation ability did not exhibit as rapid a degradation as training error. 
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The lessons learnt from this study were next applied to a series of more difficult problems. 
Only in the most difficult of these problems did the hardware fail to provide an adequate 
solution. This was attributed to the hardware having insufficient resolution and the effects of 
noise and other analog non-idealities degrading the solution. This result would apply to other 
problems with high resolution input data and where classification regions have very close input 
vectors. 

Hardware performance on the other problems compared well with the ideal software. The 
following observations account for differences in performance: 

• Analog noise has a detrimental effect on linear output units as demonstrated in the ATM 
link admission control problem. 

• Dynamic range of weights is a limiting factor in performance. It was shown that increas-
ing dynamic range can improve the solution evolved. 

• With sigmoid transfer functions, noise, input/output quantization and other analog non-
idealities such as offset and gain variations had only minor detrimental influence on the 
problem solution. 

Further investigation of the effects of weight dynamic range limitations would be a valuable 
contribution to the field. Due to time requirements, experiments such as investigations into the 
limits of the region classification problem and the effects of increased dynamic range on the 
solution to the speaker identification problem, were not carried out. 



Chapter 8 

Kryton: An Instinct-rule Robot 

8.1 Introduction 

This chapter presents the section of work aimed at utilising the EPC as a controller in an 
autonomous mobile robot named Kryton. The control methodology of Kryton is based on a 
control strategy and software driven exemplar (named Alder) developed by Nehmzow[88] from 
Edinburgh University's department of Artificial Intelligence. 

The purpose of the work presented in this chapter is twofold: primarily it demonstrates 
the EPC operating in a real system with real-world analog inputs, thus achieving one of its 
design goals. The controller also utilises the mixed signal processing capabilities of the EPC. 
Secondly it offers a vehicle for exploring the instinct-rule control strategy. This is achieved 
by enriching the robot's sensory inputs using analog sensors, making changes to the control 
algorithm in response to this move to the analog domain and exploring other instinct-rules. 

The first sections of this chapter introduce the instinct-rule controller architecture. Kryton 
is next specified and the differences between it and its predecessor, Alder, summarised. Next 
the extensions to the controller architecture that have arisen from this work are outlined before 
the experimental work is presented. 

8.2 Background: Approaches to Robotic Control 

Robotic control has been a principal testing ground for theories in Artificial Intelligence (Al); 
the field dedicated to producing intelligent behaviour in machines. Early, or classic, Al work 
in robotic control was characterised by a vertical decomposition of the control task in which 
sensor signals enter the controller and are processed in a pipelined manner by perceptual, mod-
elling, planning and executional modules to produce action commands (73,891. These controller 
techniques rely on an internal world model of the robots world and symbolic representation 
of intermediate steps. The effectiveness of the controller is inherently limited by the accuracy 
of this world model - problems arise when the robot encounters a situation not considered by 
designers of the world model. This type of conundrum led to the development of behaviour 
based robotic controllers which are characterised by the absence of internal world models and 

125 
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symbolic representations, plus tight coupling between sensory input and effector output[88]. 
Brooks in [12] argues strongly against von Neumann based Al and states the case for beha-
viour based models. Exemplars of this type of work include the subsumption architecture 
of Brooks [11,13,73] and the instinct-rule controller of Nehmzow[88,89,90] which employs 
neural techniques. The principles on which this instinct-rule controller is based, and the robots 
built around, can be summarised as: 

Experiment, rather than simulation. A computer simulation can only simulate what is known; 
by using real robots the need to model the environment is eliminated and the non-idealities 
of the real environment are present. 

Minimise a priori knowledge. This is achieved by using a self-organising structure; in this 
case a neural network is trained with the aid of an instinct-rule teacher. The neural 
network forms a sensor-motor mapping with no predefinition. A priori knowledge is 
limited in a minimal way to the instinct-rules. 

Rapid competence acquisition. Fundamental to the robots operation is the acquisition of basic 
competencies such as obstacle avoidance, contour following or direction biased motion. 
These competencies must be learned rapidly to effectively compensate for changes in 
environment. For a real robot these environmental changes can also include internal ones 
such as sensor failure or degradation. 

These are the guiding principles behind all instinct-rule robots constructed to date[89]. The 
robot from which this work has evolved was the original robot Alder. The following section 
describes the controller architecture of Alder, then Kryton is introduced and the differences 
between Kryton and Alder summarised. 
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Figure 8-1: Architecture of Instinct-rule Robot Controller 

8.3 Controller Architecture 

The controller architecture used in Kryton was proposed and first implemented by Nehmzow 
in a robot called Alder[88,89,90]. The controller (shown in figure 8-1) consists of fixed 
and plastic elements. The fixed elements being the performance monitor, which contains the 
instinct-rules and the plastic, or adaptive, element the pattern associator; a single layer neural 
network. The adaptive behaviour of the neural network is under control of the teacher which 
responds to violations of the instinct-rules. The teacher acts in concert with the motion selector 
to train the neural network by trying alternative actions in an attempt to remove instinct-rule 
violations. 

8.3.1 Pattern Associator 

The pattern associator is the adaptive element which is trained to acquire the sensor—motor 
mapping that controls the robot. To satisfy the principle of rapid competence acquisition 
outlined in the previous section, adaption of the associator must be fast. For this reason a 
single layer perceptron (with linear output units) is used. This type of network was first 
used in the pioneering days of neural computation. Minsky and Papert in their seminal book 
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Perceptrons[80] proved that the fundamental limitation of such networks were that they could 
only solve linearly separable functions. Despite this, a single layer structure adapts more rapidly 
than its multilayer counterparts. To conform with the requirements of linear separability we 
must ensure that the sensory input linearly spans the input space. A demonstration of the linear 
separability of the basic problem can be found in [88]. 

8.3.2 Instinct-rules 

To understand the function and basis of the instinct-rules, consider this definition: 

Instinct n:.. . complex and specific response on the part of an organism to environ-
mental stimuli that is largely hereditary and unalterable though the pattern through 
which it is expressed may be modified by learning, that does not involve reason, 
and that has as its goal the removal of somatic tension or excitation. 

Webster's Third New International Dictionary 1981. 

This, in essence, is what is required - a set of hardwired precepts which are used to judge 
performance of the learned associations between inputs (sensors) and output (motor actions). 
Consider the basic requirement of an autonomous mobile robot - obstacle avoidance; this can 
be encapsulated by the instinct-rule "Keep crash sensors inactive ". An urge to explore the 
environment can be instilled with the simple instinct "Move Jbrward". Basic competence 
acquisition was demonstrated on Alder using these instinct-rules. 

8.3.3 Training Mechanism 

The mechanism by which instinct-rule violations adapt the weights of the pattern associator is 
governed by the teacher and action selector (see figure 8-1). A flow chart of the operation of 
the teacher is shown in figure 8-2. When no rules are violated the action selector performs a 
winner-take-all function selecting the action of greatest activation of the pattern associator. If 
an instinct-rule is violated the teacher is activated and the winning action performed for a fixed 
period of time. If the violation is relieved in this time, the selected action is reinforced. If it is 
not, the teacher signals the motions selector to perform the action associated with the second 
strongest output of the network. This is performed for a slightly longer time than before to 
compensate for the action taken earlier. If this results in relief of the violated instinct-rule the 
network is trained to associate the initial sensor state to this output; if not, the next strongest 
action is selected and the process repeats. 

This is the mechanism used in Alder. Later sections of this chapter will present certain 
enhancements to this initiated by the author. 
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Figure 8-2: Flow Chart of Teacher Actions 

8.4 Alder and Kryton 

This hardware demonstrator has its basis, and is an extension of, Alder and Cairngorm, two 
robots developed by Ulrich Nehmzow[88]. These robots use the control architecture above and 
carried a variety of simple digital sensors. The simplest of these was a binary whisker which 
detected when a robot touched an object. Alder also used in some experiments an ultrasonic 
range-finder producing a ternary valued distance measurement. 

When investigating possible demonstration applications the instinct-rule robot was selected 
for experimentation because: 

• The single layer architecture offered an effective demonstration of the EPC hardware in 
action. 

• Use of simple analog sensors could be used both to enrich the robots sensory environment 
as well as providing real-world analog input to verify this aspect of the EPC's operation. 

• As a matter-of-course, this use of analog sensors raised issues of robotic control in relation 
to this control architecture. However it must be stressed that this work is primarily a 
demonstration of the hardware rather than an in depth study into robotics. 

Table 8-1 presents a comparison between Alder and Kryton highlighting the differences 
between their sensory environment. The analog feelers of Kryton are constructed from a 
matched infra-red emitter and phototransistor. These are mounted at opposite ends of a flexible 
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Alder 	 Kryton 	 -. 

Sensors digital: digital: 
2 whiskers 2 crash sensors 
1 forward motion - analog: 
analog: none. 5 analog feelers 

3 Light sensors 
Neural Software simulation Hardware implementation 
Network 
Computation ARC52 micro-controller EPC + 68020 board 

board with on-board BASIC 

Mechanics 
Twin motor rear wheel drive 	Twin motor rear wheel drive 
Free rotating front castor 	Free rotating front castor 

Table 8-1. Comparison of Alder and Kiyton. 

tube as shown in figure 8-3. As the tube is bent phototransistor current falls as less radiation 
reaches the phototransistor, whether directly or by internal reflection. 

The response of one such feeler is shown in the graph of figure 8-3. These feelers can be 
seen mounted on the front of Kryton in the photograph of figure 8-4. The hardware platform 
for Kryton is an EPC under the control of a microprocessor board. The microprocessor board 
performs the functions of the monitor block and provides a communication interface to record 
the results of experiments. It is feasible that the monitors functions could be implemented 
within the FPGA of the EPC. This however was not attempted as the data logging functions of 
the microprocessor were central to the experiments. 
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Figure 8-4: Photograph of Instinct-rule Robot 
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8.5 Controller Extensions 

The primary motivation in using the EPC in the context of the instinct-rule controller was to 
interface directly to analog sensors. In doing so several issues were raised that resulted in 
extensions or improvements to the controller architecture. The following sections describe 
two such areas; the generation of additional input data to aid context detection and linear 
separability and the use of somatic tension as a measure of motor action performance. 

8.5.1 Input Generation 

The controllers task is to train the network to give a correct mapping between sensory inputs 
and motor actions. As mentioned before, the neural network architecture is a single layer one 
only capable of resolving inputs that are linearly separable. If inputs are not linearly separable 
the controller will over-write a previously learnt response to resolve the current situation. This 
has been noted in Alder where the robot was faced with a dead-end situation and learnt to turn 
always in one direction rather than the previous behaviour of turning away from the sensor 
that was excited[88,89]. Once out of the dead-end the robot had forgotten obstacle avoidance 
behaviour. This is not a particularly significant problem as the architecture adapts rapidly and 
the appropriate behaviour is re-learnt. 

To minimise this over-writing of learnt responses there are some techniques that can be used. 
The obvious is to supply the network with inputs that can help to distinguish different situations 
or contexts. Nehmzow[88] demonstrated this by providing a dead-end signal manually as a 
network input. Alternatively, what is proposed here is that extra inputs are generated from 
the sensory input that may be useful in assisting the pattern associator to distinguish different 
situations. This practice is similar to the technique of providing a network with hints, defined 
by Abu-Mostafa[ 1] as "auxiliary information about the target function that can be used to 
guide the learning process". It has been shown that networks can benefit from such hints, 
either as inputs or outputs, to speed or enhance training[1,38]. 

The first obvious hints are to give the robot some historical information. If the robot just hit 
a wall on one side for instance, it is likely to hit it on that side again soon. Thus historical data 
may provide an effective context hint. Other inputs are generated to assist in other behavioural 
goals, these are all derived from the input sensors and/or delays, and will be explained as they 
are used. 

8.5.2 Somatic Tension 

With Kryton's sensors being analog and continuous in nature, its sensory input is much enriched 
compared with the digital nature of previous robots such as Alder. With this transition into the 
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Figure 8-5: Flow Chart of Teacher Actions with Somatic Tension 

analog domain other enhancements can also be made. The definition of instinct in section 8.3.2 
leads to one such enhancement; paraphrased it says that the goal of an instinct is the removal 
of somatic tension. In Kryton's case a measure of somatic tension can be constructed as an 
aggregate of inhibitory sensors; that is the feelers. Such an aggregation or summation is natural 
to perform in the context of neural networks. It is achieved by using an extra linear neuron with 
fixed weights to provide a weighted summation of all feelers. This suggests a more effective 
way of gauging the correctness of alternative actions attempted by the teacher during instinct-
rule violations: if somatic tension decreases it is likely that the action selected is a "good" 
one. If somatic tension increases it is unlikely to be "good". Utilising this concept, actions 
on Kryton are performed while monitoring somatic tension. The criteria (or threshold) under 
which an action is considered "bad" are relaxed as further actions are tried (or repeated). In this 
way the robot removes instinct-rule violations under minimal somatic.tension, that is it is less 
likely to damage itself (hit an obstacle) than with the previously used, purely time based, trial 
system. A revised flow-chart for the teacher functions incorporating the idea of somatic tension 
is shown in figure 8-5. The following experiments all use the concept of somatic tension to 
determine motor action performance. 
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8.6 Experiments in Competence Acquisition 

The following sections describe the experimental work performed with Kryton. Three basic 

behaviours are investigated; obstacle avoidance, wall following and phototaxis. Obstacle 

avoidance is the most basic of competencies that enables the robot to stay operational by 

avoiding collisions. Wall following combined with obstacle avoidance gives the robot more 

complex objectives and would be useful in situations such as a domestic cleaning device. The 

experiments in phototaxis give the robot a navigational task, that is to move towards a light 

source. 

