337 research outputs found

    A Dual Latent State Learning Approach: Exploiting Regional Network Similarities for QoS Prediction

    Full text link
    Individual objects, whether users or services, within a specific region often exhibit similar network states due to their shared origin from the same city or autonomous system (AS). Despite this regional network similarity, many existing techniques overlook its potential, resulting in subpar performance arising from challenges such as data sparsity and label imbalance. In this paper, we introduce the regional-based dual latent state learning network(R2SL), a novel deep learning framework designed to overcome the pitfalls of traditional individual object-based prediction techniques in Quality of Service (QoS) prediction. Unlike its predecessors, R2SL captures the nuances of regional network behavior by deriving two distinct regional network latent states: the city-network latent state and the AS-network latent state. These states are constructed utilizing aggregated data from common regions rather than individual object data. Furthermore, R2SL adopts an enhanced Huber loss function that adjusts its linear loss component, providing a remedy for prevalent label imbalance issues. To cap off the prediction process, a multi-scale perception network is leveraged to interpret the integrated feature map, a fusion of regional network latent features and other pertinent information, ultimately accomplishing the QoS prediction. Through rigorous testing on real-world QoS datasets, R2SL demonstrates superior performance compared to prevailing state-of-the-art methods. Our R2SL approach ushers in an innovative avenue for precise QoS predictions by fully harnessing the regional network similarities inherent in objects

    TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features

    Full text link
    Recently, with the rapid deployment of service APIs, personalized service recommendations have played a paramount role in the growth of the e-commerce industry. Quality-of-Service (QoS) parameters determining the service performance, often used for recommendation, fluctuate over time. Thus, the QoS prediction is essential to identify a suitable service among functionally equivalent services over time. The contemporary temporal QoS prediction methods hardly achieved the desired accuracy due to various limitations, such as the inability to handle data sparsity and outliers and capture higher-order temporal relationships among user-service interactions. Even though some recent recurrent neural-network-based architectures can model temporal relationships among QoS data, prediction accuracy degrades due to the absence of other features (e.g., collaborative features) to comprehend the relationship among the user-service interactions. This paper addresses the above challenges and proposes a scalable strategy for Temporal QoS Prediction using Multi-source Collaborative-Features (TPMCF), achieving high prediction accuracy and faster responsiveness. TPMCF combines the collaborative-features of users/services by exploiting user-service relationship with the spatio-temporal auto-extracted features by employing graph convolution and transformer encoder with multi-head self-attention. We validated our proposed method on WS-DREAM-2 datasets. Extensive experiments showed TPMCF outperformed major state-of-the-art approaches regarding prediction accuracy while ensuring high scalability and reasonably faster responsiveness.Comment: 10 Pages, 7 figure

    Outlier-Resilient Web Service QoS Prediction

    Get PDF
    The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.Comment: 12 pages, to appear at the Web Conference (WWW) 202

    A Location-sensitive and Network-aware Broker for Recommending Web Services

    Get PDF
    Collaborative Filtering (CF) is one of the renowned recommendation techniques that can be used for predicting unavailable Quality-of-Service (QoS) values of Web services. Although several CF-based approaches have been proposed in recent years, the accuracy of the QoS values, that these approaches provide, raises some concerns and hence, could undermine the real ”quality” of Web services. To address these concerns, context information such as communication-network configuration and user location could be integrated into the process of developing recommendations. Building upon such context information, this paper proposes a CF-based Web Services recommendation approach, which incorporates the effect of locations of users, communication-network configurations of users, andWeb services run-time environments on the recommendations. To evaluate the accuracy of the recommended Web services based on the defined QoS values a set of comprehensive experiments are conducted using a real dataset of Web services. The experiments are in line with the importance of integrating context into recommendations

    A Quality-of-Things Model for Assessing the Internet-of-Thing’s Non-Functional Properties

    Get PDF
    The Internet of Things (IoT) is in a “desperate” need for a practical model that would help in differentiating things according to their non-functional properties. Unfortunately, despite IoT growth, such properties either lack or ill-defined resulting into ad-hoc ways of selecting similar functional things. This paper discusses how things’ non-functional properties are combined into a Quality-of-Things (QoT) model. This model includes properties that define the performance of things’ duties related to sensing, actuating, and communicating. Since the values of QoT properties might not always be available or confirmed, providers of things can tentatively define these values and submit them to an Independent Regulatory Authority (IRA) whose role is to ensure fair competition among all providers. The IRA assesses the values of non-functional properties of things prior to recommending those that could satisfy users’ needs. To evaluate the technical doability of the QoT model, a set of comprehensive experiments are conducted using real datasets. The results depict an acceptable level of the QoT estimation accuracy

    Comparing time series with machine learning-based prediction approaches for violation management in cloud SLAs

    Get PDF
    © 2018 In cloud computing, service level agreements (SLAs) are legal agreements between a service provider and consumer that contain a list of obligations and commitments which need to be satisfied by both parties during the transaction. From a service provider's perspective, a violation of such a commitment leads to penalties in terms of money and reputation and thus has to be effectively managed. In the literature, this problem has been studied under the domain of cloud service management. One aspect required to manage cloud services after the formation of SLAs is to predict the future Quality of Service (QoS) of cloud parameters to ascertain if they lead to violations. Various approaches in the literature perform this task using different prediction approaches however none of them study the accuracy of each. However, it is important to do this as the results of each prediction approach vary according to the pattern of the input data and selecting an incorrect choice of a prediction algorithm could lead to service violation and penalties. In this paper, we test and report the accuracy of time series and machine learning-based prediction approaches. In each category, we test many different techniques and rank them according to their order of accuracy in predicting future QoS. Our analysis helps the cloud service provider to choose an appropriate prediction approach (whether time series or machine learning based) and further to utilize the best method depending on input data patterns to obtain an accurate prediction result and better manage their SLAs to avoid violation penalties
    • …
    corecore