10,251 research outputs found

    Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

    Full text link
    The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms

    Old Wine in New Skins? Revisiting the Software Architecture for IP Network Stacks on Constrained IoT Devices

    Get PDF
    In this paper, we argue that existing concepts for the design and implementation of network stacks for constrained devices do not comply with the requirements of current and upcoming Internet of Things (IoT) use cases. The IoT requires not only a lightweight but also a modular network stack, based on standards. We discuss functional and non-functional requirements for the software architecture of the network stack on constrained IoT devices. Then, revisiting concepts from the early Internet as well as current implementations, we propose a future-proof alternative to existing IoT network stack architectures, and provide an initial evaluation of this proposal based on its implementation running on top of state-of-the-art IoT operating system and hardware.Comment: 6 pages, 2 figures and table

    Enhancing an Embedded Processor Core with a Cryptographic Unit for Performance and Security

    Get PDF
    We present a set of low-cost architectural enhancements to accelerate the execution of certain arithmetic operations common in cryptographic applications on an extensible embedded processor core. The proposed enhancements are generic in the sense that they can be beneficially applied in almost any RISC processor. We implemented the enhancements in form of a cryptographic unit (CU) that offers the programmer an extended instruction set. The CU features a 128-bit wide register file and datapath, which enables it to process 128-bit words and perform 128-bit loads/stores. We analyze the speed-up factors for some arithmetic operations and public-key cryptographic algorithms obtained through these enhancements. In addition, we evaluate the hardware overhead (i.e. silicon area) of integrating the CU into an embedded RISC processor. Our experimental results show that the proposed architectural enhancements allow for a significant performance gain for both RSA and ECC at the expense of an acceptable increase in silicon area. We also demonstrate that the proposed enhancements facilitate the protection of cryptographic algorithms against certain types of side-channel attacks and present an AES implementation hardened against cache-based attacks as a case study

    High Performance Spacecraft Computing (HPSC) Middleware Update

    Get PDF
    High Performance Spacecraft Computing (HPSC) is a joint project between the National Aeronautics and Space Administration (NASA) and Air Force Research Lab (AFRL) to develop a high-performance multi-core radiation hardened flight processor. HPSC offers a new flight computing architecture to meet the needs of NASA missions through 2030 and beyond. Providing on the order of 100X the computational capacity of current flight processors for the same amount of power, the multicore architecture of the HPSC processor, or "Chiplet" provides unprecedented flexibility in a flight computing system by enabling the operating point to be set dynamically, trading among needs for computational performance, energy management and fault tolerance. The HPSC Chiplet is being developed by Boeing under contract to NASA, and is expected to provide prototypes, an evaluation board, system emulators, comprehensive system software, and a software development kit. In addition to the vendor deliverables, the AFRL is funding the development of a flexible Middleware to be developed by NASA Jet Propulsion Laboratory and NASA Goddard Space Flight Center. The HPSC Middleware provides a suite of thirteen high level services to manage the compute, memory and I/O resources of this complex device.This presentation will provide an HPSC project update, an overview of the latest HPSC System Software release, an overview of HPSC Middleware Release 2, and a preview of the third HPSC Middleware release. The presentation will begin with a project update that will provide a look at the high-level changes since the project was introduced at the Flight Software Workshop last year. Next, the presentation will provide an overview of the current suite of HPSC System Software which includes the vendor provided bootloaders, operating systems, emulator, and development tools. Next, the HPSC Middleware progress will be presented, which includes an overview of the features and capabilities of HPSC Middleware Release 2, followed by a look at the reference flight software applications which utilize the Middleware. Finally, the presentation will give a preview of the HPSC Middleware Release 3

    Study on advanced information processing system

    Get PDF
    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter

    The laboratory telerobotic manipulator program

    Get PDF
    New opportunities for the application of telerobotic systems to enhance human intelligence and dexterity in the hazardous environment of space are presented by the NASA Space Station Program. Because of the need for significant increases in extravehicular activity and the potential increase in hazards associated with space programs, emphasis is being heightened on telerobotic systems research and development. The Laboratory Telerobotic Manipulator (LTM) program is performed to develop and demonstrate ground-based telerobotic manipulator system hardware for research and demonstrations aimed at future NASA applications. The LTM incorporates traction drives, modularity, redundant kinematics, and state-of-the-art hierarchical control techniques to form a basis for merging the diverse technological domains of robust, high-dexterity teleoperations and autonomous robotic operation into common hardware to further NASA's research
    corecore