8.6.1 Experiment: Obstacle Avoidance 

The initial experiments implemented the most basic of competencies - obstacle avoidance. In 

these experiments Kryton used its feelers to learn mappings between its sensors and motor 

actions that avoided obstacles. At first this may appear a trivial task, but when performed under 

real-world conditions, or even the limited subset that is the laboratory, difficulties soon become 

apparent. Real sensors do not always perform as expected or designed. For instance the feelers 

used here may get stuck in gaps or bent into unforseen positions giving unexpected readings. 

One of the strengths of the instinct-rule controller is that complex behaviours are promoted by 

simple instinct-rules thus removing the need to pre-empt all possible contingencies. 

Instinct-rules 

The instinct-rules used in this experiment can be expressed as: 

I. Keep feelers quiet. 

2. Move forward. 

The "keep feelers quiet" rule is triggered if any feeler exceeds a set threshold and promotes 

the obstacle avoidance behaviour. The "move forward" rule encourages the robot to explore 

its environment and is triggered if the robot has low sensory excitation (somatic tension) and is 

not moving forward. 

Generated Inputs 

It has been stated that to maximise the potential separability of the problem additional inputs 

are provided to the pattern associator. In these experiments the generated inputs consist of 

historical information and a low excitation bias input. The need for a bias input is obvious: if 

there is no sensory excitation all inputs to the network are zero and thus so are output states. 
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Figure 8-6: Obstacle Avoidance Experiment: Figure of 8 

A constant high bias input is a possible solution to this. However to enrich the information 
content of this input, a low excitation bias is generated that is high if all feeler inputs are low 
(somatic tension low). 

For each feeler, a record of activation is kept for twelve time-steps' the pattern associator 
is presented with three historical inputs for each feeler: 

I. Previous time-step value (t - 1). 

Maximum of time-steps (t —2) to (t —5). 

Maximum of time-steps (t —6) to (t - 12). 

The effects of these generated inputs will be examined in the experiments below. 

Experiment One: Figure of eight enclosure 

The first results presented here were obtained by running Kryton in the enclosure depicted in 
figure 8-6. To gauge the performance and present results in a meaningful way the following 
statistics are uploaded from the robot every 100 time-steps: 

1. Number of time-steps with rule violations per hundred samples. 

'This is approximately I second in real time. The sampling rate of the controller is 12Hz. This 
is determined principally by the amount of data that is transmitted over the 9600bps serial link when 
logging the experiment. The rate is consistent with the physical time constants associated with Kryton' 
s motors. That is the time taken for a change in motor drive signal to manifest as change in motion. 
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Percentage of non-forward motor actions. 

Number of new rule violations per hundred samples. 

Number of new rule violations resulting in network training. 

The nature of the system dictates that events happen in short bursts (such as coming into contact 
with an object) followed by longer periods of little activity (moving forward with no obstacles). 
To discover trends in activity the data was smoothed. Thus the data presented in the graphs 
in this chapter is the result of running window averages of fifteen data points. Figure 8-7 
shows the trends in these statistics during a trial in the compound of figure 8-6. Kryton was 
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Figure 8-7: Obstacle Avoidance Experiment 

initialised with random weights at time-step zero and to examine the training effectiveness of 
the controller, the monitor is disabled at time-step 7,000 such that the neural network directly 
controls the robot. The results plotted in the graph reveal the following about the experiment 
and controller: 

• The number of time-steps with rule violations is initially high (green trace). This is as 

expected as there is only a random mapping between sensors and motor actions. 

• The number of violations trained (cyan) starts high then rapidly drops away by time-

step 3,000. This indicates that the network has been successfully trained to react to the 
situations the robot is encountering. Note that this takes only 15 or so training steps to 
achieve (black trace). 
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• The number of new violations (red) starts high and decreases to an essentially constant 
small number. As these violations are not resulting in training the network must already 
be performing the correct remedial action when the rule is violated. 

The similarity of the response before time-step 7,000 and after, together with the observed 
correct action, shows that the neural network has learnt the required mappings to suc-
cessfully navigate this environment. 

Summary 

This experiment has shown: 

The EPC employed as a neural controller fulfilling the design goals of: 

- Direct interface to analog signals - sensors. 

- Direct interface to digital environment - the instinct-rule monitor and teacher. 

• The instinct-rule controller was shown to promote simple obstacle avoidance behaviour 
with the modified somatic tension performance evaluation. 

Experiment Two: Dead-end behaviour 

The previous environment was relatively benign in that it had no tight corners or dead ends 
for the robot to negotiate. The neural network learnt a response that turned it away from any 
sensory excitation. If the robot approaches a dead-end or tight corner the physical positioning 
of the sensors means the response of some sensors must increase before the robot can turn out 
of the corner. Does the simple instinct rule of "keep feelers quiet" promote this behaviour? It 
was shown with Alder that it would; but once out of the dead-end had to re-learn the obstacle 
avoidance behaviour, indicating that the two situations, or contexts, were not linearly separable 
by the network. 

This experiment confirms that the addition of the historical information can aid in providing 
contextual information. The robot was run in the environment pictured in figure 8-8. The 
statistics uploaded during one such experiment are depicted in figure 8-9. Like the previous 
experiment the robot was started in a random state and the monitor was disabled after time-step 
10,000. The robot was trained to the correct behaviour where it would travel from end to end of 
the compound, avoiding the walls when moving between ends and turning out of the dead-end 
when encountering it. The graph of figure 8-9 shows the statistics of this experiment: 

. The number of rule violations (green) and training epochs (cyan) is highest initially, 
dropping rapidly as basic competencies are acquired. 
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Figure 8-8: Obstacle Avoidance Experiment: Dead-end Enclosure 
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Figure 8-9: Dead End Experiment 



left 

right 

left history 

right history 

Kryton: An Instinct-rule Robot 
	

139 

• The majority of training is carried out in the first 3,000 time-steps in which approximately 
30 training epochs take place (black trace). 

• The number of violations (green) is not as close to constant as in the previous experiment. 
This is because the environment presents two distinct situations; the dead-end, where 
rules tend to be violated, and travel between ends where few rules are violated. 

• The observed behaviour after the monitor is disabled proves that Kryton successfully 
learns both behaviours of obstacle avoidance and dead-end escape. 

In this experiment Kryton evolves a mapping that recognises the dead-end context with the aid 
of history inputs. Figure 8-10 demonstrates the acquired behaviour - it shows the five general 

Figure 8-10: Behaviour in a Corner 

movements that Kryton makes to detect and escape from a corner along with approximate 
sensor and history activations. When Kryton enters a corner (13 it initially turns away (left GD) 
from the sensor activation. It turns until it encounters the wall on the left and turns right © to 
avoid this obstacle. By this stage a strong excitation has accumulated in the history information. 
This triggers action ® which keeps the robot turning left until it gets low excitation ®. 

Experiments conducted in other, more complex, compounds consisting of straight, convex 
and concave walls and corners produced the same ability to successfully avoid obstacles and 
get out of dead ends. 



Kryton: An Instinct-rule Robot 
	

140 

Summary 

This experiment has shown historical data providing context information allowing Kryton to 
learn obstacle avoidance and dead-end escape behaviour from the simple "keep feelers quiet" 
instinct-rule. The mixed signal capabilities and the analog recovery feature of the EPC is used 
to mix analog sensor data and historical data in processing. 

8.6.2 Experiment: Wall Following 

This section investigates how an additional instinct-rule can be added to modify the behaviour 
of the robot. In this case an instinct-rule was added to promote a wall following behaviour. 

Instinct-rules 

The instinct-rules used in this experiment can be expressed as: 

I. Keep feelers quiet. 
Touch a wall. 
Move forward. 

The additional instinct-rule "touch a wall" is activated if in a certain period of time no sensor 
has become active. The violation is relieved when a sensor is activated or a time limit is reached 
where it is considered that the wall is lost. 

Generated Inputs 

In addition to the history inputs of the last section two additional types of generated input are 
used in this section: 

A find wall input which increases every time-step that there is no sensor activation and is 
reset once a sensor is activated. The reasoning behind this is that the pattern associator 
will learn to associate this input with the "touch a wall" instinct. 

Two long term memory inputs are generated to store on which side the robot last touched 
a wall. This is to allow Kryton to decide which direction to turn to touch a wall after 
history has decayed. 

Results 

Figure 8-11 shows an experimental run with Kryton in the same compound of figure 8-8. 
Kryton rapidly evolved a behaviour of turning back to the wall once all sensors left it and 
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Figure 8-11: Wall Following Experiment 

turning away from a wall when too close. This behaviour continued when the monitor is 
disabled after time-step 7,000. The analog nature of the sensors allows a smooth reaction to 
the problem - if sensors were digital as was the case in Alder, the robot in satisfying the "touch 
a wall" instinct-rule violates the "keep feelers quiet" rule, producing an oscillatory behaviour 
requiring constant intervention of the monitor block. With analog sensors this is not necessarily 
the case as the robot will move towards the wall before a "touch a wall" rule is violated and 
move away before a "keep feelers quiet" rule. - the pattern associator learns to pre-empt 
the instinct-rule violations. This can be seen in the fact that the number of time-steps with 
violations (green) of figure 8-11 is generally below 30. In the dead-end experiment it was 
rarely below 30. Also the percentage of non-forward motions (blue) is essentially constant as 
the robot smoothly follows the perimeter as against heading into corners in the dead-end case. 

Summary 

The EPC proved an effective processor for analog sensor inputs. Kryton was able to form 
a mapping between analog sensor, digitally generated data and delay signals that produced a 
wall following behaviour. The mapping was more effective than was the case in Alder as with 
analog sensors Kryton was able to pre-empt instinct-rules. 

70 

60 

50 

40 

30 

20 

10 

(I 



Kryton: An Instinct-rule Robot 
	

142 

8.6.3 Experiment: Phototaxis 

The basic behavioural tasks presented in the previous experiments had no navigational task 
associated with them. To be useful the robot must be able to carry out navigational tasks. In 
a subsumption architecture, navigational planning would be carried out be a higher level sub-
system. The instinct-rule controller performs the basic low-level motor competency functions, 
yet must respond to directions from higher systems. This experiment demonstrates the ability 
of the instinct-rule controller to do just this by using an instinct-rule "maximise navigational 
signal". In this experiment rather than coming from a higher-level system, this navigational 
signal comes from a set of three light sensors to implement a light following behaviour - 
phototaxis. Figure 8-12 shows the arrangement and approximate response of the light sensors 
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Figure 8-12: Photo-sensors for Phototaxis Experiments 

which are mounted on top of Kryton. Outputs of these light sensors are fed as analog signals 
into the EPC. 

Instinct-rules 

Keep feelers quiet. 
Maximise navigational signal. 
Move forward. 

In addition to the basic obstacle avoidance instinct-rules a new rule to maximise the navigational 
signal (photosensor (D) is added. The rule is violated when the output from photosensors (13 
or © is greater than photosensor GD. 
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Generated Inputs 

Generated inputs are similar to the wall following ones: 

I. A find light input which increases when there is no light sensor active. 

2. Long term memory of last light sensor active. 

Results 

Figure 8-13 shows a typical experimental arrangement of obstacles and light source along with 

Light 
Source 

0 0 
Figure 8-13: Example of Phototaxis Experiments 

some observed paths of the robot. Experiments proved that the robot would lock and track the 
light source while avoiding obstacles. If the robot lost the light source in avoiding an obstacle 
it quickly learnt which way to turn to find the light again. 

Summary 

The important results from this experiment is that the instinct-rule controller will respond to 
directional signals while maintaining obstacle avoidance behaviour. This means that the EPC 
based controller can interact with higher navigational systems while autonomously handling 
the motor competency tasks. 
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8.7 Summary 

The work presented in this chapter has placed the EPC into a real-world system. The EPC is 
performing in its primary mode of operation - as a processing interface between the analog 
domain and digital computing. It handles all analog input and presents this to the digital host. 
Along with this, neural processing is performed on the analog input along with inputs provided 
by the digital host. The results of this processing are made available as digital outputs. In 
the experiments presented here the EPC performed the vast majority of processing with the 
digital host idle or logging data over a serial line the majority of the time. This would allow 
the host to perform other tasks such as task planning and navigation, and it was shown that the 
instinct-rule controller could respond to such directional inputs. 

The major difference between Kryton and its predecessor, Alder, was the direct interface 
to analog sensors. This prompted enhancements to the controller architecture such as the use 
of somatic tension to judge action performance. The mixed signal nature of the EPC allowed 
generation of additional inputs which enabled the robot to correctly differentiate situations 
such as obstacles and dead-ends. It also allowed finer control over competing tasks as in wall 
following where one instinct-rule promotes the robot to move towards a wall while another to 
move away. 



Chapter 9 

Discussion and Conclusions 

9.1 Introduction 

The objective of this thesis was to study the issues and practicalities of placing pulse stream 
neural hardware into applications. The issues raised by this work fall into three categories 
according to whether their effects are manifest at a VLSI, systems or applications level. This 
concluding chapter discusses the issues in these three categories and draws conclusions as to 
the success of the work and the future of hardware neural computation. 

9.2 VLSI Issues 

The investigation of the VLSI aspect commenced with a review of application based neural 
VLSI in Chapter 3 and showed no obvious leader in implementation methodology for neural 
VLSI. The benefits of pulse stream neural computation were particularly strong for the defined 
primary application area of analog/digital interface, due to its ability to provide mixed signal 
inputs and outputs suitable for direct digital processing. 

The focus provided by the requirements of applications led to several VLSI design enhance-
ments, principally mixed signal input structure and analog signal recovery. The performance 
of the EPSILON cells was also enhanced by layout improvements and refinements to the archi-
tecture. In particular the improvement in the distribution of synaptic power supply revealed 
operational characteristics of the synapse array that were masked in the original EPSILON 
chip. 

