3,162 research outputs found

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Fast Approximate KK-Means via Cluster Closures

    Full text link
    KK-means, a simple and effective clustering algorithm, is one of the most widely used algorithms in multimedia and computer vision community. Traditional kk-means is an iterative algorithm---in each iteration new cluster centers are computed and each data point is re-assigned to its nearest center. The cluster re-assignment step becomes prohibitively expensive when the number of data points and cluster centers are large. In this paper, we propose a novel approximate kk-means algorithm to greatly reduce the computational complexity in the assignment step. Our approach is motivated by the observation that most active points changing their cluster assignments at each iteration are located on or near cluster boundaries. The idea is to efficiently identify those active points by pre-assembling the data into groups of neighboring points using multiple random spatial partition trees, and to use the neighborhood information to construct a closure for each cluster, in such a way only a small number of cluster candidates need to be considered when assigning a data point to its nearest cluster. Using complexity analysis, image data clustering, and applications to image retrieval, we show that our approach out-performs state-of-the-art approximate kk-means algorithms in terms of clustering quality and efficiency

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201

    Balancing clusters to reduce response time variability in large scale image search

    Get PDF
    Many algorithms for approximate nearest neighbor search in high-dimensional spaces partition the data into clusters. At query time, in order to avoid exhaustive search, an index selects the few (or a single) clusters nearest to the query point. Clusters are often produced by the well-known kk-means approach since it has several desirable properties. On the downside, it tends to produce clusters having quite different cardinalities. Imbalanced clusters negatively impact both the variance and the expectation of query response times. This paper proposes to modify kk-means centroids to produce clusters with more comparable sizes without sacrificing the desirable properties. Experiments with a large scale collection of image descriptors show that our algorithm significantly reduces the variance of response times without seriously impacting the search quality
    • 

    corecore