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Abstract: Intelligent Transportation Systems (ITSs) are systems that aim to provide innovative
services for road users in order to improve traffic efficiency, mobility and safety. This aspect of
safety is of utmost importance for Vulnerable Road Users (VRUs), as these users are typically more
exposed to dangerous situations, and their vehicles also possess poorer safety mechanisms when
in comparison to regular vehicles on the road. Implementing automatic safety solutions for VRU
vehicles is challenging since they have high agility and it can be difficult to anticipate their behavior.
However, if equipped with communication capabilities, the generated Vehicle-to-Anything (V2X)
data can be leveraged by Machine Learning (ML) mechanisms in order to implement such automatic
systems. This work proposes a VRU (motorcyclist) collision prediction system, utilizing stacked
unidirectional Long Short-Term Memorys (LSTMs) on top of communication data that is generated
using the VEINS simulation framework (coupling the Simulation of Urban MObility (SUMO) and
Network Simulator 3 (ns-3) tools). The proposed system performed well in two different scenarios:
in Scenario A, it predicted 96% of the collisions, averaging 4.53 s for Average Prediction Time (s)
(APT) and with a Correct Decision Percentage (CDP) of 41% and 78 False Positives (FPs); in Scenario
B, it predicted 95% of the collisions, with a 4.44 s APT, while the CDP was 43% with 68 FPs. The
results show the effectiveness of the approach: using ML methods on V2X data allowed the prediction
of most of the simulated accidents. Nonetheless, the presence of a relatively high number of FPs
does not allow for the usage of automatic safety features (e.g., emergency breaking in the passenger
vehicles); thus, collision avoidance must be achieved manually by the drivers.

Keywords: vehicular communications; vulnerable road users; collision prediction; machine learning

1. Introduction

In Intelligent Transportation Systems (ITSs), road users can utilize communication
technologies to disseminate important information that allows the deployment of appli-
cations that can make driving more efficient (e.g., in terms of mobility or safety). Taking
safety as an example, these systems can range from basic solutions, such as the broadcast
of hazardous location warnings, to more complex ones, e.g., automatic collision prediction.

This aspect of safety is particularly important for Vulnerable Road Users (VRUs), since
these entities are usually more exposed to danger and casualties/fatalities, partly due to the
fact that their vehicles possess poorer safety mechanisms when in comparison to regular
vehicles. As defined by the European Commission [1], VRUs consist of pedestrians, cyclists,
motorcyclists and persons with disabilities or reduced mobility and orientation.

Safety systems for VRU vehicles (and in ITSs in general) tend to mostly utilize data
that come from sensors or similar advanced sensing systems (e.g., LIDAR and RADAR).
However, these systems have performance issues when their line of sight is partial or even
non-existent. This issue is aggravated when considering VRU vehicles, due to their high
mobility and smaller sizes, which makes their detection challenging to achieve. For instance,
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a motorcycle that is traveling on a road may not be detected by the sensing system if a
large bus is parked right in front of it (the VRU is in a blind spot). Thus, the implementation
of safety systems that are able to work in non-line-of-sight situations using, for instance,
Vehicle-to-Anything (V2X) communications, can have a great impact on road safety.

ABIResearch [2] indicates that more than 10 million vehicles will be able to use short-
range V2X communications by 2025 (if one considers cellular connectivity, that number
may grow to 364 million). Naturally, achieving such a vast usage of V2X communication
devices that are able to exchange important traffic data (information about the vehicle’s
themselves, traffic conditions, etc.) results in huge amounts of data that are generated with
high frequency.

Considering this, it seems pertinent to study whether this V2X data can be leveraged in
the context of Machine Learning (ML). ML techniques enable the development of systems
that have potential to improve traffic in general (both in terms of mobility and safety),
e.g., predict road entity movement, probabilities of collisions, etc.

The implementation of such systems is (naturally) only possible if these users possess
technologies that allow them to communicate with other generic road users. Even though
some VRUs may have communication capabilities (e.g., pedestrians using their smartphone
with cellular technologies), it is unlikely that they are able to communicate with other
road agents in a direct way, as vehicles are typically equipped with different technologies
(e.g., IEEE 802.11p). Nonetheless, regarding VRUs, motorcycles are fairly easy to equip
with communication devices similar to regular vehicles (using similar On-Board Units
(OBUs)). For this reason, motorcycles are the most appropriate subjects to use in the
research of automatic solutions for VRU collision prediction utilizing ML applied to V2X
communications data.