The results gathered testing and characterising the EPSILON II device, together with the 
practical experience gained in putting the hardware to use, raised two major areas that concern 
future VLSI improvement: 

I. Minimisation of neuron offsets through reduced amplifier input offset voltage. This in 
turn relates to the performance of the bias generation schemes. 

2. The need for controlled variation of weight dynamic range. 

145 
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9.2.1 Minimisation of Neuron Offset 

In Chapter 5 variation of offsets between synaptic columns was quantified and simulations 
were used to illustrate the dominant role played by the distributed feedback amplifier's input 
offset in this variation. Here lies a practical consideration in using the distributed feedback 
synapse: it is very sensitive to supply and mid-point voltage variations. In fact these two 
factors are virtually equivalent as they are both manifest as unequal drain-source voltages 
across the transconductance pair. This leads to the practical consideration that both power 
supply variation and amplifier offset must be minimised for optimum operation. This problem 
also effects the bias generation scheme used for the distributed feedback synapse. If input 
offset is not minimised these references are unreliable. A scheme for minimising these offsets 
was presented in Chapter 5. 

Despite the problems of neuron offsets and gain variations, chip-in-loop learning has 
been demonstrated in this work, and elsewhere, as being capable of compensating for analog 
inaccuracies. Though the presence of non-idealities prevented a software evolved weight set 
from providing a good solution in hardware, only relatively few training steps were required on 
such a weight set to trim it to a good solution. Thus the issue of minimising neuron offset is one 
of compatibility of weight sets between chips and software simulations to minimise training 
times, along with reliable generation of on-chip references. 

9.2.2 Weight Dynamic Range 

Chapter 7 highlighted the importance of restricted dynamic range in the weight set. It was 
found that while limitations in analog precision are acceptable in the feed-forward path, some 
control over the dynamic range is needed to allow solutions to a wide variety of problems. Two 
methods of dynamic range variation were presented for the pulse stream hardware: 

I. Scaling of input pulse-widths to produce a dynamic range trade-off against speed and 
noise level. 

2. Scaling of output ramp waveform to produce an accuracy/dynamic range trade-off. 

For a practical learning system an automatic weight scaling and dynamic range adjustment 
scheme would be advisable. Such schemes have been proposed by Myers et al[87]. The above 
dynamic range enhancement methods were shown to have limitations or adverse effects in 
increasing noise and reducing network computation rate. To gain further control over dynamic 
range a third, circuit level, method could also be incorporated into future designs. This would 
involve adjusting the synaptic gain, which is set by the width-to-length ratios of the synapse 
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Figure 9-1: Gain Variation for EPSILON Distributed Feedback Synapse. 
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Thus reducing the width-to-length ratio of the buffer stage, equivalent to using less buffer stages, 
would increase the gain and thus dynamic range of the weights. Local digital storage in the 
neuron can control how many buffer stages are switched into the feedback path, the basic idea 
is shown in figure 9—I. The advantage of this arrangement is that it adds little complexity (thus 
area) to the synapse as no extra transistors are required, just extra routing. Apart from gaining 
extra control over dynamic range, this method does not entail significant negative trade-offs as 
the other methods presented in the thesis did. 

9.2.3 VLSI Summary 

Upon investigation of the applications area and system level needs, it was concluded that pulse 
stream methodology was the most suitable implementation strategy due to its: 

• Mixed analog/digital domain input capabilities. 

• Digital compatible outputs. 

• Cascadable structure with digital communication. 

• Simple, robust and compact synapse design. 

• Existing technology available within the Edinburgh research group. 
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The chip presented, EPSILON II, represents an advance with regard to previous pulse stream 
neural chips in that it provides: 

. Better performance achieved by layout improvements. 

. Additional features for applications use such as: 

- Programmable input modes. 

- analog signal recovery mode. 

- simplified control strategy. 

Amplifier offset was highlighted as a major source of non-ideality, and techniques to minimise 
this were presented for future designs. With limited weight dynamic range highlighted as a 
practical limitation on network capabilities, an electronic gain variation scheme was outlined. 

9.3 System Level Issues 

As part of the literature review, a variety of hardware neural systems were studied in order to 
illustrate system level issues. The most successful of these implementations showed a tight 
coupling between input structure and input domain. Examples of this were the direct analog 
sampling in the Kakadu system and the direct optical input of the Synaptics OCR. Similarly, 
matching between network outputs and output domain, which is invariably a digital system, 
was a factor in the most successful systems. Conversely, designs where large system overheads 
were needed showed the drawbacks of inappropriate use, one such example would be the 
ETANN chip in a digital environment requiring hundreds of D/A channels[6 1]. The same work 
also described problems in providing low noise analog busses to cascade ETANN chips. 

The EPSILON/FENICS system, along with the ETANN systems discussed, demonstrate 
how data conversion can limit the data throughput of the system. In these cases conversion was 
slower than device computation. For EPSILONIFENICS, the host processor had to perform 
substantial processing to recover results and for ETANN, the large AID overhead limited the 
computation rate. The following factors thus emerged as pointers for successful applications 
oriented neural hardware: 

• Autonomy of operation from the host system is essential. For pulse stream systems this 
involves a system incorporating: 

- Chip support operations such as weight refresh and ramp generation. 

- Data conversion to and from host system data representation. 

• Effective data interlaces to domains of operation, that is: 
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- Analog real-world data implies the need for analog inputs. 

- Data input from a digital host requires digital inputs. 

- Chip operation is pulse stream so pulse stream communication is necessary to 
cascade chips. 

- The output domain is a digital host so digital outputs are required. 

. Flexible structure to allow a variety of problems to be implemented. 

The EPSILON Processor Card embodies these principles to provide a framework for pro-
totyping applications. The strengths of the EPC are derived from the: 

I. Parallel and autonomous nature of support functions allowing real-time operation. 

Flexibility of its 110 structure. 

Ability to customise internal digital processing. 

Support functions and real-time operation 

All chip support functions were performed at system level and parallel pulse conversion tech-
niques were used to minimise data bottle-necks; the major source of performance degradation 
in previous systems. In an optimum configuration the EPC can operate at the top speed of the 
EPSILON II chip - a single layer computation cycle of 40ps, or two layers in 60is. Some 
configurations of input and output (e.g. full digital input and output) require a serial pulse 
conversion approach which slows throughput somewhat. 

Comparisons with software networks are dependent on the application and input structure. 
For instance a 66MHz processor could perform a two layer MLP computation at a similar rate 
of 651Ls'. Yet if inputs are analog then a significant AID conversion overhead is required, both 
in hardware and computation time. Here lies the advantage of the hardware implementation: 
A/D conversion and neural processing are performed in the same step. This is the key factor 
promoting hardware use and development: if the input domain is the analog world there is 
significant advantage in using analog processing because the interface requirements are inherent 
in the hardware. 

Input/output flexibility 

The second key area in which the EPC improves on previous neural systems is in the flexibility 
of its 110 structure. The EPC can provide parallel channels for analog data directly to the chip. 

'Assuming a multiply accumulate takes two clock cycles and a non-linear threshold four: total cycles 
= 1024 x 2 x 2-4-32 x 2 x 3 =. 65ps compute time. In reality program and memory access overheads 
would make this longer. 
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It can also configure inputs to process digital data from the standard bus to provide mixed 
signal processing. One extreme of this is the fully digital input configuration, though this is 
not seen as an efficient mode of operation when compared to a dedicated digital solution. The 
other extreme is fully analog input where the EPC performs as a processing A/D converter. In 
between, the mixed signal architecture allows a powerful tool to fuse analog and digital data. 
No other system examined has this flexibility of architecture, especially important is the ability 
to deal with mixed signal inputs. 

The output of the EPC converts pulse stream outputs to digital values, these are presented 
to the host via a standard digital bus. It can also recover analog inputs and supply the host 
with digital conversions of these. Cascading chips or broadcasting inputs is achieved with a 
dedicated pulse stream bus which provides a relatively noise immune method of transferring 
neural states. Again no system examined presents digital output along with providing parallel, 
noise tolerant cascading ability. 

Customisation 

The use of FPGA technology for the digital support processing allows a great deal of flexibility 
and customisation for different applications. The digital support can be optimised to the highest 
degree of parallelism for the data and network structure of the applications. This is in contrast 
to providing support for all possible 110 variations which would be prohibitive with standard 
logic. Added to this is the advantage of being able to implement custom digital processing on 
the EPC itself; such as winner-take-all functions or delay loops for inputs. Spare FPGA pins 
can also be used for digital control purposes in the application, this was done for motor control 
in the instinct-rule robot demonstrator. This ability to match neural system to application has 
not been found in previous hardware neural systems. 

Future system level work 

Future advances in system level work is largely dependent on VLSI advances. The EPC 
architecture is ideal for applications such as remote sensor monitoring or control applications; 
for the EPC to be economic in such a role a near two chip solution is required. This implies 
substantial integration of analog functions onto the neural chip. Most of these are achievable, 
for instance: 

• Ramp and weight refresh D/A converters. 

• Bias and reference generation circuitry. 

• Synaptic power supplies. 
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The largest system overhead is weight memory which implies that the ideal solution would 
involve on-chip non-volatile analog memory. Until technology provides such an analog solution 
external digital storage is required. For the EPC the problem of volatility of weights can be 
alleviated by storing the weights in the on-board EPPROM. 

9.4 Applications Issues 

Part III of the thesis investigated the practicalities of using the EPC. In Chapter 7 chip-in-loop 
learning with back-propagation was investigated and the limits of network ability studied. The 
study commenced using an artificial character recognition problem. The lessons learnt from 
this were then applied to a series of real-world problems. In Chapter 8 the EPC was placed 
in a real-world system, an autonomous mobile robot, to study its performance as a processing 
analog interface. The rest of this section discusses the issues raised by these studies. 

9.4.1 Effects of Analog Non-Idealities on Back-Propagation Learning 

The major areas to arise from the investigation of training the EPC chip-in-loop with back-
propagation learning were: 

Learning rate limitations of hardware. 

The effect of limited dynamic range and precision on learning ability and performance 
of the hardware. 

Pointers to the types of problems suitable for hardware neural solutions. 

Learning rate 

In the course of the investigation it was found that the hardware was inherently slower to train 
than an ideal software network because the learning rate parameter, 77, required for stability 
was much lower than could be used in software. The iprincipal reason for this was that a higher 
ij promotes larger weights which become clipped in the bounded weight representation of the 
hardware, too high and the learning became unstable. Also the effects of analog non-idealities 
introduce inaccuracies in the error function that meant the training algorithm took longer to 
reach a low error solution. The best method to reach a good solution was found to be training 
a software model of the hardware which took into account the limited precision and dynamic 
range of the weight set then downloading this weight set to the hardware and trimming it by 
further training. 
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Table 9-1. Summary of Comparative Performance of EPC to Software Network 

Problem Difference in Increase in mean 
generalisation square error 
performance  

Character recognition 2.5 +797% 
ATM link admission 3.4 +171% 
Speaker identification 3.7 +32% 
Medical data analysis 9.1 +9.7% 
Region classification 29.8 +54% 

Dynamic range and generalisation performance 

Both finite precision and dynamic range of the hardware were found to affect network per-
formance, though dynamic range was found to have greater practical ramifications. While 
precision in the weight set determined an absolute limit in network accuracy, variation of the 
dynamic range of the weights was shown to be essential in maximising the use of this preci-
sion. Experiments showed that the performance of low precision analog hardware will never 
match that of high precision software. For instance, the hardware non-idealities result in a 
significantly higher final training error for a problem. However, this was not found to translate 
directly as a severe degradation in generalisation ability. This is demonstrated in table 9—I 
which summarises the results of the five problems presented in Chapter 7. The first column 
tabulates the difference between the percentage of correct classifications of the generalisation 
set for the floating point software network and the EPC hardware network. The second column 
shows the percentage increase in the mean square error of the hardware network compared to 
the software network'. As can be seen the hardware performed to a reasonable level when 
compared to the floating point software for all but the region classification problem. 

The initial experiments for the medical data problem showed poorer performance which 
prompted an investigation into the effect of dynamic range on the solution to this problem. A 
series of software simulations demonstrated that increasing the dynamic range could produce 
a solution approaching that of the floating point network. This was attempted on hardware by 
scaling the inputs to increase dynamic range. This produced an improvement in performance 
but the corresponding increase in noise and the effects of gain and offset variation limited the 
effectiveness of this method. 

These experiments again highlighted the importance of limited dynamic range on network 
performance and this is perhaps the major result of this thesis as weight dynamic range is 
a limited hardware resource dependent on the physical characteristics of the design. Careful 

2 The figure for the character recognition problem is from the training set while the rest are calculated 
from the generalisation test sets. 
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design is needed to maximise weight dynamic range without adversely affecting noise tolerance, 
speed and power consumption. Note that this is a practical issue relating to hardware only - 
such scalings of dynamic range can be easily achieved in software networks without introducing 
errors as long as sufficient headroom is available in the calculations. The role of dynamic range 
in hardware performance as demonstrated by the experimental work of this study has not been 
seen reported in the literature. 

The next section discusses the issues of problem suitability that arose from the experiments 
of Chapter 7. 

Suitability of problems 

The experiments in Chapter 7 demonstrated the type of problems most suited to hardware 
implementation. The 1-of-N classification problems, bar the region classification problem, 
performed well as the output units, being sigmoidal, suppressed the effects of noise. The 
effects of noise were much more prevalent where the network is in the role of a function 
approximator with linear outputs such as the ATM problem. Though the hardware performed 
satisfactorily in classification, the larger error may mean its value as a function approximator 
is limited. 

