4 research outputs found

    Vehicular Fog Computing Enabled Real-time Collision Warning via Trajectory Calibration

    Full text link
    Vehicular fog computing (VFC) has been envisioned as a promising paradigm for enabling a variety of emerging intelligent transportation systems (ITS). However, due to inevitable as well as non-negligible issues in wireless communication, including transmission latency and packet loss, it is still challenging in implementing safety-critical applications, such as real-time collision warning in vehicular networks. In this paper, we present a vehicular fog computing architecture, aiming at supporting effective and real-time collision warning by offloading computation and communication overheads to distributed fog nodes. With the system architecture, we further propose a trajectory calibration based collision warning (TCCW) algorithm along with tailored communication protocols. Specifically, an application-layer vehicular-to-infrastructure (V2I) communication delay is fitted by the Stable distribution with real-world field testing data. Then, a packet loss detection mechanism is designed. Finally, TCCW calibrates real-time vehicle trajectories based on received vehicle status including GPS coordinates, velocity, acceleration, heading direction, as well as the estimation of communication delay and the detection of packet loss. For performance evaluation, we build the simulation model and implement conventional solutions including cloud-based warning and fog-based warning without calibration for comparison. Real-vehicle trajectories are extracted as the input, and the simulation results demonstrate that the effectiveness of TCCW in terms of the highest precision and recall in a wide range of scenarios

    Using machine learning on V2X communications data for VRU collision prediction

    Get PDF
    The datasets presented in this study are available in Zenodo at https://doi.org/10.5281/zenodo.7376770 (accessed on 16 December 2022), reference number [23]. These datasets are the raw data used for the testing and training of the ML algorithms in this work.Intelligent Transportation Systems (ITSs) are systems that aim to provide innovative services for road users in order to improve traffic efficiency, mobility and safety. This aspect of safety is of utmost importance for Vulnerable Road Users (VRUs), as these users are typically more exposed to dangerous situations, and their vehicles also possess poorer safety mechanisms when in comparison to regular vehicles on the road. Implementing automatic safety solutions for VRU vehicles is challenging since they have high agility and it can be difficult to anticipate their behavior. However, if equipped with communication capabilities, the generated Vehicle-to-Anything (V2X) data can be leveraged by Machine Learning (ML) mechanisms in order to implement such automatic systems. This work proposes a VRU (motorcyclist) collision prediction system, utilizing stacked unidirectional Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (coupling the Simulation of Urban MObility (SUMO) and Network Simulator 3 (ns-3) tools). The proposed system performed well in two different scenarios: in Scenario A, it predicted 96% of the collisions, averaging 4.53 s for Average Prediction Time (s) (APT) and with a Correct Decision Percentage (CDP) of 41% and 78 False Positives (FPs); in Scenario B, it predicted 95% of the collisions, with a 4.44 s APT, while the CDP was 43% with 68 FPs. The results show the effectiveness of the approach: using ML methods on V2X data allowed the prediction of most of the simulated accidents. Nonetheless, the presence of a relatively high number of FPs does not allow for the usage of automatic safety features (e.g., emergency breaking in the passenger vehicles); thus, collision avoidance must be achieved manually by the drivers.This work has been supported by national funds through FCT—Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/00319/2020

    An intelligent intrusion detection system for 5G-enabled internet of vehicles

    Get PDF
    The deployment of 5G technology has drawn attention to different computer-based scenarios. It is useful in the context of Smart Cities, the Internet of Things (IoT), and Edge Computing, among other systems. With the high number of connected vehicles, providing network security solutions for the Internet of Vehicles (IoV) is not a trivial process due to its decentralized management structure and heterogeneous characteristics (e.g., connection time, and high-frequency changes in network topology due to high mobility, among others). Machine learning (ML) algorithms have the potential to extract patterns to cover security requirements better and to detect/classify malicious behavior in a network. Based on this, in this work we propose an Intrusion Detection System (IDS) for detecting Flooding attacks in vehicular scenarios. We also simulate 5G-enabled vehicular scenarios using the Network Simulator 3 (NS-3). We generate four datasets considering different numbers of nodes, attackers, and mobility patterns extracted from Simulation of Urban MObility (SUMO). Furthermore, our conducted tests show that the proposed IDS achieved an F1 score of 1.00 and 0.98 using decision trees and random forests, respectively, which means that it was able to properly classify the Flooding attack in the 5G vehicular environment considered

    A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics

    Get PDF
    This is an accepted manuscript of an article published by IEEE in IEEE Transactions on Intelligent Transportation Systems on 04/01/2022. Available online: https://doi.org/10.1109/TITS.2021.3138255 The accepted version of the publication may differ from the final published version.The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition’s outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.The authors would like to thank University Malaysia Pahang for providing the laboratory facilities and financial support under the University FLAGSHIP Research Grants (Project number RDU192203), International Matching Grant (No. RDU192704), and Postgraduate Research Scheme Grant (No. PGRS200325)
    corecore