The proposed system is an extension of previous work conducted by the authors of [3],
where a VRU accident detection system (focused on motorcycles) is presented. The system
was built based on neuronal networks on top of simulated V2X communication data. Their
results show that the system was able to detect all accidents between passenger vehicles
and motorcycles on a intersection, averaging a detection time of 0.61 s. The detection
of an accident in such a narrow time window may enable the trigger of passive safety
mechanisms (e.g., calling an ambulance) or even some actions that aim to improve traffic
mobility by minimizing the effects of the collision (e.g., notify surrounding vehicles that
there is a collision on a nearby intersection). However, developing a system that is able
to predict collisions allows for more active safety measures (e.g., automatic emergency
breaking or notifying the driver of imminent danger). If such a prediction is achieved with
enough antecedence (i.e., the road users have enough time to take action), it could greatly
improve VRU safety.

This work presents a VRU (motorcyclist) collision prediction system, using ML technolo-
gies on V2X simulation data. The system proposes a solution to some of the aforementioned
problems: the lack of safety solutions that try to leverage V2X data, as RADAR/camera
systems do not work well in non-line-of-sight situations (unlike communications solutions),
and the improvement of VRU safety by predicting collisions using (ML) time series fore-
casting techniques. Via simulation (using the VEINS framework with Simulation of Urban
MObility (SUMO) and Network Simulator 3 (ns-3)) and subsequent data analysis, it is found
that our system is suitable for practice.

This paper is organized as follows: Section 2 reviews the state of the art; Section 3
describes the systems architecture; Section 4 discusses the simulation scenario; Section 5
describes the process of training and testing the ML models; Section 6 discusses the main
results of this work; Finally, Section 7 presents the main conclusions.

2. Related Work

Using ML solutions on V2X communications data can potentially improve traffic
efficiency [4], both in terms of mobility (e.g., by predicting traffic flow [5,6]) and also
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the safety of the road users (e.g., by detecting and classifying road anomalies [7] and/or
identifying crash risks [8]).

It is only natural and logical to try to apply similar techniques to VRU-focused safety.
Although these users can easily change their trajectory [9,10], the application of ML tech-
niques on environmental road data has the potential to predict their movement, classify
their behavior or even predict the probability of collision.

Schneegans et al. [11] forecasted future trajectories of VRUs (cyclists) using two prob-
abilistic trajectory forecasting methods: Quantile Surface Neural Networks and Mixture
Density Neural Networks. The chosen use case was related to overtaking cyclists, and the
authors relied on a trajectory dataset containing trajectories of cyclists crossing an intersec-
tion. Their results show that both methods issued well-calibrated and reliable confidence
regions. Nevertheless, the Mixture Density Neural Network was able to issue smaller (and
thus sharper) confidence regions, especially when considering higher forecasting horizons
and larger coverage probabilities.

Dogru and Subasi [12] focused on finding a way to reduce the frequency and severity
of traffic accidents by presenting an accident detection system that utilized V2V communi-
cations. Through this system, vehicles exchange their information (speed and coordinates)
and send traffic alerts, which can be leveraged by machine learning techniques to detect
accidents. Using SUMO to simulate traffic, the authors analyzed the Artificial Neural
Network (ANN), Random Forest (RF) and Support Vector Machine (SVM) algorithms to
evaluate their performance. Their results show that incidents can be regarded as outliers in
data and, for this reason, machine learning techniques can be used to detect them, allowing
later actuation, e.g., warning other vehicles about the incident. The RF algorithm was found
to perform better when compared to the ANN and SVM.

Komol et al. [13] used real data from Queensland, Australia, from 2013 to 2019,
to compare the performance of different machine learning algorithms when identifying
crash severity factors for different VRUs: bicyclists, motorcyclists and pedestrians. The RF
models performed best regarding the test accuracy (motorcyclist, 72.30%; bicyclist, 64.45%;
pedestrian, 67.23%; unified VRU, 68.57%).

