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Abstract. Animals show remarkable rich motion skills which are still
far from realizable with robots. Inspired by the neural circuits which
generate rhythmic motion patterns in the spinal cord of all vertebrates,
one main research direction points towards the use of central pattern
generators in robots. On of the key advantages of this, is that the dimen-
sionality of the control problem is reduced. In this work we investigate
this further by introducing a multi-timescale control hierarchy with at
its core a hierarchy of recurrent neural networks. By means of some
robot experiments, we demonstrate that this hierarchy can embed any
rhythmic motor signal by imitation learning. Furthermore, the proposed
hierarchy allows the tracking of several high level motion properties (e.g.:
amplitude and offset), which are usually observed at a slower rate than
the generated motion. Although these experiments are preliminary, the
results are promising and have the potential to open the door for rich
motor skills and advanced control.

Keywords: Locomotion Control Hierarchy, Adaptive control, Feedback
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1 Introduction

Animals show remarkable rich motion skills, they are able to run and walk over
uneven and difficult terrain without the need to think about breathing, muscle
control or low level sensory feedback processing. Instead, they think on a more
high level such as which obstacles are approaching and how they can avoid them.

According to [1], many aspects of brain functions can be explained by a
hierarchy of temporal scales at which representations of the environment evolve.
The higher level encodes slower contextual changes in the environment or body
while at the lower level faster variations due to sensory processing are encoded.

Other biological research suggests that specialized neural circuits, so called
central pattern generators (CPGs), located in the spinal cord are responsible for
generating rhythmic activations needed for body function including the contrac-
tions of a heart or lungs and control of muscles for walking [2]. Implying that
some aspects of brain functions are offloaded to regions outside of the brain. A
lot these findings are based on the study of the locomotion of a lamprey which is
a primitive fish (in [3] an extensive review is presented). For instance, researchers
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discovered [4] after extracting and isolating the spinal cord from the body, that
the spinal cord, when excited with electrical stimulations, will produce fictive
locomotion. This indicates that sensory information is not needed to generate
such rhythmic patterns. However, it plays a crucial role in shaping the generated
pattern to keep the coordination between the CPGs and the body. In [5] they
demonstrated that a mechanically driven treadmill can induce a normal looking
walking gait in a deprecated cat.

These findings suggest that locomotion can be represented by a hierarchy of
modules which interact with each other on different timescales which simplifies
high level control and at the same time allows fast action against perturbations.
For example, slight irregularities in the terrain are compensated very fast by
the morphology of the legs without the need of the brain to intervene. Larger
irregularities are handled by a slower reflex motion of which the runner becomes
finally conscious at the highest but slowest contextual level.

Biological research is often used to improve the abilities of robots. For exam-
ple, in [6] a salamander robot is controlled by a network of CPGs imitating the
spinal cord of a salamander. In this work we investigate a multi-timescale control
hierarchy applied on a robot leg. Each of the layers in the proposed hierarchy
uses a random dynamical system of which only the readout layer is trained (eg.
Reservoir Computing systems [7]). On the lowest level, the fastest timescale, the
passive compliance of the leg interacts with the environment. The leg is driven
by a pattern generator which generates learned rhythmic motor signals and gets
feedback from the rotary encoders in the leg. On the highest level, we use a
controller which reacts to slower contextual changes. This hierarchy separates
the motor commands from the functional control which is done by the high level
controller. Furthermore, by using a Reservoir Computing network on each layer,
we open the door for potentially rich motor skills and advanced control which is
topic for future investigation.

The remainder of this paper is structured in six Sections. In Section 2 we
start by giving a rough overview of the proposed hierarchical control scheme.
Next, in Section 3 we elaborate more deeply on the core technique used to build
our hierarchy. After that, the two main building blocks of our control hierarchy
are discussed in more detail. Afterwards, the hierarchy is validated by means of
three preliminary experiments in Section 6. Finally, we end this paper by giving
our conclusions.

2 Proposed hierarchy

In all vertebrates, neural circuits located in the spinal cord can be found that
are responsible for generating rhythmic activations used for locomotion. These
neural circuits are called Central Pattern Generators (CPGs) and are currently
modeled by roboticists to control robot locomotion. One of the key advantages
that can be identified is that these CPGs typically have only a few control
parameters and thus reduce the control problem [3].