The region classification problem demonstrated that there is a limit to the difficulty of 
problems that can be solved with the hardware. This problem required higher resolution than 
was available to differentiate very close input vectors. This highlights that problem selection, 
or equally input data selection, must be examined to determine suitability of the problem for 
hardware implementation. The simple software models of the hardware presented in the thesis 
offer a convenient first step in determining problem suitability. 

9.4.2 Kryton - The EPC Processing Analog, Real-World Data 

Chapter 8 presented the instinct-rule robot, Kryton. The aim of this investigation was to place 
the EPC in a real system and utilise its ability to interface directly to analog data. The problem 
represents a class of potential applications where analog sensor data must be interfaced and 
processed to perform a control task. The instinct-rule application demonstrated the ease of use 
of the EPC; it was possible to wire Kryton's analog feelers directly to the EPC analog input 
bus and three unused digital outputs were used as control signals to motor actuators. 

While it is difficult to make a direct comparison between Kryton and the software controlled 
exemplar Alder from which it was modelled, as Alder used digital or ternary sensors and a 
software neural network. However the use of real-valued sensor readings did lead to refinements 
in the control architecture which were shown to have such effects as fewer actual contacts with 
obstacles and a smooth action in wall following. 
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The mixed signal architecture of the EPC was also utilised in interaction with the instinct-
rule controller. Here additional inputs conveying time dependent or historical information were 
presented to the network which allowed the robot to make context dependent decisions. 

As a demonstrator Kryton performed well and was the only example found in the literature 
of dedicated neural hardware controlling an autonomous vehicle. 

9.4.3 Future Work - Applications 

An obvious area for future work in the applications field is to use the EPC to prototype further 
real-world problems such as sensor monitoring tasks, local control problems and intelligent 
AID. The demonstration applications presented in this thesis show that the EPC is suitable for 
prototyping such problems. The analog recovery ability enables sampling of analog inputs of 
an application to build a data—set for training. The software models developed in Chapter 7 
allow the developer to predict likely performance of the EPC and gauge problem suitability. 
These software models also allow the off-line development of weight sets that may be quickly 
trimmed on the hardware. 

Chapter 7 raised issues concerning the ability to train hardware neural networks. Further 
work here would be to examine the performance of other MLP learning algorithms. 

The issue of weight dynamic range could be further investigated by studying its  effects on 
other problems and determining the limits to which increasing dynamic range is effective. 

9.5 Overall Conclusions 

To make the transition from laboratory research to real-world use and acceptance, hardware 
neural networks must fill an applications niche where they outperform existing methods or 
for which no present method is available. In evaluating potential applications areas, points to 
consider are: 

• Most neural applications will be served optimally by fast, generic digital computers. This 
is because data is in digital form and conventional computing continues to improve in 
performance which quickly outpaces the performance of a dedicated hardware solution. 

• Analog neural VLSI is applied optimally at the interface between the real world and 
higher-level digital processing. It is here that the ability to deal efficiently with analog 
inputs can give neural technology an edge. 

To operate in this area it is essential that neural hardware: 

• Interface directly to analog inputs. 
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. Deal equally well with digital inputs. 

. Provide output in a host readable form. 

• Operate without consuming host resources 

The EPC proved an effective solution to most of the problems studied in the thesis and 
demonstrated a high degree of flexibility and ease of use: 

• The EPC was demonstrated solving 1—of—N classification problems such as the speaker 
identification and medical data problem. These problems represent a class in the applica-
tions area where real-world analog signals must be classified and outputs made available 
to a digital host. 

• The limits of the EPC's performance was probed with the region classification problem 
where it failed to provide a good solution. This demonstrated a class of problem unsuited 
to analog hardware implementation: those with high resolution input data and sharp 
decision boundaries requiring high resolution weights. 

• The success of Kryton demonstrated the advantages of the EPC in interfacing to analog 
signals. Kryton represents a broad class of problem where analog and digital signals are 
fused in neural processing. 

• The combination of neural VLSI combined with the digital support provided by an 
FPGA allowed the EPC to interface easily with digital systems. This gives the EPC great 
flexibility for prototyping applications as custom digital control can be implemented on 
the board. 

The above points demonstrate that analog pulse stream neural processing, embedded in a 
support system can provide an effective solution to real-world problems. 
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EPSILON II Chip Details 

A.! Layout Plot Legend 
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A.2 EPSILON II Input Neuron SRAM Cell 
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Figure A-2: EPSILON 11 Input Neuron SRAM Circuit with Transistor W/L Ratios 
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A.3 EPSILON II Input Neuron Cell 
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Figure A-3: EPSILON II Input Neuron 
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A.4 EPSILON II Synapse Cell 

Figure A-4: EPSILON II Synapse Cell 
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A.5 EPSILON II Output Neuron 
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Figure A-5: EPSILON II Output Neuron Cell 
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A.6 EPSILON II Shift Registers 

Figure A-6: EPSILON II X-Shift Register 
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Figure A-7: EPSILON II Y-Shift Register 
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A.7 EPSILON II Pin Out 

Description Name Pad # PGA j SCM] 

Network Input 1N28 I C3 29 
Network Input 1N27 2 B2 15 
Network Input 1N26 3 B 1 14 
Network Input 1N25 4 D3 42 
Network Input Th424 5 C2 28 
Network Input 1N23 6 Cl 27 
NetworkInput 1N22 7 D2 41 
NetworkInput 1N21 8 E3 48 
NetworkInput 11420 9 DI 40 
DigitalGround OND 10 E2 47 
DigitalSupply Vdd 11 El 46 
NetworkInput 1N19 12 F3 54 
NetworkInput IN 18 13 F2 53 
NetworkInput •1N17 14 Fl 52 
NetworkInput IN 16 15 G2 59 
NetworkInput IN 15 16 G3 60 
NetworkInput 1N14 17 GI 58 
NetworkInput 1N13 18 HI 64 
NetworkInput IN! 2 19 H2 65 
NetworkInput ff411 20 H3 66 
NetworkInput INIO 21 JI 70 
NetworkInput 1149 22 J2 71 
NetworkInput 1N8 23 K 1 76 
NetworkInput 1147 24 J3 72 
NetworkInput 1N6 25 K2 77 
NetworkInput INS 26 LI 82 
NetworkInput 1N4 27 Ml 95 
NetworkInput 1143 28 K3 78 
NetworkInput 1N2 29 L2 83 
NetworkInput INI 30 NI 108 
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Table A—i. EPSILON II Pin out part I 
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Description Name J _Pad # I PGA SCM 
Network Input INO 31 L3 84 
Autobias Input In-bias 32 M2 96 
Input Ramp Vramp_ip 33 N2 109 
Digital Ground GND 34 LA 85 
Analog Ground AGND 35 M3 97 
Digital Supply Vdd Pry 36 N3 110 
Mode select Id-mode 37 M4 98 
Sample input Vsample 38 L5 86 
Neuron Output OUTO 39 N4 111 
Neuron Output OUT1 40 MS 99 
Neuron Output OUT2 41 N5 112 
Neuron Output OUT3 42 L6 87 
Neuron Output OUT4 43 M6 100 
Neuron Output OUTS 44 N6 113 
Neuron Output OUT6 45 M7 101 
Neuron Output OUT7 46 L7 88 
Neuron Output OUT8 47 N7 114 
Neuron Output OUT9 48 N8 115 
Neuron Output OUT 10 49 M8 102 
Neuron Output OUT1 1 50 L8 89 
Neuron Output OUT12 51 N9 116 
Neuron Output OUT13 52 M9 103 
Neuron Output OUT14 53 Nl0 117 
Neuron Output OUT 15 54 L9 90 
Enable integrator Venable 55 M10 104 
Reset integrator Vreset 56 Nil 118 
PF phase filter rip 57 N12 119 
PF gain filter rig 58 L10 91 
PF gain VCOOIP vcog 59 Mil 105 
PP phase VCO 0/P vcopw 60 N13 120 
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Table A-2. EPSILON II Pin out part II 
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Description Name I Pad # I PGA SCM 
Digital Ground GND Pry 61 LII 92 
Analog Supply AVdd 62 M12 106 
N/C N/C 63 M13 107 
Digital Ground GND Pry 64 Ki 1 79 
IvO synapse reference lv0ref 65 L12 93 
Output ramp Vrampop 66 L13 94 
Phase PLL in rip 67 K12 80 
Phase PLL out Fop 68 ill 73 
Gain PLLin rig 69 K13 81 
PLL reference current ipg 70 J12 74 
Gain PLLout rog 71 Jl3 75 
PLL reference voltage vig 72 Hit 67 
Integrator 0/P zero Vozint 73 1-112 68 
Weight load Vwt 74 H13 69 
0.5V Supply 0v5 75 G12 62 
1.5V Supply 1v5 76 Gll 61 
Vsz generator VszOUT 77 G13 63 
Voz generator Voz_out 78 F13 57 
syn buffer bias vbias 79 F12 56 
2.5V reference Vset2v5 80 Fl 1 55 
Zero weight reference Vtijz 81 E13 51 
PWM Comparator reference Iref_PW 82 E12 50 
mt Balance I IbaLint 83 D13 45 
mt tail I Itailint 84 Ell 49 
Synapse zero ref Vsz 85 D12 44 
Opamp tail current Itail_op 86 C13 39 
Opamp tail voltage Vtail_op 87 B13 26 
Digital Supply Vdd Pry 88 Dli 43 
N/C N/C 89 C12 38 
Digital Ground GND Pry 90 A13 13 

ILl] 

Table A-3. EPSILON II Pin out part ifi 
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[Description Name Pad # PGA SCM 

Analog Supply AVdd 91 Cli 37 
Preset control signal Preset 92 B12 25 
Neuron Output OUT3 1 93 Al2 12 
Neuron Output OUT30 94 CIO 36 
Neuron Output OUT29 95 Bi 1 24 
Neuron Output OUT28 96 All 11 
Neuron Output OUT27 97 B 10 23 
Neuron Output OUT26 98 C9 35 
Neuron Output OUT25 99 AlO 10 
Neuron Output OUT24 100 B9 22 
Neuron Output OUT23 101 A9 9 
Neuron Output OUT22 102 C8 34 
Neuron Output OUT2 1 103 B8 21 
Neuron Output OUT20 104 A8 8 
Neuron Output OUTI9 105 B7 20 
Neuron Output OUT18 106 C7 33 
Neuron Output OUT17 107 A7 7 
Neuron Output OUT 16 108 A6 6 
Output mode control PWM_select 109 B6 19 
Output mode control PFM_select 110 C6 32 
Control test output SR-check ill AS 5 
Refresh control signal refresh 112 B5 18 
Refresh clock 1 xphi2 113 A4 4 
Refresh clock 2 xphil 114 CS 31 
Digital Supply Vdd Pry 115 B4 17 
Analog Ground AGND 116 A3 3 
Digital Supply Vdd Pry 117 A2 2 
Network Input 131 118 C4 30 
Network Input 1N30 1 .19 B3 16 
Network Input ff429 120 Al 
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Table A-4. EPSILON II Pin out part IV 
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A.8 Summary of Chip Functionality 

Chip Number Comments 
Number of out- 

of-range 
neurons 

0 1 
1 3 
2 0 
3 - Originally working but damaged during testing 
4 4 
5 4 
6 - Not operational 
7 
8 3 
9 2 
10 3 
11 1 
12 4 
13 1 
14 4 
15 - Not operational 
16 3 
17 - Not operational 
18 4 
19 - Not operational 
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Table A—S. Summary of Chip Functionality 
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Minx Chip Design 

This appendix gives the schematic designs of Xilinx functional blocks. Additional information 
on Xilinx building blocks and chip configuration can be found in the libraries guide [118] and 
data book [117]. 
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67 Xiiinx Chip Design 

B.1 Top Level Design 
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Figure B—I: Top Level Design 
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Figure B-2: Top Level Core Design 
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B.2 Pulse Conversion 

Consists of five blocks: 

BINTO_PW for binary-to-pulse-width conversion. 
FIRE-PULSES to fire input and output ramps and drive pulse RAM. 
UP-DOWN-COUNTER to generate linear input ramp. 
EPSILADDRESSCOUNTER which clocks addresses for ramps and pulse RAM. 
PWJOBJN for pulse-width-to-binary conversion. 
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Figure B-3: Pulse Conversion Design 
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B.2.1 Binary to Pulse Stream Conversion 

Figure B-4: Binary-to-pulse stream Design 

The UP.DOWN_CTR begins counting on a run signal down from OxOFF to OxOO in steps 
of two, it stays at OxOO for one clock cycle then counts up from OxO I to OxFF then stops. 

