6 research outputs found

    Comparative analysis of motion detection methods or video surveillance systems

    Get PDF
    In this paper, a motion detection module is proposed for real time dynamic video frames by comparing the three major classes of methods for motion detection namely Background Subtraction, Temporal differencing and Optical Flow method .A hierarchical background model is proposed based on segmenting the background images. The region model is extracted from the histogram of a specific region which is similar to the kind of a Gaussian mixture model. The pixel model is described by histograms of oriented gradients of pixels in each region based on the co-occurrence of image variations. Silhouette detection algorithm is proposed. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known motion detection methods namely Temporal differencing and Optical Flow method and based on the results a motion detection module for dynamic video frames can be developed which is cost effective, shows high rate of accuracy, low rate of complexity, and well adapt to different kinds of shadow distributio

    Contextual Hierarchical Part-Driven Conditional Random Field Model for Object Category Detection

    Get PDF
    Even though several promising approaches have been proposed in the literature, generic category-level object detection is still challenging due to high intraclass variability and ambiguity in the appearance among different object instances. From the view of constructing object models, the balance between flexibility and discrimination must be taken into consideration. Motivated by these demands, we propose a novel contextual hierarchical part-driven conditional random field (CRF) model, which is based on not only individual object part appearance but also model contextual interactions of the parts simultaneously. By using a latent two-layer hierarchical formulation of labels and a weighted neighborhood structure, the model can effectively encode the dependencies among object parts. Meanwhile, beta-stable local features are introduced as observed data to ensure the discriminative and robustness of part description. The object category detection problem can be solved in a probabilistic framework using a supervised learning method based on maximum a posteriori (MAP) estimation. The benefits of the proposed model are demonstrated on the standard dataset and satellite images

    Human Model Adaptation for Multiview Markerless Motion Capture

    Get PDF
    An approach to automatic modeling of individual human bodies using complex shape and pose information. The aim is to address the need for human shape and pose model generation for markerless motion capture. With multi-view markerless motion capture, three-dimensional morphable models are learned from an existing database of registered body scans in different shapes and poses. We estimate the body skeleton and pose parameters from the visual hull mesh reconstructed from multiple human silhouettes. Pose variation of body shapes is implemented by the defined underlying skeleton. The shape parameters are estimated by fitting the morphable model to the silhouettes. It is done relying on extracted silhouettes only. An error function is defined to measure how well the human model fits the input data, and minimize it to get the good estimate result. Further, experiments on some data show the robustness of the method, where the body shape and the initial pose can be obtained automatically

    Maximum variance hashing via column generation

    Get PDF
    With the explosive growth of the data volume in modern applications such as web search and multimedia retrieval, hashing is becoming increasingly important for efficient nearest neighbor (similar item) search. Recently, a number of data-dependent methods have been developed, reflecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality reduction algorithm—maximum variance unfolding, we propose a novel unsupervised hashing method, named maximum variance hashing, in this work. The idea is to maximize the total variance of the hash codes while preserving the local structure of the training data. To solve the derived optimization problem, we propose a column generation algorithm, which directly learns the binary-valued hash functions. We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.Lei Luo, Chao Zhang, Yongrui Qin, and Chunyuan Zhan

    Obstacle and Change Detection Using Monocular Vision

    Get PDF
    We explore change detection using videos of change-free paths to detect any changes that occur while travelling the same paths in the future. This approach benefits from learning the background model of the given path as preprocessing, detecting changes starting from the first frame, and determining the current location in the path. Two approaches are explored: a geometry-based approach and a deep learning approach. In our geometry-based approach, we use feature points to match testing frames to training frames. Matched frames are used to determine the current location within the training video. The frames are then processed by first registering the test frame onto the training frame through a homography of the previously matched feature points. Finally, a comparison is made to determine changes by using a region of interest (ROI) of the direct path of the robot in both frames. This approach performs well in many tests with various floor patterns, textures and complexities in the background of the path. In our deep learning approach, we use an ensemble of unsupervised dimensionality reduction models. We first extract feature points within a ROI and extract small frame samples around the feature points. The frame samples are used as training inputs and labels for our unsupervised models. The approach aims at learning a compressed feature representation of the frame samples in order to have a compact representation of background. We use the distribution of the training samples to directly compare the learned background to test samples with a classification of background or change using a majority vote. This approach performs well using just two models in the ensemble and achieves an overall accuracy of 98.0% with a 4.1% improvement over the geometry-based approach

    Exploratory search through large video corpora

    Get PDF
    Activity retrieval is a growing field in electrical engineering that specializes in the search and retrieval of relevant activities and events in video corpora. With the affordability and popularity of cameras for government, personal and retail use, the quantity of available video data is rapidly outscaling our ability to reason over it. Towards the end of empowering users to navigate and interact with the contents of these video corpora, we propose a framework for exploratory search that emphasizes activity structure and search space reduction over complex feature representations. Exploratory search is a user driven process wherein a person provides a system with a query describing the activity, event, or object he is interested in finding. Typically, this description takes the implicit form of one or more exemplar videos, but it can also involve an explicit description. The system returns candidate matches, followed by query refinement and iteration. System performance is judged by the run-time of the system and the precision/recall curve of of the query matches returned. Scaling is one of the primary challenges in video search. From vast web-video archives like youtube (1 billion videos and counting) to the 30 million active surveillance cameras shooting an estimated 4 billion hours of footage every week in the United States, trying to find a set of matches can be like looking for a needle in a haystack. Our goal is to create an efficient archival representation of video corpora that can be calculated in real-time as video streams in, and then enables a user to quickly get a set of results that match. First, we design a system for rapidly identifying simple queries in large-scale video corpora. Instead of focusing on feature design, our system focuses on the spatiotemporal relationships between those features as a means of disambiguating an activity of interest from background. We define a semantic feature vocabulary of concepts that are both readily extracted from video and easily understood by an operator. As data streams in, features are hashed to an inverted index and retrieved in constant time after the system is presented with a user's query. We take a zero-shot approach to exploratory search: the user manually assembles vocabulary elements like color, speed, size and type into a graph. Given that information, we perform an initial downsampling of the archived data, and design a novel dynamic programming approach based on genome-sequencing to search for similar patterns. Experimental results indicate that this approach outperforms other methods for detecting activities in surveillance video datasets. Second, we address the problem of representing complex activities that take place over long spans of space and time. Subgraph and graph matching methods have seen limited use in exploratory search because both problems are provably NP-hard. In this work, we render these problems computationally tractable by identifying the maximally discriminative spanning tree (MDST), and using dynamic programming to optimally reduce the archive data based on a custom algorithm for tree-matching in attributed relational graphs. We demonstrate the efficacy of this approach on popular surveillance video datasets in several modalities. Finally, we design an approach for successive search space reduction in subgraph matching problems. Given a query graph and archival data, our algorithm iteratively selects spanning trees from the query graph that optimize the expected search space reduction at each step until the archive converges. We use this approach to efficiently reason over video surveillance datasets, simulated data, as well as large graphs of protein data
    corecore