1,970 research outputs found

    A mathematical theory of semantic development in deep neural networks

    Full text link
    An extensive body of empirical research has revealed remarkable regularities in the acquisition, organization, deployment, and neural representation of human semantic knowledge, thereby raising a fundamental conceptual question: what are the theoretical principles governing the ability of neural networks to acquire, organize, and deploy abstract knowledge by integrating across many individual experiences? We address this question by mathematically analyzing the nonlinear dynamics of learning in deep linear networks. We find exact solutions to this learning dynamics that yield a conceptual explanation for the prevalence of many disparate phenomena in semantic cognition, including the hierarchical differentiation of concepts through rapid developmental transitions, the ubiquity of semantic illusions between such transitions, the emergence of item typicality and category coherence as factors controlling the speed of semantic processing, changing patterns of inductive projection over development, and the conservation of semantic similarity in neural representations across species. Thus, surprisingly, our simple neural model qualitatively recapitulates many diverse regularities underlying semantic development, while providing analytic insight into how the statistical structure of an environment can interact with nonlinear deep learning dynamics to give rise to these regularities

    Modular Neural Networks for Low-Power Image Classification on Embedded Devices

    Get PDF
    Embedded devices are generally small, battery-powered computers with limited hardware resources. It is difficult to run deep neural networks (DNNs) on these devices, because DNNs perform millions of operations and consume significant amounts of energy. Prior research has shown that a considerable number of a DNN’s memory accesses and computation are redundant when performing tasks like image classification. To reduce this redundancy and thereby reduce the energy consumption of DNNs, we introduce the Modular Neural Network Tree architecture. Instead of using one large DNN for the classifier, this architecture uses multiple smaller DNNs (called modules) to progressively classify images into groups of categories based on a novel visual similarity metric. Once a group of categories is selected by a module, another module then continues to distinguish among the similar categories within the selected group. This process is repeated over multiple modules until we are left with a single category. The computation needed to distinguish dissimilar groups is avoided, thus reducing redundant operations, memory accesses, and energy. Experimental results using several image datasets reveal the effectiveness of our proposed solution to reduce memory requirements by 50% to 99%, inference time by 55% to 95%, energy consumption by 52% to 94%, and the number of operations by 15% to 99% when compared with existing DNN architectures, running on two different embedded systems: Raspberry Pi 3 and Raspberry Pi Zero

    Towards a neural hierarchy of time scales for motor control

    Get PDF
    Animals show remarkable rich motion skills which are still far from realizable with robots. Inspired by the neural circuits which generate rhythmic motion patterns in the spinal cord of all vertebrates, one main research direction points towards the use of central pattern generators in robots. On of the key advantages of this, is that the dimensionality of the control problem is reduced. In this work we investigate this further by introducing a multi-timescale control hierarchy with at its core a hierarchy of recurrent neural networks. By means of some robot experiments, we demonstrate that this hierarchy can embed any rhythmic motor signal by imitation learning. Furthermore, the proposed hierarchy allows the tracking of several high level motion properties (e.g.: amplitude and offset), which are usually observed at a slower rate than the generated motion. Although these experiments are preliminary, the results are promising and have the potential to open the door for rich motor skills and advanced control

    Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

    Full text link
    In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.Comment: 6 page
    • …
    corecore