Figure B-5: Up-Down Counter Design 
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Figure B-6: Address Generation and Control Design 

B.2.2 Pulse Stream to Binary Conversion 
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Figure B-7: Pulse-width-to-Binary Conversion Design 
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Figure B-8: Control State Machine Design 

This state machine controls pulse-width-to-binary conversion. Pulse-widths are processed 
sequentially by scanning pulse RAM (CE-ADD enables address generation in COUNT state) 
then writing the result into state ram (WRITE state). State RAM address counter is then 
incremented and (INC) process repeated until all states done (as defined by TC_STATE signal). 
For a recovery of analog inputs (recover) only analog inputs are processed as defined by mask 
register. 
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B.3 Weight Refresh 
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Figure B-9: Weight Refresh Design 
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Figure B-10: Weight State Machine Design 
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PUASE_ACTIVE 

Figure B—il: Two Phase Clock Generator Design 
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B.4 STE Interface 

Figure 11-12: STE Interface Design 

This block decodes addresses and produces select and write signals for various registers and 
RAM blocks memory mapped in the EPC. It generates the STE data acknowledge (DTACK) 
signal to indicate the completion of a bus cycle. 
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B.5 Control State Machine 

Figure 13-13: Control State Machine Design 

This state machine sequences EPC operations. It is triggered by bits in the control and 
status registers along with finish signals from the EPC functional blocks. It provides run 
signals for functional blocks and the main control signals for the EPSILON II chip. 
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EPC Documentation 

C.1 Parts List 

PART NO. DESCRIPTION QTY 

STECON STE BUS CONNECTOR 1 
M-TERM MOTHER BOARD SOCKET 2 
IDC40 40 WAY DC CONNECTOR 1 
XCHECK1 XCHECKER CONNECTOR 1 1 
XCHECK2 XCHECKER CONNECTOR 2 1 
0.1pF 0.1pFCAP 11 
XC4006 XIItINX XC4006PG156 FPGA 1 
74HC245 OCTAL BUS TRANSCEIVERS 4 
M5M5178-25 8192 X 8-BIT HIGH SPEED STATIC 6 
74HC688 8 BIT MAGNITUDE COMPARATOR 2 
27C256 32K X 8 UV EPROM CMOS 1 
JUMP4 4 WAY JUMPER 1 
JUMP 8 WAY GNDIVCC JUMPER 1 
SM-LED SMALL LED, INT RES 2 
0SC24 DIL OSCILLATOR 24.0'MHz 
ME8-47K 8 RESISTORS,9 PIN SR. 41K 1 
10K 10K 1/4W RESISTOR 
DUALSW DUAL DPDT SWITCH 
PB-SW PUSH BUTTON SWITCH N/O 2 

Table C—i. EPC Mother Board Parts List 
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PART NO. DESCRIPTION QTY 

TAP TAP POINT TERMINAL 7 
D-TERM DAUGHTER BOARD HEADER 2 
IDC20 20 WAY IDC CONNECTOR 
PWRCON POWER CONNECTOR 
33pF 33pF CERAMIC CAP 5 
O.lpF O.IpFCAP 19 
lpF-TANT 11iF TANTALUM CAP 9 
C CAPACITOR 2 
1PF5 I.5pF CERAMIC CAP 1 
82PF 82pF CERAMIC CAP 2 
1OPF IOpF CERAMIC CAP 2 
lOpF-TANT lOpF TANTALUM CAP 4 
EPSII PULSE STREAM NN 1 
LF347 QUAD FET INPUT OPAMP 2 
DG21 1 DG21 1CJ QUAD SPST ANALOGUE SWI 4 
AD7524 AD7524 8 BIT MULT DAC I 
EL244 QUAD VIDEO OPAMP 350V/pS SLEW 1 
DAC08 8 BIT HI SPEED DAC 2 
DG303 DG303ACJ DUAL SPDT ANALOGUE SW 
AD828 DUAL HIGH SPEED OPAMP 2 
JUMP2 2 WAY JUMPER 
LINK8 8 WAY LINKS 1 
1OKPOT 10K POT 12 
100RPOT IOOR POT 1 
1KPOT 1K POT 1 
5KPOT 5K POT 2 
LM337LZ Negative Voltage Regulator 
LM3 17LZ Positive Voltage Regulator 
MD4-2K2 4 2K2 RESISTORS,8 PIN SIt 2 
R 1/4W RESISTOR 9 
220R 220R 1/4W RESISTOR 2 

Table C-2. EPC Daughter Board Parts List 
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C.2 PCB Layout 
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Figure C—i: Mother Board PCB Layout 
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Figure C-2: Daughter Board PCB Layout 
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C.3 EPC Schematics 
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Figure C-3: Daughter Board Schematic 
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Figure C-7: Mother Board Schematic 
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C.4 Board Set-up Procedure 

The following procedures describe how to set up the EPC board for operation. 

C.4.1 Xilinx Microcode Selection. 

The microcode that determines the functionality of the Xilinx chip can be loaded into the chip 
from two sources: 

I. Xilinx Xchecker serial cable: This allows downloading and de-bugging from a SUN 
workstation via the Xchecker serial cable. To select this mode the mode switches are 
in the XCJ{K and DWN positions. The Xchecker cable is plugged onto connectors 
XCHK1 and XCHK2. 

2. On-board BEPROM: To load the Xilinx device from the on-board £EPROIVI the first 
switch is placed into the EEPROM position. A single EEPROM can store two possible 
configurations. Select switch to UP to load configuration from EEPROM address Ox0000 
select DWN to load configuration from EEPROM address Ox7FFF 

C.4.2 EPC Base Address Selection 

The base address is set using jumpers marked All—A18 these are set to 0 or I depending on 
position of jumper. 

C.4.3 Analog Supplies 

The two analog synaptic supplies as set using P0T11 (0.5V supply) and POT12 (1.5V supply) 
these can be monitored at tap points marked ANOVS and ANIVS and should be set to lmV 
accuracy. 

C.4.4 DAC Setup 

Weight Refresh DAC 

Apply a weight set consisting of weights of T,=000,Ox80 & OxFF. Adjust POTIO to give 
minimum weight voltage of 2.5V then adjust POT9 which controls gain to set T,3 =0x80 to be 
3.75V. T=OxFF should be close to 5V. 
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Ramp DACs 

Input ramp is adjusted by POT 13 to give 0-5V ramp. Output ramp is offset by POT 15 to start 
at 1 .OV and end at 4.OV. 

C.4.5 Analog References 

Potentiometers P1 to PS set the analog references, theses are monitored from the appropriate 
op-amp pins (see figure C-6) and set to: 

P1 VSZ set to achieve a lOps output pulse-width with zero weight and iüps input pulse. 

P2 VOZ set to achieve a iøps output pulse-width with zero weight and 0ps input pulse. 

P3 VTIjz set to 3.75V 

P4 Was set to 3.1OV 

PS Vt-op set to 1.60V 

P6 2V5 set to 2.500V 

P7 1VO set to 1.000V 

P8 Vig set to OV, not used for pulse-width circuits. 
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Abstract 

In this paper we examine the practical use of hardware neural 
networks in all autonomous mobile robot. We have developed a 
hardware neural system based around a custom VLSI chip, EP-
SILON Il l , designed specifically for embedded hardware neural 
applications. We present here a demonstration application of an 
autonomous mobile robot that highlights the flexibility of this sys-
tem. This robot gains basic mobility competence in very few train-
ing epochs using an "instinct-rule" training methodology. 

1 INTRODUCTION 

Though neural networks have been shown as an effective solution for a diverse range 
of real-world problems, applications and especially hardware implementations have 
been few and slow to emerge. For example in the DARPA neural networks study 
of 1988; of the 77 neural network applications investigated only 4 had resulted in 
field tested systems [Widrow, 1988]. Furthermore, none of these used dedicated 
neural network hardware. It is our view that this lack of tangible successes call be 
summarised by the following points: 

• Most neural applications will be served optimally by fast, generic digital 
computers. 

• Dedicated digital neural accelerators have a limited lifetime as "the fastest", 
as standard computers develop so rapidly. 

'Edinburgh Pulse Stream Implemenation of a Learning Oriented Network. 
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• Analog neural VLSI is a niche technology, optimally applied at the interface 
between the real world and higher-level digital processing. 

This attitude has some profound implications with respect to the size, nature and 
constraints we place on new hardware neural designs. After several years of research 
into hardware neural network implementation, we have now concentrated on the 
areas in which analog neural network technology has an "edge" over well established 
digital technology. 

Within the pulse stream neural network research at the University of Edinburgh, 
the EPSILON chip's areas of strength can be summarised as: 

• Analog or digital inputs, digital outputs. • Modest size. 
• Scaleable and cascadeable design. 	• Compact, low power. 

This list points naturally and strongly to problems on the boundamy of the real, 
analog world and digital processing, such as pre-processing/interpretation of analog 
sensor data. Here a modest neural network can act as an intelligent analog-to-digital 
converter presenting preprocessed information to its host. We are now engaged 
in a two pronged approach, whereby development of technology to improve the 
performance of pulse stream neural network chips is occurring concurrently with 
a search and development of applications to which this technology can be applied. 
The key requirements of this technological development are that devices must: 

• Work directly with analog signals. 

• Provide a moderate size network. 

. Have the potential for a fully integrated solution. 

In working with the above constraints and goals we have developed a new chip, 
EPSILON II, and a bus based processor card incorporating it. It is our aim to 
use this system to develop applications. As our first demonstration the EPSILON 
processor card has been mounted on all autonomous mobile robot. In this case the 
network utilises a mixture of analog and digital sensor information and performs a 
mapping between input/sensor space, a mixture of analog and digital signals, and 
output motor control. 

2 THE EPSILON II CHIP 

The EPSILON II chip has been designed around the requirements of an application 
based system. It follows on from an earlier generation of pulse stream neural network 
chip, the EPSILON chip [Murray, 1992]. 

The EPSILON II chip represents neural states as a pulse encoded signal. These pulse 
encoded signals have digital signal levels winch make them highly immune to noise 
and ideal for inter and intra-chip communication, facilitating efficient cascading of 
chips to form larger systems. The EPSILON II chip can take as inputs either pulse 
encoded signals or analog voltage levels, thus facilitating the fusing of analog and 
digital data in one system. Internally the chip is analog in nature allowing the 
synaptic multiplication function to be carried out in compact and efficient analog 
cells [Jackson, 1994]. 

Table 1 shows the principal specifications of the EPSILON II chip. The EPSI-
LON II chip is based around a 32x32 synaptic matrix allowing efficient interfacing 
to digital systems. Several features of the device have been developed specifically 
for applications based usage. The first of these is a programmable input mode. This 
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Table 1: EPSILON II Specifications 

EPSILON II Chip Specifications 
No. of state input pins 32 
Input modes Analog, PW or PP 
Input mode programmability Bit programmable 
No. of state outputs 32 pinned out 
Output modes PW or PF 
Digital recovery of analog I/P Yes - PW encoded 
No. of Synapses 1024 
Additional autobias synapses 4 per output neuron 
Weight storage Dynamic 
Programmable activity voltage Yes 
Die size 6.9mm x 7mm 

allows each of the network inputs to be programmed as either a direct analog input 
or a digital pulse encoded input. We believe that this is vital for application based 
usage where it is often necessary to fuse real—world analog data with historical or 
control data generated digitally. The second major feature is a pulse recovery mode. 
This allows conversion of any analog input into a digital value for direct use by the 
host system. Both these features are utilised in the robotics application described 
in section 4 of this paper. 

3 EPSILON PROCESSOR CARD 

The need to embed the EPSILON chip in a processor card is driven by several 
considerations. Firstly, working with pulse encoded signals requires substantial 
processing to interface directly to digital systems. If the neural processor is to 
be transparent to the host system and is not to become a substantial processing 
overhead, then all pulse support operations must be carried out independently of 
the host system. Secondly, to respond to further chip level advances and allow rapid 
prototyping of new applications as they emerge, a certain amount of flexibility is 
needed in the system. It is with these points in mind that the design of the flexible 
EPSILON Processor Card (EPC) was undertaken. 

3.1 DESIGN SPECIFICATION 

The EPC has been designed to meet the following specifications. The card must: 

• Operate on a conventional digital bus system. 

• Be transparent to the host processor, that is carry out all the necessary 
pulse encoding and decoding. 

• Carry out the refresh operations of the dynamic weights stored on the 
EPSILON chip. 

• Generate the ramp waveforms necessary for pulse width coding. 

• Support the operation of multiple EPC's. 

• Allow direct input of analog signals. 

As all data used and generated by the chip is effectively of 8-bit resolution, the STE 
bus, an industry standard 8-bit bus, was chosen for the bus system. This is also cost 
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effective acd allows the use of readily available support cards such as processors, 
DSP cards acd acalog acd digital sigi:al couditiocit:g cards. 

To allow the traLsparei:cy of operatioi: the card must perform a variety of functions. 
A block diagram indicating these functions is shown ii: figure 1. 

FPOA 

Figure 1: EPSILON Processor Card 

A substantial amount of digital processing is required by the card, especially ii: the 
pulse conversion circuitry. To conform to the Evzvcard stai:dard size of the STE 
specification an FPGA device is used to "absorb" most of the digital logic. A twin 
mother/daughter board design is also used to isolate sensitive analog circuitry from 
the digital logic. The use of the FPGA makes the card extremely versatile as it 
is now easily reconfigurable to adapt to specialist application. The dotted box of 
figure 1 shows functions implemented by the FPGA device. Al on board EPROM 
car : hold multiple FPCA coi:figurations such that the board can be reconfigured 
11
01: the fly". All EPSILON support functioi:s, such as ramp generation, weight 

refresh, pulse conversion and interface control are carried out on the card. Also the 
use of the FPGA means that new ideas are easily tested as all digital signal paths 
go via this device. Thus a card of new functioi:ality can be designed without the 
need to design a new PCB. 

3.2 SPECIALIST BUSES 

The digital pulse bus is buffered out ui:der control of the FPGA to the neural bus 
along with two control signals. Ilai:dshaking between EPC's is done over these lines 
to allow the transfer of pulse stream data between processors. This implies that 
larger i:etworks can be implemented with little or no increase it: computation time 
or overhead. A separate analog bus is included to bring analog inputs directly onto 
the chip. 

4 APPLICATIONS DEVELOPMENT 

The over-riding reason for the development of the EPC is to allow the easy develop-
ment of hardware neural network applications. We have already indicated that we 
believe that this form of neural technology will find its niche where its advantages 
of direct sensor interface, compactness and cost-effectiveness are of prime import-
ance. As a good and intrinsically interesting example of this genre of applications, 
we have chosen autonomous mobile robotic control as a first test for EPSILON II. 
The object of this demonstrator is not to advance the state-of-the-art in robotics. 
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Rather it is to demonstrate analog neural VLSI in all appropriate and stimulating 
context. 