In this work we propose the use of a hierarchical (artificial) neural system
for adaptive locomotion control. This system, illustrated in Fig. 1(a), consists of
two building blocks: a pattern generator and a controller. On the lowest level,
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Fig.1. (a) We present an overview of the control hierarchy. Our approach uses two
building modules working on different time scales. The first module, the pattern gen-
erator, operates at a fast time scale and gets feedback from fast varying sensors. The
parameters of the pattern generator are adapted by a controller, operating at a slower
time scale, which gets feedback about slowly variating motion properties. The environ-
ment is included to illustrate that very fast perturbations caused by interacting with
the environment are handled by the passive compliance of the leg. (b) Shows the actual
leg of the Oncilla robot build in the AMARSi consortium on which the experiments
were performed.

a pattern generator operates at a fast time scale and embeds a learned rhyth-
mic pattern which is given to the motors of the robot. The rotary encoders of
the motor system provide the pattern generator with direct feedback. Only en-
vironmental changes which are are unhandleable by the passive compliance of
the leg, will be visible for this encoder. On the highest level, and thus slower
time scale, the controller tunes the parameters of the pattern generator online
in such a way that it keeps track of the slow varying parameters of the result-
ing motor. To achieve this, the sensor information presented to the controller is
preprocessed by calculating for example amplitude and offset. As a result, the
proposed hierarchy operates at multiple time scales which allows the use of a
more advanced controller (which often acts slower) while the pattern generator
can be kept relatively simple and can immediately act on for instance perturba-
tions. In other words, the motor commands generated by the pattern generator
are separated from the functional control which is done on a higher level.

3 Reservoir Computing

The core technique used for each of the building blocks in our hierarchical control
approach is Reservoir Computing (RC). This is a collection of efficient training
methods for random dynamical systems in which only the readout weights are
trained [7]. In the past, RC has been independently introduced as Echo State



Networks [8] and Liquid State Machines [9]. In previous work, RC has already
proven its capabilities in a broad range of applications including robot localiza-
tion [10], chaotic time series prediction [11] and speech recognition [12]. Addi-
tionally, researchers are making efforts to directly implement such systems on
hardware [13].

The most commonly used flavor of RC is the Echo State Network approach
which uses a random recurrent neural network of sigmoidal neurons. Training
such a system starts by randomly creating the weight matrices Wigg, Wits, W
and WSS (these weights are usually drawn from a uniform or a normal distri-
bution) which respectively determine reservoir-to-reservoir, input-to-reservoir,
output feedback and bias weights. The reservoir weight matrix Wie is typi-
cally scaled such that the spectral radius, e.g. the largest eigenvalue, is smaller
than 1. This guarantees that the entire system is operating at the edge of chaos,
where its computational power is greatest [14]. Some learning paradigms, such
as FORCE learning [15], require that the spectral radius is larger than 1 as long

as additional inputs are able to restrain the system’s dynamics.

After constructing the weight matrices the network can be simulated. There-
fore, every time step, the neuron states are updated using the following equation:

x[k+1] = (1 - N)x[k] +
A tanh (ersx[k] WIS ulk] + WIS y[k] + WSS ) (1)

res inp u bias

The states x[k + 1] at time step k + 1 depend on the previous states x[k], input
ulk], a bias and the (optional) output feedback of the system y[k]. By changing
the leak-rate A, the system’s dynamics can be tuned effectively [8].

For training the output weights W' a learning algorithms is needed that

rapidly reduces the difference between the actual and desired output, and keep
it small while converging to a set of fixed output weights. The resulting weights
maintain a small error without further modification [15]. Recursive Least Squares
(RLS) is one of those learning rules that satisfy all conditions for FORCE learn-
ing. During training, the reservoir states are updated according to equation 1
while at every time step the readout weights W9 and the output y[k + 1] are
adjusted according following RLS equations:

y[k + 1] = W%k + 1] (2)

e[k + 1] - y[k + 1] — Ydesired [k + 1] (3)
B Px[k + 1)xT[k + 1]P

P =P T Pk 1) 4)

Wi = Wit —elk + 1|Px[k + 1]. (5)

Here e[k + 1] is the error at time step k+ 1 and P is an estimation of the inverse
of the correlation matrix. After training, the weights WL are kept fixed and the
system can be used. However, when online adaptation is necessary, it is possible

to train continuously.
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Fig. 2. The two main building blocks of our hierarchical approach. On the left (a) one
can see a schematic overview of a Reservoir Computing based pattern generator. The
rotary encoders in the robot leg are used for feedback. On the right (b) an overview of
the controller we use to modulate the pattern generator (the plant) is shown.