The work of Vilaça et al. [14] aimed to identify risk factors for VRUs that can affect their
injury severity when involved in an accident. The model’s training involved the analysis of
records related to VRU crash data. The results indicate that the Decision Tree (DT) method
performed better than Logistic Regression (LR), as the model was more accurate for the
available crash severity data. Nonetheless, both methods were able to correctly classify
with relatively high accuracy.

Parada et al. [15] presented a VRU trajectory prediction system, using regression
algorithms on Cartesian coordinates. When using a Alternating Model Tree, the system was
able to predict the next position with negligible error (less than 3.2 cm). When predicting
the next five positions (1 s time gap between consecutive positions), the error increased
to 1 m.

Li et al. [16] proposed a machine learning method (a Support Vector Regression (SVR)
model) for the prediction of lane-changing impacts on traffic. Records related to trajectory
changes were obtained using the Next Generation Simulation (NGSIM) platform. Their
results show that the models were able to reliably predict the lane change impacts on traffic
safety and flow (based on the training and testing datasets). Furthermore, the authors
concluded that motorcycles conducted lane changes with highest safety risks (smaller gaps
and larger speed differences); trucks contributed to fewer but considerable crash risks
(although their lane changes resulted in the largest flow reductions); regular automobiles
were the safest vehicle type; and lane changes performed to the right had a more negative
impact on the traffic flow and crash risk (when in comparison to lane changes to the left).

Most of the relevant related works on ML solutions applied to VRU safety tend to
focus on data collected using sensors, cameras or similar devices, and not so much on data
gathered via V2X communication.
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Nonetheless, the implementation of collision prediction systems for VRUs utilizing
ML (either using sensor or communications data) requires heavy computation and large
amounts of storage for the training and testing of the models. Furthermore, the deployment
and usage of the model/application also requires very low latencies to allow the users
enough time to safely act on the predictions. As a safety application, it is critical that the
prediction is achieved within a reasonable time, including the exchange of information and
also the real-time analysis and treatment of such data.

A highly suitable solution for such a use case is utilizing the Fog Computing paradigm.
The usage of Fog Computing introduces great benefits in terms of low latency and mobility,
given that it performs tasks of computation, communication and storage near the edge of
the network [17]. By using a distributed network of devices, this paradigm of computing
(in comparison to more traditional Cloud architectures) brings applications and services
from the Cloud to the edge of the network, greatly reducing the transfer times and meeting
the demands of real-time applications (such as the short-term prediction of collisions).

Gomes et al. [18] presented an interesting and extensive survey on time-sensitive
applications in fog computing environments, classifying the surveyed articles into five
categories: the Fog Computing Concept, Faster Response, Low Latency, Data Streaming
Application and the Time, Delay or Latency Constraint.

Liu et al. [19] presented a hierarchical system architecture using both software-defined
networking and fog computing in IoV paradigms. The architecture consists of four lay-
ers: the application layer, the control layer, the virtualization layer and the data layer.
The system was tested by implementing two real-world environment prototype services:

See Through This service aims to share a real-time view of a front vehicle to its
following vehicles. The vehicle that intends to share its view registers
at the SDN controller using LTE. Then, based on the vehicle topology
(and registered services), the SDN controller notifies available services
to particular vehicles via control messages. Vehicles are then able
to request the services from the SDN controller using LTE. Once the
service starts, the video can be streamed from the provider to the
requesting vehicles using DSRC at the fog layer.

Collision Warning This service triggers warning messages when a potential collision
between two vehicles is detected. The SDN controller communicates
with vehicles via LTE. To support a large-scale and real-time service,
the computation and communication workload is offloaded onto the
fog server. The vehicle sends constantly up-to-date information us-
ing DSRC to the fog server (10 Hz), which then processes the data
and estimates whether there is a risk of collision: in positive cases,
the warning message is triggered and sent to the vehicles, which is
then displayed on a HMI (along with sound and vibration).

Liu et al. [19] proposed an infrastructureless architecture (fog-based) named PV-Alert
(Pedestrian–Vehicle Alert). In this architecture, the fog nodes process delay-sensitive data
(that are obtained from smartphones) and generate alerts for pedestrians and drivers when
an imminent collision is detected. The collected data are also sent to the Cloud for further
analysis. The proposed solution was evaluated using the ns-3 and SUMO simulation tools
(to simulate communications and mobility, respectively). The architecture was compared
to other (smartphone) VRU-related safety architectures, and the results show that it scaled
well and was reliable, while also providing low latencies.