4.1 "INSTINCT-RULE" ROBOT 

The "instinct-rule" robotic control philosophy is based on a software-controlled ex-
emplar from the University's Department of Artificial Intelligence [Nehmzow, 1992. 
The robot incorporates all EPC which interfaces all the analog sensor signals and 
provides the programmable neural link between sensor/input space and the motor 
drive actuators. 

a) Controller Architecture. 	 b) Instinct rule robot. 

Figure 2: "Instinct Rule" Robot 

The controller architecture is shown in figure 2. The neural network implemented on 
the EPC is the plastic clement that determines the mapping between sensory data 
and motor actions. The majority of the monitor section is currently implemented 
on a host processor and monitors the performance of the neural network. It does 
this by regularly evaluating a set of instinct isles. These rules are simple behaviour 
based axioms. For example, we use two rules to promote simple obstacle avoidance 
competence in the robot, as listed in column one of table 2 

Table 2: Instinct Rules 

Simple obstacle avoidance. I 	Wail following 
1. 	Keep crash sensors inactive. 1. 	Keep crash sensors inactive. 
2. 	Move forward. Keep side sensors active. 

Move forward. 

If all instinct rule is violated the drive selector then chooses the next strongest 
output (motor action) from the neural network. This action is then performed to 
see if it relieves the violation. If it does, it is used as targets to train the neural 
network. If it does not, the next strongest action is tried. The mechanism to 
accomplish this will be described in more detail in section 4.2. 

Using this scheme the robot can be initialised with random weights (i.e. no mapping 
between sensors and motor control) and within a few epochs obtains basic obstacle 
avoidance competence. 

It is a relatively easy matter to promote more complex behaviour with the ad- 
dition of other rules. For example to achieve a wall following behaviour a third 
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rule is introduced as shown in column two of table 2. Navigational tasks can be 
accomplished with the addition of a "maximise navigational signal" rule. An 
example of this is a light sensor mounted oil the robot producing a behaviour to 
move towards a light source. Equally, a signal from a more complex, higher level, 

navigational system could be used. Thus the instinct rule controller handles ba-
sic obstacle avoidance competence and motor/sensory interface tasks leaving other 
resources free for intensive navigational tasks. 

4.2 INSTINCT RULE EVALUATION USING SOMATIC TENSION 

The original instinct rule robot used binary sensor signals and evaluated perform-
ance of alternative actions for fixed and progressively longer, periods of time 
[Nehinzow, 1992]. With the EPC interfacing directly to analog sensors an improved 
scheme has been developed. If we sulli all sensors onto a neuron with fixed and 
equal weights we gain a iiieasure of total sensory activity. Let us call this somatic 

tension as all analogy to biological signal aggregation on Lite sonia. If we have 
an instinct violation and an alternative action is performed we call monitor this 
somatic tension to gauge the performance of this action. If tension decreases signi-
ficantly we continue the action. If it increases significantly we choose an alternative 
action. If tension remains high and roughly the same, we are in a tight situation, 

for example say a corner. In this case we perform actions for progressively longer 

periods continuing to monitor somatic tension for a drop. 

4.3 RESULTS AND DISCUSSION 

The instinct rule robot has been constructed and its performance is comparable with 
software-controlled predecessors. Unfortunately direct comparisons are not possible 
due to unavailability of the original exemplars and differing physical characteristics 
of the robots themselves. In developing the application several observations were 
wade concerning the behaviour of the system that would not have collie to light in 

a simulated environment. 

In any system including real mechanics and real analog signals, imperfections and 
noise are present. For example, in a real robot we cannot guarantee that a forward 
motion directive will result in perfect forward motion due to inherent asymmetries 
in the system. The instinct rule architecture does not assuflle a-priori knowledge 
such as this so behaviour is not affected adversely. This was tested by retarding 

one drive motor of the robot to give it a bias to one side. 

In early development, as the monitor was being tuned, the robot showed a tend-

ency to oscillatory motion, thus exhibiting undesirable behaviour that satisfies its 
instincts. It could, for example, oscillate back and forth at a corner. In a simulated 
environment this continues indefinitely. However, with real mechanics and noisy 
analog sensors the robot breaks out of this undesirable behaviour. 

These observations strengthen the arguments for hardware development aimed at 
embedded systems. The robot application is but an example of the different, and 
often surprising conditions that pertain in a "real" system. If neural networks are to 
find applications in real-world, low-cost and analog-interface applications, these are 
the conditions we must deal with, and appropriate, analog hardware is time optimal 

medium for a solution. 
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S CONCLUSIONS 

This paper has described pulse stream neural networks that have been developed W 
a system level to aid development of applications. We have therefore defined areas 
of strengths of this technology along with suggestions of where this is best applied. 
The strengths of this system include: 

Direct interfacing to analog signals. 

The ability to fuse direct analog sensor data with digital sensor data pro-
cessed elsewhere in the system. 

Distributed processing. Several EPC's may be embedded in a system to 
allow multiple networks and/or multi layer networks. 

The EPC represents a flexible system level development environment. It is 
easily reconfigured for new applications or improved chip technology. 

The EPC requires very little computational overhead front the host system 
and can operate independently if needed. 

A demonstration application of an instinct rule robot has been presented highlight-
ing the use of neural networks as an interface between real-world analog signals and 
digital control. 

In conclusion we believe that the immediate future of neural analog VLSI is in small 
applications based systems that interface directly to the real-world. We see this as 
the primary niche area where analog VLSI neural networks will replace conventional 
digital systems. 
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University of Edinburgh, the EPSILON chip's areas of 

strength can be summarised as: 
• Analog or digital inputs, digital outputs. 
• Compact, low power.  

• Moeleut size. 

• Stainable and cascadeable design,. 

'l'hia list points naturally and strongly to problems on the 
boundary of the real, analog world and digital proci rig, 

such as pre-procotsi rig/interpretation of analog sensor data, 
Item a modest neural network can act as all iutcIligrnt 
nnalog.to.dipiial convener presenting prellroccmeed infor,n-

ation to its host. It is our conclusion that this is an area 
where analog neural networks will make the meat signli. 

ficant impact. We are now engaged in a two pronged ap-
proach, whereby development of technology to improve the 
performance of poise stream neural network chips is occur-

ring concurrently with a seardi and development of apphic-
ations to which this led, nology call be applied. 

'the key re,juirinninut of this technological develojirnnot 
ire that devices must: 

• Work directly with analog signals, 
• Provide a moderate size network to procures data for 

further digital processing. 
• have the potential for a fully integrated solution. 
The nest section describes the EPSILON Il chip, or more 

specifically, the features of tile dliii that have been de-
veloped to make the hardware more amenable to use in 

real applications. The following section exalmlines the sys-
tern level considerations and the specifics of the EPSILON 
procestor card (El'C), a flexible environment for applic' 

ations and chip level development. Finally the nature of 
appropriate applications is discussed and a desm,onstration 

application of an au tonomnous mm,obile robot is presented. 

II. THE EPSILON II CHIP 

The EPSILON 11 chip has been designed around the ro-
qui cements of all upplitrition basal system. It follows on 
front all earlier generation of pulse stream lieu ral network 

d,i1,, the EPSILON chip141. 
The EPSILON II chip represents neural state, as a pulse 

encoded signal. 'these pulse encoded signals have digital 
signal levels which make theirs highly noise inlInlHine. nuid 
ideal for inter and intra-chip communication, facilitating 

efficient cascading of chips to fort,, larger systems. The 
EPSILON hI chip can take as inputs either pulse encoded 

signals or analog voltage levels, this, facilitating the fusing 

of analog and digital data in one system. Internally the 
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d,i1, is analog in nature allowing Lite synaptic inultiplic-

ation function I.o be carried out in compact and efficient 

analog c,d1451. 

EPSILON II Chip Specifications 

No. or state input pins 32 
Input itiode. Analog, PW or P1' 

Input mode prograininabili ty Bit 	,rograiiIlii able 

No. of state outputs 32 pinned out 

Output inodea PW or P1' 

Digital recovery of analog I/P Ye.- PW encoded 

No. of Synaa.m 1024 

Additional sufcbiou Rpol lsoug 4 per output t,eumii 

No. of weight load chan ids I 

Weight load timite 2.3mns 
Weight storage Dynamic 

Programii able activity voltage Ye. 

Maxi,nun, speed (cia) lO2AMcps 

Technology E52 l.Spnn CMOS 
1)1., dxc 6.9mm x 7mm 

Packaging 120 pin PGA 

Maximum power dissipation I 320mW 

TABLE I 

EPSILON II SPecIPICATIORS 

work inflate  to be trograni med as either a direct analog 

input or a digital pulse encoded input. We believe that 

Usk is vital for application based usage where it is often 

neciasary to fuse real-world analog data with historical or 

control daLa generated digitally. The second imiajor lea. 
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any analog iupu t into a digital value for direct use by the 

host system. Such is facility is necary if learning is to 

be ,lone wi thi the system in operation using say the hack 
propagation algorithm as input state values are needed for 

Insisting. 
Other con current work in the neural group in Edinburgh 

seeks to mimake future cities ''lore a,tpl ,l icat,on  friendly" , by 

15mg amorphous silicon for non-volatile weight storage (6] 

intl developing oli.cllip learning circuits to render chips 

,.core autonoimions171. 
An example of Lite characteristio, of the EPSILON It 

device is shown in figure 2. 'l'lmis plot shows the charac. 

Leristirs of an individual synapse/neuron on the chip, as a 

plot of output pulse width against Lite. input t range for van. 

otis weight Values This characteristic represents; it signific-

ant improvement over the and icr EPSI l'ON pulse streaimu 

mueural network cli p i• This hit provennent anisert front cart,-

fit I layout and ard,ittu cc cli angea while still using Lite. 

sante husaic circuits. 

'Able I shows ties principal specifications of the EPSI. 

LON II chip. The EPSILON II chip is based around a 

3202 synaptic matrix allowing efficient interfacing to di-

gital systems. A plot of Lite layout of the diii ,  (figure]) 

shows the structure of, and the signal flow within the chip. 

Several features of the device have been developed spec,flc-

ally for applications hiw.eel usage. 'l'h,e first of thue.e is a 

jirogranumitable input mode. This allows each of the lack, 

Pig. 2. CPSII.ON II Synaj.c Characueriatie.. 

Fig. 1. EPSILON II Chip l.ayou,u. 

Ill. EPSILON PROCESSOR CARD 

']'Its need to embed the EPSILON chip iii a proctasor 
card is driven by several considerations. Firstly, working 

with pulse encoded signals require, substantial processing 

to interface directly to digital systemmis. If the neural loo-  

roster is to be transparent to Lite host systeni and is not to 

Imecomne a substantial proce.sing overhead, then all pulsn 

support operations meat be carried out independently of 

the host sym.tenm. Sensually, to respond to further dmip level 

ad van Ce, an,I allow rapid prototyping or new applications 

as they emerge, a certain, amount of flexibility, is needed 

in the system. It is with there points in m,iind that the 

design of the flexible EPSILON Proceetor Card (L'PC) was 
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ii midertakeir - 

A . Design Spccifmcatiorr 

The EPC lies been demigned to rireet the following ape' 

ci ficatiomms. Time card imirist: 

• Operate or' a comrvcrrtiomral digital bus systemmm 
• Ile Lransparemmt to time boat procmaaor • that is carry out 

all the nececiary pulse encoding arid derodimig. 

• Carry out the refremim operations of the dymmarmric 

weights stored on Lime EPS1 ION chip. 

• Generate the ramimp waveforirms neceasary for pulse 

width coding. 

• Smipport tire operation of mnultiirle EPC'a. 

• Allow direct imm1muL of ammalog signals. 

As all data most amid generated by time chip is effectively 

of 8-hit remolutiomr, time Si'I- bus, or irimdmmatry standard 8. 

bit irrms, was clmcaesm for Lime hums system''. This is also cast 

effective mind allows tire mime of readily available aim 1mport 

r.armls sur.Im as proceaors, DSP cards aid analog amid digital 

signal conditioning cards. 

To allow time trammsparemmcy of operation time card must 

perform a variety of fmmmmctiomma. A block diagram indicating 

these functions is aimown ui figmm re 3. 

flg :m. EPSILON Processar Card 

A substantial am',oumrt of digital mrociseiing is reqnired by 

the card, empecialiy in Lime puise commvenmiomm circuitry. T. 

commforrmm to Lime Larocend standard site of Lime STE ape' 

cifmcatiomr mmmi F PC A device is mired to "absorb" immiat of 

time digital logic. A twin rmmotlmerfdamrghter board design 

is also used to isolate sensitive analog circuitry from the 

digital logic. 'ii,, iran of Lime Fi'CA makes time card cx-

raunchy versimtiie as it is flow easily recormfrgurable to adapt 

to specialist application. 'rime dotted box of figure :1 shows 
functions in;mlemnemmtcml by time F'PCA device. Arm on board 

EP flOAt cmiii hold mnmimltiphe F PC A comm Irgu rations such that 
Ill. hoard cam, he recommfrgured "omi time fly". All EPSILON 

support functions, smmcim an rammmlm generation, weight refresh, 

misc convention mmnd interface control are carried omit on the 

card. Also tire mac of tire EPC A Immeans that mmcmv ideas are 

easily toiLed as all digital sigmmal imatims go via this device. 

Thus a card of mmew functionality call be designed without  

time need to ahaigmm a 'mew PCII - 

U. Spvciaiisl Dusts 

The digital p mIsc bus is buffered out under control of the 

l"PCA to the neural bus along with two control signais. 