4 Modulatable Pattern Generator (MPG)

As we discussed in Section 2 the robot is controlled directly by a pattern gen-
erator which is able to imitate demonstrated rhythmic motions. The pattern
generator is implemented in a RC-network. In previous work we showed that by
using additional inputs, the generated patterns can be modulated [16]. This work
was extended in [17] by adding the capability to encode discrete and rhythmic
motion patterns into a single recurrent neural network as respectively a limit
cycle and a fixed point attractor. Typical parameters that are used for this
are summarized in Table 1. More recently, in [18] a new method to modulate
the shape of a learned rhythmical pattern was illustrated based on tuning the
bias weights of the neurons instead of using additional inputs. In summary: the
influence of adding a small bias to each neuron is determined after training.
Therefore, each neuron is perturbed separately with a small constant bias. After
perturbing each neuron, one can observe the influence of this on the properties
of the output signal. For each property that one wants to track, a control vector
can be composed which can be used to modulate the output signal. In this work
we will use this modulation approach to change the properties of the generated
signal. We only determine the control vector that influences the signal amplitude
and offset. More complex property transformations will be shown in future work.

5 Controller

In [19] and [20] we introduced a novel feedback controller which learns to control
a plant (dynamical system) by online learning an inverse plant model based on
real-time controlled plant-input/output pairs. In parallel, this preliminary model
is used to actually control the system, producing a new plant-input output pair



Table 1. Summary of all parameters in a pattern generating RC-network with their
typical values.

Parameter Description Value

N number of neurons 100 to 2000
A leak-rate 0.01 to 1

p spectral radius 0.99 to 1.5
1] bias weight variance Oto1l

w output feedback scale 0 to 10

@ learning rate, only FORCE learning case, 0.1

determines initialization of Pinit = i

which gradually improves the inverse model. At the core of this feedback con-
troller we use a RC-network to accommodate the inverse model. However, as
described in [20], any dynamical system with a high dimensional state represen-
tation can be used to accommodate such model as well. In this paper we apply
the same feedback controller (shown in Fig. 2(b)) to modify the bias vector to
MPG neurons, which are sensitive to the amplitude and offset of the generated
motion. Although the MPG is fully responsible for the produced motion, the
controller allows the MPG to track a desired amplitude and offset which are
changing more slowly compared to the position of the motor.

As shown in Fig. 2(b), the feedback controller uses two identical RNN of
which only the inputs differ. The output weights of Network A are trained (ap-
plying RLS) by observing plant-input/output pairs ((y(t —9), y(t)), (xz(t — 9))).
These output weights are used by Network B to produce a plant-input z(t) given
the actual and desired plant-output, y(¢t) and §(t + J) respectively.

6 Experiments

In this section we apply the discussed control hierarchy on a prototype robot
leg (of the Oncilla robot platform) which is developed in the AMARSi consor-
tium and shown in Fig. 1(b). This robot leg is controlled by a motor control
board which in turn is driven by a small computer. However, because of the
computational limitations of this onboard computer and to ensure the desired
communication timings, all calculations are offloaded to a much more suited
computational unit. In this work we want to demonstrate the above described
control hierarchy concept on a simple task. Although the control of multiple
servos is possible, we will limit the amount of controlled servos to 1. The robot
leg is controlled by a simple P-controller which converts the positions, generated
by the MPG, to a torque signal. However, to allow for changes in the robot dy-
namics to be visible in its motion, the used P-parameter is smaller than optimal
and the amount of torque is limited. In Table 2 we show the associated parame-
ters concerning the used feedback controller and MPG setup. Additionally, the
different timings are given at which each system is interacting with another sys-
tem. As mentioned before, the used feedback controller is interacting at a much
slower rate compared to the MPG’s control rate.



Table 2. Summary of all our setup parameters used in the experiments.

Parameter  Pattern generator Controller
N 500 500

A 0.14 1.

p 1.4 1.

«@ 0.1 0.01

time scale  20ms 100ms
input scaling 1.0 0.1

B 0.5 0.5
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Fig. 3. (a) Shows two different recorded motions together with the actual reproduction
by the robot leg. (b) Depicts the actual motion during offset control (top) together with
the desired and actual offset (bottom).

6.1 Learning by Imitation

By limiting the servo’s torque the robot leg can be back-driven, allowing the
demonstration of a given motion. In this work we impose a mixed sinusoidal
motion which afterwards is used to train the MPG-network. When training is
completed, the necessary gradient vectors to the MPG-neurons that affect the
amplitude and offset, are computed. In Fig. 3(a) the actual trained leg motion
is shown for two different imposed patterns which are shown as well. The first
pattern is a mixed sine pattern while the second motion is a sinusoidal pattern
with a slower and faster phase. The latter is similar as in a swing/stance phase
gait. Both resulting motions show a phase shift caused by integrating the robot
leg into the feedback loop. A change in the generated pattern has to propagate
through the dynamics of the robot leg, before the correct leg angle is visible for
the leg encoder. Because of the feedback loop, this variating delay eventually
affects the generated pattern. This illustrates that a higher level control is nec-
essary to modulate the pattern generator such that these dynamics are taken
into account.