3. Systems Architecture

As stated before, using Fog Computing brings many benefits in terms of latency and
mobility, which are of utmost importance for safety applications in ITS environments.
Furthermore, ML systems for ITSs may also benefit from the fact that it provides great
capabilities of computation, communication and storage near the edge users of the network,
while still meeting the tight latency requirements.
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Figure 1 shows the hierarchical architecture of the proposed system, following a Fog
Computing paradigm.

Figure 1. Systems hierarchical architecture.

As illustrated in the figure, the architecture is composed of three hierarchical layers:

Edge Layer This layer is the closest one to the end users (drivers/vehicles), which are
typically widely distributed in geographical terms. Most of the regular
vehicles that travel on the road are equipped with a large number of sensors.
The information that is collected by such sensors can be shared with other
entities on the road using OBUs with communication capabilities. This
information may be useful to other users in this layer, particularly for
Roadside Units (RSUs) on the Fog Layer.

Fog Layer This layer is situated on the edge of the core network. The nodes in this
layer (Fog Nodes) are also widely distributed; for instance, they can be
located in every intersection on the road. They are responsible for inter-
connecting the Cloud and the end users, which aim to obtain services from
these nodes. Additionally, they have ample capability to perform heavier
computation and to transmit/receive data (and also to process and store
it). The implementation of low-latency and real-time applications can be
achieved in this layer. Thus, this is the ideal location to deploy the models
for the prediction of collisions: the application can receive the data that
is disseminated from the surrounding vehicles, treat it (aggregate it) and
use it for the prediction of collisions. The Fog Nodes also connect with the
top layer (Cloud Layer) in order to obtain more powerful computing and
storage capabilities.

Cloud Layer The Cloud Layer consists of servers and storage devices that possess great
performance capabilities (powerful computation and ability to store huge
amounts of data) and can provide several services. An example of such
service is the prediction of collisions related to VRUs using ML application,
using the ability to store the data that is sent from the Fog Nodes on the
underlying layer and use it to (re)train the ML models.

An example of the deployment of the complete system is illustrated in Figure 2.
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Figure 2. Systems architecture: the Prediction of collisions related to the VRU use case.

In this architecture, each end device (vehicle) connects with a Fog Node, which is
located at a road intersection, using wireless access technologies (e.g., IEEE 802.11p).
The Fog Nodes can be connected to the Cloud using the IP core network.

The application of predicting collisions related to VRUs using ML can be divided into
two stages:

Offline At the first offline stage, it is important to collect sufficient data to parametrize,
train/test and deploy ML models, which will later be used for the prediction
of the collisions. The end users (vehicles) broadcast data with fast rates (for
instance, using Basic Safety Messages (BSMs) every 100 ms) that can be collected
by the Fog Node, which is placed at an intersection (acting as a RSU). These data
can then be treated and aggregated to be sent to the Cloud, which possesses
better capabilities to store the huge amount of data and uses it to train the
models, in this case, in a supervised manner. Thus, the Fog Node should also
complement the collected data with information related to collision history,
which is useful for the training process. When the process of training and
testing the model is finished, the resulting weights and models can be sent back
to the corresponding Fog Node in order to be deployed. This process should be
repeated for each Fog Node.

Online When the first stage is accomplished, a model can finally be deployed on a Fog
Node in order to start the prediction of the collisions. The Fog Node collects the
broadcasted messages, treats them and uses the compilation of data as the input
for the prediction of a possible collision. The resulting aggregated data are also
sent to the Cloud in order to be stored and later used for retraining purposes,
allowing the continuous tuning of the model. The weights resulting from the
retraining process are sent back to the Fog Node in order to update the model.
When a collision is predicted by a Fog Node, a message is disseminated to the
relevant end users to allow them to make an appropriate decision.