Ii armdsim at immg betweemm Ei'C'sisdone over timese ]man to 

allow time transfer of else strearmm data betweemm procmzaors. 

'l'imis implies that larger mmetworkscamr be 'mmmli ,  lemrrnmm ted with 

Mile or imo increase in comimu tation time or overimead. 

A separate analog bus is included to bring ammalog immputs 

directly onto time cup. 

C. bosoms birfcnsions. 

An all control ammd pulse atremsmmi signals are generated by 

tire FPGA the EPC stands ready to accept the nead gcmm-

ermmtiomm in time EPSILON clmitmset. By judicious chili design, 

cim is i mmcor1morating in-chip learning or mmomm.volutiie ammmalog 

storage currently being developeml it Edimiburgim (see (8)) 

will readily plug into time ErG for evaluation in a stable 

iromimimezit. 

IV. APPLICA'rIor4s 

't'iru over'r WI iamg reason For time devcloprmremm t of time E PC 
is to allow the easy deveiopmnent of hardware mmemrral llet. 

work apjmlicatiomis. We have already immd icmstcd tim it we lam-

have that this forum of rico ral technology will find its niche 
wimere its advantages of direct seomsor interface, compact-  

lames anal cost-effectivenmass are or prinmme immrportammce. As a 

good mmmmml intrinsically interesting r.xmmmmmfill. of this genre of 

im,rlmlicatiomms, we have cimoscmm amutommomnuous Immobile robotic 

commtrol as a first test for EPSILON II. The object of this 

demmmonstrator is mmot to ad vamuce time ante-of-tho-art ill 

imoties. Itather it is to denmonatrate analog mmeurul VLSI in 

all appropriate and stinmu lating commtex t. 

'lime rolmot itself is of a formam that coumid performmm simple 

Lanka (pipe-following, for example) in arm unknown cmlvi r-

on nmment, or have the ability to "get out of trormhle" wlmemm 

a higher-level camnera'haaeml control systsmn fails. The .1ti. 

umteressou for tire developanen t of time ETC is to allow time 

easy develoimmmrcut  of hardware mmeural network ap1mlicatiomus. 

A. 'insmincj" Rate Robot 

'lime "immstimmct'rule" robotic control rlmiiosoiIry is tmascel 

0mm is proven softwnre-commtrolled exemmrplar in tIme Uni-

versity'. Departmnmcut of Artificial lmmtelligemmcc Ill) (sec Fig' 

crc 4). 'lime robot will incorporate an ITC to immi plemnmemrt 

tire eememitial programmable neru ral link between time analog 

semmsors and time drive actuators that underpins time roimot's 

ad apti err behaviour. 

The original instinct- rule robot used two feelsm's Imuomi n-

ted at time fruit of the robot and a aimmmple detector omr time 

front (rca-rotating castor to register forward motion. 'lime 

fee icr's mmre im plemmmesmted as simple binary switches givimmg 

the robot an indication of obstacles in its patim. A lmsrd-

wiremi network deter,mminmus any instinct  rule violations, this 

then supplies a trnicing signal to time neural network lick-

ing sensor dmmta to drive motors to train time ametwork to 

avoid timase rule violations. Instinct-rules such as 

crrmslr semmsons i macti mw' "get boreal - clrammge direction" al-

low tire robot to l.ro corridor following. 'liii, additional 

use of Im istoricnl informmmation allows intern following tasks to 

In. acconmrplisimed. 
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Fig. I. lnstinct Rule RobeS 

A directional instinct allows the robot to carry oil t nav-

igational tasks. This could be ill Lite forrrr of following a 

light source. A plioto-aenrior irrourited on the robot together 

with Lite instinct rule 'leap light sensor active .,I be 

used to achieve this. A Iternati rely the directional in (ornir-

ationr 'Play cOflle frorir Borne higher level navigational cot.-
trol kr. iii this way the Lite insti nict rule controller handles 

all low ii eel iiehr.v ion r sucir ml avoid i rig olmtacle or dan-

gerous situations while a higher level controller determines 
navigational tasks. 

Our in ten tion is to cx tend the sensitivity arid range of 

sensors interfaced to the neural network and inncrease the 

scope of the instinct-rules. Using analog sensor data dir-

ectly means the use of more complex and numerous sensois 

Carl he easily aci,ieveel. 

V. Discossnon 

This paper has d iscuresed the use of pulse strean, hr-u ral 

networks inl practical app1 icatior,s. 'the paper has two Inlairn 

aim's: 

• To presienit new results froirs a novel analog rierrral chip. 

• To oiler reasoned oiii nioris regarding the opti oral lisa 

of lieu ml analog V 1.51. 

We have therefore defined areas ofatrcngtlis of tins tech-

rrology along with seggestiorrs of where this is best applied. 

To aid tire develojrrnent of practical applications the El'-

SILON II chip and the EPSILON Processor Card Iravebeen 

designed. '('tress rtiources have beers designed to process  

data on the boundary between 

Lite 

 analog real-world arid 

Lite digital world of conventional computing. 'the analog 

VLSI nature of the neural hardware iriake it cx trerniely ver-

satile for this type of purpe. Reasons for this include: 

I. Direct interfacing to analog signals.  

The ability to fuse direct analog sensor data with Ili.

gital sensor data Irrocouled elsewhere in the systemrr. 

Distributed processing. Several EPC'a Iriny lie Cut-

bedded it, It system to allow multiple networks arid/or 

mniulti layer networks. 

1. Speed. Cniurai, teed calculation tirurs (as per liable I). 

The speed of software solution. is not so read il) 

defined or achievable in a corr,ract unit. h'Iris has ins-

pI icatiorns for real-ti roe app] ,catiorrs, 

5. 'lIre EPC rejrruserils ri flexible systerir level develop-

inrent envirorririent. 
C. The EPC requires very little corirputationial overhead 

frorri tire linet systeiri and carr olrerate irideirnldently 

if neederl. 
7. The Iexihility of the EPC with Irlajor digital functions 

carried out it. rmograrrI r,rable logic Irrealis that it a. 
easily reconfigured for new applications or improved 

chin tedinology. 

It is errvisagenl that the robot control application of the 

EPC will be the first arrionrgst Iriarry. Further advances inn 

rron-volatile analog memory technology and on-chip learn-

i rig currently being investigated at Ed iribri rgh U r,iversity 

will further enhance the capabilities of our neural network 

VLSI. 
In cone1 usiorr we hal ieve that the irrirrimhiate future of 

nerr rid analog VLSI is in anirahl applications baaenl systems 
Lint irrterface directly to the real-world. We see this as the 

niche trim where the VLSI neural networks Lou continue 

iniost effectively will, corrveritiorral digital systerirs. 
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The EPSILON Processor Card: 
A Framework for Analog Neural Computation 

Geoff Jackson 

Department of Electrical Engineering 
University of Edinburgh 
Mayfield Bone), Elf!) 3J L 

United Kingdom 

Abstract 

714,5 paper presents new adt,a,,res in pi1st stream 
neural processing. These adranrcs are made possible 

by a new ,Ieunil chip EPSILON II' - EPSILON II is 
made using a standard digital t'52 process and though 
essentially analog in nature exhibit, process invari-

once. The new chip has bee,. designed specifically with 
a system:, level view in main d. The EPSILON Processor 

Can! (EPC) a powerful neunul processing tool with the 

EPSILON Ii chip at its heart is presented for the first 

time. Multiple EPC's con be used in parallet to imple-
macni lar7e networks and can take inputs directly from 

the anolog world. 
-p0  dc,nonst pate the flexibility of the PPC an im-

plementation of ta autonomous mobile ,obot is under 
construct, on using the card. 

1 Introduction 

Like their biological co.snterparla, pulse stream net-

work,. use pulse code ,r,odulatio,, to represent the 

neural siata of the tietwork. Over the yearn much 

macarch has been u,,drrtaken in this field, both at 

Edinburgh (1,2] and elsewhere, for eaasnple[a]. 

Pulse atreain networks offer o,,a,,y advat.tagcs wlieti 

applied to VLSI har.lwrsre iniplernentations. The ,a-

sentially digital levels of pulse streaaii signals render 

them largely ii,,,', U ne to noise-. 'lies, together with 

si,,iple buffering, make thcni ideal for inter- and intra' 

chip corniriunications. 

Ofr.onnie no advantage in engineering is without its 

ceet. Puils, streau,, systems, as with ally other ,nodu- 

eunaII: hjOce.ed.ae.uk  
Edinburgh Palac Stream lmplcnacntauia. sri a Lcansin5 

Oñenaatcd Network 

Alister llan,ilton and Ala,, F. Murray 

Department of Electrical Engineering 
University of Edinburgh 
Mayfield Road, Eli!) iii. 

United Kingdom i 

latiou scl,eiuze, requ ire. signals to he encodeil a,,,1 de-

coded to present amid recover infor,natio,i to and froiru 

the maitwork. The new chip, EPSILON II, and the 

EPSILON Prorsae.or Car,l (EPC) presented liens have 
luau, desig,,ed to ri.ate this process as traminparent as 

peesihle to the h,rnt system. 

It is envisaged that a,ualog VLSI neural ,,etworks 

will perform their neat useful tasks on the lioun dary 

l,etween the analog amid digital woe1,1. For this rsrsson 

EPSILON ai,d the EPC have the ah,ihity to fuse both 

digital and real won-Id analog data together to work oil 

this boundary. 'to deuno,,strate this approach the EP(' 

is heing used in a robotic control application fusing 

digital a,ud real-woe1,1 analog sensor data to carry out 

the task. 

2 The EPSILON It Chip 

The EPSILON II chip is a desce,,,lent of tl,e EPSI-

LON chip develoixul at the University of Edinburgh.. 

Internal circuitry of the chi1, operates on the same 

principlis of this earlier chip a,,d lisa beti, reported 

elaewhere{4J and only a brief sumul nary will be givem, 

here. The new feature. of the EPSILON If chi1, 

ire presented along with the diaracterisation results 

gai,,ed from,, the chip. A comparison with EPSILON 

L, also given. 

2.1 The EPSILON Synapse 

The synapse circuit incorporates a standard 

transcond nctanc,, nesltiphier previously used in ana-

log signal jur.cesideg applications(5j. Figure I shows 

the synapse circuit, llere the transistors hit and hI 2 

are operated in their linear region to prod urn an oil I.-

111,t current proportional to the weight voltage 'Ij - 
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This current is gated through M3 under control of the 

neural state, Vi c  to durrrp charge packets on a aninma-

Lion litre coirirrion to all synapses of a neuron. 

Figure I: The EPSILON Distributed Feedbark Syn-

apse. 

The transistors M4 le P15 along with the common 

op-amp forum a distributed feedback system whirl, en-

aim ens that d nfl n-source voltages of M I A P12 rermiain 

constant and equal. This baa the effect of cancelling 

u,on-linearitins in the transistors rnsponsns making I,,., 
linearly dependent on V,. and V,,'46). V., is a zero 

weight reference derived from automatic bias circuitry 

as described in (7]. V,, reprnsaints the combined activ-

i ty of the synapses at a Iiartir.n lar moment in time. 

'l'l,is voltage is integrated by a voltage integrator to 

produce the total synaptic activity. 

Figure 2: Synapse Multiplier Characteristics of 

EPSILON II. 

Figure 2 show diaracteriastion results of the EPSI-

LON II synapse. 'l'h,e figure shows the output pulse 

width over the input state range for different weight 

voltages. The figure demonstrates the excellent lin-

earity with respect to input state gained from the dis.  

trihuted feedback synapse. The plot represents air av-

erage of 50 excitations and the assoeiated standard 

deviations are essentially constant and of the order of 

12Uns. This characteristic represents a significant 

provemnent over time original EPSILON design (see (2)) 
due to judicious architectural 51,d analog performance 
i ,m.provem,rents immcorporated into EPSILON II - 

2.2 EPSILON Neurons 

When considering pulse stream systems, two nod-

imlation schemes spring naturally to nfl mmd, pulse width 

,undulation (PWM) and pulse frequency modulation 

(PPM). 
PWM is essentially syaclirommouis in nature as it en-

tails a fixed period. PPM on the other hand is asjsru-

clmrsnous. Neurons pet-forming both these mr,odulation 

schemes are incorporated in EPSILON II. The choice 

of which, modulation sclmesne is used depends greatly 

on the problem at hand. Time asynchronous, termmporal 

r.harmucteristics of PFM make it the adreuiie of choice 

for Feedback or recurrent networks. The synchronous 

r.haracteristics of PWM guarantee a maximum corn-

putation was thus musk mug it ideal for high speed, en-

petitious applications such mu vision proc.aei rig arid 

control. 

2.3 Pulse Width Neurons 

'lire resu lt of th e  nmultiplication of neural state by 

synaptic weight is a voltage stored on a capacitor. 

This voltage may he converted into a pulse width mod-

ulated signal by time use of a global ratump signal and 

comr,parator as shown in Figure 3. The use of a dual 

sloped ramp prevents a large number of synchronised 

awitchming transients, reducing power supply spikes and 
therefore noise within the device. \Vhrile this approach 

is simple and flexible - any neuron transfer dmaracter-

istic may be employed - it currently requires off-drip 

HAM arid DAC circuitry to generate the rammmp signals. 

2.4 Pulse Frequency Neurons 

The pulse frequency neuron circuit (Figure 1) uses 

• non'symrrmrmetrical differential input stage to perform 

• linear voltage to 5sigummoid" current coneeraion. This 

comnversion results in a "sigmnoid' activity voltage to 

drrty cycle neuron transfer characteristic. 