06
04
02

. . 07 T T T T T T T
Desired amplitude
I Actual amplitude

Resulting motion
o
o
5

-0.2 ‘
ol

-0.6

1000 1500 2000 2500
Time k [Time steps]

o.

Normalized position
°
<
&

o 08f
]
058 1 035}
]

g

2 056 N
] Ramadanl e s S s SRR 03
Sosar [ N

052 4
Desired amplitude 025
L ) ampi ]
05 s Actual amplitude
: . 02

048 L L L L L L L L L L L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time k [Time steps] Time k [Time steps]

(a) (b)

d

Normal

Fig. 4. (a) Depicts the actual motion during amplitude control (top) together with
the desired and actual amplitude (bottom). (b) This plot illustrates how the proposed
hierarchy reacts to changes in the dynamics of the robot leg during amplitude control.

6.2 Motion Modulation by Controlling the MPG

After learning the recorded motion, the feedback controller is applied to mod-
ulate the amplitude and offset of the motion, which are only observable on a
slower time scale. As mentioned before, this can be achieved by controlling the
bias of amplitude/offset responsive MPG-neurons. Fig. 3(b) shows the desired
and actual offset which is controlled by the feedback controller. To control the
offset, the highest level of our proposed hierarchy was interacting with the MPG
every 100 ms (5 times slower than the interaction rate of the MPG). Fig. 4(a)
demonstrates a similar experiment but for amplitude control. Additionally, the
actual resulting positions are depicted at the bottom of both Fig. 3(b) and 4(a).

6.3 Adapting to Changes in Robot Dynamics

In the previous experiment we showed that the generated motion can be modu-
lated. However, we want to investigate the capability of the proposed hierarchy
to adapt to changes in the dynamics of the robot or in its environment. In our
experimental setup we are limited in introducing changes to adding weight to the
robot leg. We increase its mass by hanging an extra weight at the tip of the leg.
As a result, the amplitude of the motion will be reduced and the offset will move
closer to the lowest point of the leg. However, this switch in dynamics will cause
the inverse model of the feedback controller to adapt to these changes as well. As
a result, during amplitude control the amplitude will eventually converge again
to its desired value. In Fig 4(b) after 1500 time steps a mass of 100 g is added
to the leg. After adjusting its internal model, the controller start compensating
for the extra weight at time step 3000 by controlling the bias of the MPG.



7 Conclusions

Roboticists are often inspired by biology to improve the abilities of robots. One
of the main directions is the use of central pattern generators which reduce the
dimensionality of the locomotion control problem. Inspired by this, we proposed
the use of a multi-timescale hierarchical controller that uses random dynamical
systems for each layer. On the lowest level, a pattern generator is able to embed
any rhythmic signal. This pattern generator interacts directly with the motor of
the leg on a fast timescale. On the highest level, and thus slowest time scale, a
controller tunes the parameters of the pattern generator online such that it keeps
track of the slow varying parameters of the resulting motion. To achieve this, the
sensor information presented to the controller is preprocessed by calculating for
example the amplitude and offset. Since the controller acts on a slower timescale,
this controller can be very advanced and might consist of a very large random
dynamical system. On the other hand, the pattern generator is fast enough to
react immediately on small perturbations which can not be compensated by the
morphology of the robot (passive compliance).

By means of three preliminary experiments on the AMARSi Oncilla leg, we
validated the proposed control hierarchy. In a first experiment we showed that the
hierarchy is able to capture a (by hand) shown rhythmic motion pattern which
is embedded by the pattern generator. In the second experiment we illustrate
that the higher level controller is able to track slow varying properties such
as amplitude and offset, by only controlling the bias of the pattern generator.
Finally, in the third experiment, we demonstrated that the control hierarchy is
able to deal with new situations such as changes of the leg weight.

We are now planning to apply the proposed control hierarchy on the in the
AMARSI consortium developed quadruped Oncilla robot. We will mainly try to
tackle two problems: (1) controlling the stability of the robot by considering a
measure of stability as the slow control property to track, and (2) we will embed
multiple gaits for the Oncilla robot.
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