4. Use Case Scenarios

In order to establish the scenario and its requirements, several use cases from Euro-
pean Telecommunications Standards Institute (ETSI) standards were analyzed, such as
Collision Risk Warning from RSU from [20], Turning Collision Risk Warning from [21]
and, with particular emphasis, the Scooter/Bicyclist Safety with Turning Vehicle standard
from [22].
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This use case, illustrated in Figure 3, is described as a critical traffic situation, where a
vehicle makes a turn at an intersection and sees a scooter, which makes a collision between
the agents possible (the figure also presents alternative collision situations).

(a) (b)
Figure 3. (a) Scooter/Bicyclist Safety with Turning Vehicle Use Case; (b) Possible collision situa-
tions [22].

In this use case, there is a RSU present at the intersection that is equipped with both a
communication device and some form of sensor. This sensor is used to detect both the VRUs
and the vehicles, and the information is used to predict their path and compute possible
collisions. If an imminent collision is detected, the RSU broadcasts warning messages to
the vehicles in the area. The vehicle, upon receiving the collision avoidance message, takes
appropriate actions to avoid the accident.

In this example, the information that is used to feed the prediction mechanisms is
collected via sensors (e.g., camera). However, and as discussed before, this type of solution
may eventually perform poorly in situations where line of sight is non-existent or limited.
For this reason, we intend to study the feasibility of utilizing vehicular communications to
feed such prediction mechanisms. The proposed use case is described below:

Description A passenger vehicle makes a turn at an intersection and sees an approach-
ing motorcycle that intends to go straight on the road, which results in a
possible collision.

Actors In this scenario, there are the following actors:

1. Passenger Vehicle Equipped with an OBU;
2. Motorcycle Equipped with an OBU;
3. RSU Equipped with IEEE 802.11p and automatic

mechanisms for the prediction of possible
collisions, using ML.

Pre-conditions Passenger vehicles, motorcycles and one RSU are able to receive and
broadcast standard vehicular messages. The RSU vehicle possesses mech-
anisms for the automatic prediction of possible collisions between pas-
senger vehicles and motorcycles.

Triggers Motorcycle and passenger vehicle are close to the intersection; the motor-
cycle goes straight through the intersection; vehicles makes a turn at the
intersection, crossing roads with the motorcycle’s straight route.

Normal Flow
1. Passenger vehicles and motorcycles broadcast information using

standard vehicular messages;
2. The RSU receives the standard vehicular messages and collects the

data from those agents;
3. The RSU performs collision prediction using automatic mechanisms;
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4. The RSU broadcasts warning messages to vehicles in the area;
5. The vehicles receive the collision avoidance message.

Post-conditions Vehicles are alerted of potential collisions and take appropriate actions to
avoid or minimize the effects of collisions.

Scenario Simulation Implementation

Two scenarios, based on two use cases from Figure 3b (top right and bottom left),
were implemented in the simulation using the VEINS framework (which couples SUMO
and OMNeT++): the other models could not be implemented due to the limitations of the
SUMO simulator regarding collision behavior.

Concerning communications, all elements are communicating using IEEE 802.11p
technology (WAVE/DSRC stack), exchanging BSM-like beacons with a 10 Hz frequency
containing the following information:

• Station ID;
• Longitude;
• Latitude;
• Altitude;
• Heading;
• Speed;
• Acceleration;
• Vehicle Length;
• Vehicle Width;
• Vehicle Type.

The default (out of the box) communication parameters for the network interface cards
were used in the simulator. These parameters are presented in Table 1.

Table 1. OMNeT++ Network Interface Card, 802.11p, specific parameters.

Network Interface Card Parameters

Tx Power 20 mW
Bit Rate 6 Mbps
Min Power Level −110 dBm
Noise Floor −98 dBm

Decider
Decider80211p Center frequency = 5.89 GHz

Analogue Model
SimplePathlossModel α = 2.0

These messages are gathered by a RSU for 24 h of simulation and compiled into a
dataset: each simulation run (and seed) results in a different dataset. Fifty simulation
runs were used to compile the final dataset, which was later used by the models—80% for
training, 10% for validation and 10% for testing. The resulting datasets are available at
https://zenodo.org/record/7376770 [23] (accessed on 1 December 2022).