Phase lock loop tedmrriques have been employed (7, 

2) to fix the capacitor charge current, Ill, and therefore 

the output pulse width of the neuron to a constant I 

nmnicrosecond. 
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Figure 4: Pulse-Frequency Modulation Neuron 

The current, IL, determined by the d ifteretitial in. 

Put voltages is used to discharge the capacitor and sets 
LI,,, oh tput pulse spacing. 

A further cx tension of this circuit (not showir in 

Figure 4 for clarity, but i ir Ill enitentail on EPSI 1.0 N (7)) 

allows limited electronic gain control of the signitoid 

characteristic 'rang phase lock loop techniques. 

2.5 EPSILON II Input/Output Modes 

and Pulse Recovery 

We have already discussed EPSILON Ii's various 

output mode., that is either pulse width, or pulse Ire-

quwicy. The versatility of EPSILON II is further en-

hanced by offering a clinics of input nodes. The two 

d,oiceu offered are either a digital pulse stream in-

put or an analog voltage. Each input is individually 

progratiimn able to either of these modes to allow both 

aitrsloga,,d digital data to be/seed within the network. 

The pulse stream data can Im either PW or PP 

modulated. Its source can he pulse streams generated 

by other circuitry, other EPSILON II chipsor feedback 

connections train the current output state. to allow 

recui rrelu L configurations. The analcg input range is  

is voltage Iietweei, 0-5V. Inlerirally within the chili 

these value. are converted to pulse with tIn via a global 

ramp and comparator scheme similar to that usah in 

the pulse Width neuron (see section 2.3). 

In addition, the dull incorporate. a "pubs, recov-

cry" mode. This allows pulse widths front analog con-

versions to be fed off drip is the neuron outputs to 

recover tIre analog values. 'I'hua mmuultiple analog val-

ire. can he converted to digital for-in in parallel in a 

very efficient inamior, a highly desirable feature .vlien 

niany learn i rig algori thi mis require knowledge of input  

staten to operate. 

2.0 EPSILON II SPECIFICATIONS 

lire EPSILON II dii1n was fabricated using the 

Euror ,ea ,,  Silicon Structure. (ES2) ECPDIS (I .5;i,mr 

double nuetal n-Well) CMOs tioceet. The d inmiensionis 

of the EPSILON II chip were droser, to he 32 inputs 

by 32 outputs giving a synaptic array of 1024 syn-

antic connections. This configuration well chosen to 

enhance the ease with, which EPSILON II any he 

interfaced to external hardware while ,n aintain ing a 

"useful" size. A table showing the salient feature. of 

the EPSILON II device and comparing there with the 

original EPSILON chi1, is given in table I 

3 Neural Processing at System Level 

[.Lee look at the relationsli ii between analog VLSI 

neural networks in general, EPSILON in particular, 

and conventional comuuputinig: 

'lire EPSILON chip is aneural array. It contains (at 

resent) no in-built learning mnech anismn or algorithnu. 

At syste.uur level this overall control on how the network 
evolve. or learns is the responsibility of mne other 

conventional procing device. 

EPSILON can take as input direct analog signals. 

Fed through a trained network, EPSILON can Per. 

flour some type of classification, recognition or pre-

processing task and present its results in digital form. 

This data can be acted on by conuv,ntion al digital pro-

ort.orx or used run a starting Point for further pro-

cing, 'I'I,us at y.tuni level, the neural processor 

is only one hart of the whole. Ali exanrple of this 

systems level fra,nuework wherein the neural network 

residen is shown in figure 5 Choosing a standard bus 

system allows the use of cheap, powerful and readily 

available digital systems to be flexibly integrated with 

tIre neural hardware. 'lb inaxinnise the efficiency of 

audi a system tIme operation of the neural pnocesen,r 
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EPSILON Chip Specifications  

EPSILON I EPSILON II 

No. of State la1mt Pins 30 32 

No. of Actual State Inputs 120, M UX'd in banks of 30 32 

Input Modee analogue, PW or FE analogue, PW or PF 

Input Mode Programmability All analogue/All digital Bit programmable 

No. of State Outputs 30 Directly Pinned Out 32 Directly Pinned Out 

Output Moths PW or PP PW or P1' 

Digital Recovery of Analogue Inputs No Via- PW Modulated 

No. ofSynauiei 31100 1024 

Additional Aalsbias Synapsis None 4 per ouitpul. neuron 

No. of Weight Load Channels 2 

Weight Load 'lime 3.6ou, 2.3,:.. 

Weight Storage Dynairtic Dynamic 

Programmable Activity Voltage No Via 

Masiinurri Speed (cpa) :tGoMcps 102.414 cpa 

Thcliiiolo' l.5;mrn CMOS l.b;srii CMOS 

Die Size 11.5mm 	sc 	10.1 morn 6.9 mm 	x 	hum 

Packaging 144 pill PCA 120 pill PGA 

Maxiinnum, Power Dissipation 350mw 1 	310mw 

Table I: Comparison of EPSILON I arid EPSILON II Specifications 

inusL be transparent to the oat of the system, to this 

and the E PC has berm ilisigned. 

4 The EPSILON Processor Curd 

Flit principle overhead of a pulse streami I aysU-.rn 

arises frorii the large arliou it of data corrimmin a icstioni 

and data conversion that this iiiod ilation entails. T. 

prevent this heroin rig ti.e principle processing hot-

tler,eck hardware must he dedicated to supporting 

this pulse code nod elation and control such that the 

neural coin puLsation is transparent to the boat pro-

cesor. Other support functions riersstiary for oper-

ation, such as weight refresh and ramp gemieratino, 

nest also be handled locally. To this and the EP-

SILON processor Card (UPC) has been designed. 

4.1 Design Specification 

The EPC has been ,I.signed to meet the following 

specificatiomma: 

Operate on a comrves:lional digital bus system. 

• Be transparent to the boat processor, that is carry 

omit all the necitisary pulse encoding and dereal.

imig. 

• Carry at the refreihi o1ueratior,s of the 4311 ariuic 

weights stored on the EI'SI ION chip. 

• C a ... totta  Lii erainp waveforms necessary for pulse 

width coding, 

• Support the operation of multiple EPC's audi 
that larger networks or iruultilayer, networks cliii 

lie symitlmenised using pulse code corn mu nication - 

• Allow d red input of arralog sigrr als as an interface 

to the stat world. 

As all data mimes1 and generated by the clip is ef-

fictively of 8-bit resolution, the STE hug, an industry 

standard 8-hit bus, was chosen for the bus system. 

'Iiiis is also cost effective arid allows the use of readily 

available support cards audi as processors, LISP cards 

and analog iuid digital signal conditioning cards. 

To allow the transparency of operation the card 

imrust periorini a variety of functions. A block diagram 

indicating  these functions is shown in figure 6. 

A substantial airourit of digital procoai rig is re -

in ire'l by the card, especially in the pulse conver-

sioim circuitry. To confourk  to the ?uroca,d stand. 

ard size of the STE specification an EPO A device is 

used to asoaI  up roost of the digital logic. A twin 

muother/dauglmter hoard design is also used to isolate 

sensitive analog circuitry from the digital logic. The 
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Figure 5: A systenl level framework for neural prorAssi ng. 

use of the FPC,A makes the card extremely versat-

Ic as it isnow easily reconfigurable to adapt to sle-

cialist application. The dotted box of figure6 shows 

functions implemented by the FPGA device. An on 

Iloard EPROM call hold multiple FPCA configura-

tiolls such that tile hoard cal. he reconfigured 'oil the 

fly!' All EPSILON Ill pjlort flI nctiona, Ml d1 s ralllp 

generatioll, weight refresh pulse con version and inter-

face control are carried out on the card. Also the use 

of tile FPGA means that new ideas are easily tested 

as all digital signal paths go via this device. TillIs a 

ciarll of ilew functionality can he designed without the 

need to design a new PCI). 

4.2 Pulse Conversion Techniques 

The basic logic needed for the pulse width coliver-

siorl hardware is shows, in figure 7. For 32 channels 

of information as on the EPSILON II chip a parallel 

isripleinen tation of this would require 32x8-bit coil!,-

ters, i12x8-bit comparators Plus the ranip generator. 

Despite the fact that the Minx E'PCA used has the 

equivalent of approximately 5000 gates and 768 flip-

flos, a fully parallel iolrllesnelltatiorl is not practical. 

Thus a olultiplexiogscheme is used to carry out blocks 

of cooversiola. The FPC.A can be reconfigured to of-

fer the greatest degree of parallelism consistent with 

the control requ iremes,ts of any particular application. 

For the worst mule, that is a totally serial approach, 

a conversion takes 32x256 clock cycles or 341 jasat 
24M Hz. Done in Ilarallel blocks of 8 cllanoels the 
conversion takes S&ps.  

tieq Oe,ssnls, 

Figure 7: (a) Binary to pulse Width coliversion, (h) 

Pulse width, to binary conversion 

4.3 Specialist Buses 

The digital pulse hills is buffered out under control 

of the I"PC A to the neural has along with two 

too] signal. signals. Handshaking between EPC's is done over 

these lines to allow the transfer of pulse stream data 

between processors. This implies  tilat larger networks 

call be iruplen.ented with little or no increase in coin-

p tation time or overhead. 

A separate analog bus Is included to bring analog 

inputs directly onto the chip. 
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Figure 6: EPSILON Processor Card 

4.4 	Future Extensions. 
scausisious 

As all control and pulse streaiii signals are gener-
ated by the FPCA the UPC stands ready to accept the L J ,j 	nlPl,e 

[ next generation in the EPSILON chipset. By judicious als,hsoi,s'. 
chip (Isnigri 	chips incorporating osi-chip learning or 
nosi-volatile analog storage currently being developed 
at Edinburgh (see 8]) will readily plug into the E PC 
for evalna Lion in a stable env ionsnent. 

sI 

5 Applications 

The ulti ii ate reason for the ilevelopsssent of the 
EPC is to allow the easy development of hardware 
nesral network applications. The first test of this 
1lhilosopily is in autonomous mobile robotic control. 

5.1 "Instinct" Rule Robot 

The "institict-rllle" robotic control philosophy is 
issued on a software-controlled exemplar in the Uni-
versity's Department of Artificial intelligence [9] (see 
Figure 8). The robot will incorporate an EPC to 
implement the nsseiitial programmable iieurai link 
between tue analogue seilsors and the instinct rule 
base that underpins the robot's adaptive behaviour, 

'File original instirlcl.-rllhe roi,oI, used two fences 
mounted at the front of the robot and a simple sle-
I.ector Oil the front free-rotating castor to register for-
ward motion, 'i'lle feeler's are uisiplesnented as simple 
binary switchsn givi hg the robot all indication of 

	

A4 	 I 

	

nslveasrnjknlss 	 esleirlfl i-s,rnyn'rE elssfl 

Figlire 8: "Instinct Rule" Robot 

obstacles in its path. A pattern associator neural net-
work links the sensor data to the instinct-rule control-
ler. Instinct rules  such as "keep crash selisors in act-
ive" , "get bored - change direction" allow the robot 
to learn corridor following. The additional use of his-
torical information allows maze following tasks to lie 
accomplished. 

Our intention is to extend the sensitivity and range 
of sensors interfaced to the neural network and in-
crease the scope of the instinct-rnlas. For example, 
the use of force sensitive rosistors as Lead sensors will 
allow the isnplesrien tation of an Analogue feeler. The 
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'rae of a small camera or an array of photo-sensors and 

appropriate maLi net-rule, snOt as "keej, light sensor 

active" will allow the robot to learn tasks such as fol-

lowing a tight source. 

6 Discussion 

The EPSILON II chi1, amid time EPSILON Pro-
e.., Card hare been designed to procena data on 

the, boundary betweet, the analog real-world and the 
digital world of co,mvem,Lional coinmputing. The analog 

V I_SI nature of the lieu ral hard a'are make it extrenmely 

versatile for this type of purpose. Reasons for this in 

dude: 

- Direct interfacing to analogue signals without 

the raluiresrient for analogue-to-digital convert-

ers and aaalogue signal multiplexing. This baa 

iloplications for the size, speed and power con-
sumption of the system. 

The ability to fuse direct analogue sensor data 

with digital seilsor data proceoied elsewhere in 

the system. In the case of the robot application, 
this u n ty be historical sensor data or data conven-

tion ally procoised front a Ca liter a. 

II ardwi red neural algorithm. There is no require-

men I to proglsln the neural algorithmn in software 

as it is hardwired in VLSI. I.esnrrning is currently 
pe.rforl,med oil -ctiiin by ii insit JmroC0r. 

Distributed processing. Several EPC's 'tiny be 

eimdsedded in a systeim, to allow nmultiple networks 

amid/or multi layer networks. The real-time ap-

plications environment described stakes this an 

attractive possibility. 

Spool. Guaranteed calculation times defined in 

'I'iuble 1 in donna lions per second. 'I'he speed 
of software solutions i5 not so readily defined or 

arisievahle in a compact unit. This has i.nplica' 

Lions for real-time applicaLiotis. 

A flexible aystern level development environment 

tins evolved where additional EPC's call be easily 

incorporated to increase neural procisaing power. 

The EPC requires very little cormiputatiomial over-

head from the host systes,m allowing efficient solLi-

Lions to problems where a neural processor can 

perform significant portions of the coin putational 

proceening. 

It is esmvisaged that Lite robot control application 

of tIne EPC will be Lite first amongut rimasy. ']'he flux. 

thin meal-tune environment has been designed with this 

consideration,. I-b rthner advammcei in iron-volatile ana.

logmie inenmiory technology and on-chip learni ng cur-

rently being investigates] at Edinburgh University will 

further enhance the capahil ities of our neural network 

VLSI 
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