5. Collision Prediction System

The proposed use case is highly characteristic in terms of temporal concerns. This
issue makes traditional ML models unsuitable to solve the problem, due to the sequence
dependence among the input variables and the fact that they do not consider the time
aspect at all. This was noticeable in the first iteration, in which several common ML
prediction models were chosen for initial training and testing: Logistic Regression, K-
Nearest Neighbors, Gaussian Naive Bayes, Support Vector Machines and Artificial Neural
Networks. The algorithms were used to determine whether the records belonged to a
collision or not, all achieving accuracy values above 80%. Although, at a first glance,
the high values of the metrics may sound promising, the solutions were in fact very

https://zenodo.org/record/7376770
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poor. Since there are only a few collisions occurring during the simulation (they are rare
events), only a few thousand messages are effectively labeled as true (in a universe of
several hundreds of thousand of messages). For this reason, the dataset is considered to
be imbalanced: too many messages labeled as false when in comparison to the ones labeled
as true. This helps to explain why the algorithms have high levels of accuracy at this
point: even if the models classify every single record as false, the accuracy is very high,
because only a small subset of the records is being classified inappropriately. Regarding the
collisions classification itself (the problem that is to be solved), all models performed badly
and were not able to classify properly. As the traditional models performed far worse than
expected, a different technical approach is required in order to solve the problem, namely,
time series forecasting.

The core idea of time series forecasting modeling is to examine data from a time
perspective, defining patterns and predicting (over the short- or long-term) how target
variables will change in the future. In other words, time series forecasting is a process of
using historical and current data to predict future values (over a period of time or at a
specific point in the future).

A highly suitable deep learning model for this type of use case is Long Short-Term
Memory (LSTM). LSTM models have the capability to hold information for long periods of
time: information that is learned early on can still impact the model’s decision later. The
key idea of a Long Short-Term Memory (LSTM) cell is build upon the usage of three gates
(weighted functions that govern the information flow and state):

Input Gate Takes input and processes newly incoming data (updates the internal state
based on the current input).

Forget Gate Decides what information to discard from the internal state.
Output Gate Takes all calculated results and decides what to output based on the input

and internal state (i.e., which information is passed on to the next state).

In order to implement a term of comparison, the usage of Multilayer Perceptrons
(MLPs) was also tested, since they tend to perform well with tabular datasets and in
classification problems where the inputs are assigned a label (in this case, collision or not in
collision). However, and after several runs of training and testing, one could conclude that
the MLPs performances were poorer and, for this reason, the results ended up not being
included in this discussion.

As stated before, another key aspect of the proposed scenario is that collisions are
rare events: data are imbalanced. First, in order to try to overcome this issue, different class
weights were estimated—the model’s loss function was assigned a higher value compared
to the positive instances, which are rarer. However, later on, a different solution was tested
that undersampled the negative cases. This method outperformed the first, and was also
very useful due to the fact that the collection of training data was extensive, which made
the learning process slow and heavy in terms of computation. Hence, data were truncated
on those large periods of time where no collisions occurred. Different time windows (750 s,
1000 s, 1500 s, 2000 s and 2500 s) were tested, e.g., keep 2000 s before and after every
collisions, while removing the remaining information.

Furthermore, the datasets consist of (singular) messages that the vehicles were dis-
seminating (through the use of communications), collected by a RSU at an intersection.
However, performing the classification requires the model to be aware of changes in the
whole environment in order to make informed decisions. Therefore, to solve the problem of
possessing a large collection of singular data, the messages were aggregated in a temporal
fashion: all messages within 1 s were compressed into a single record. Different meth-
ods were tested for this aggregation (min, max, sum and average), but the sum method
outperformed the others. When comprising the information, Station ID, Vehicle Type
and Timestamp were removed as features, as they did not make sense when aggregated.
Elevation was also removed, as every value was equal to zero in this particular simulation
scenario; hence, it did not make sense to use it in the model. Finally, a new feature was
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added—Vehicle Count—which indicates how many vehicles sent messages during that
particular second.

Different variations of LSTM models were explored: first, a model with one LSTM
layer was tested, then a model with two unidirectional LSTM layers, then two unidirectional
LSTM layers with dropout (to prevent overfitting), and similar configurations. The solution
that had the best performance consisted of a multivariate, multistep, stacked, unidirectional
model that used three hidden LSTM layers and two dropout layers, with all features being
used in the input layer. A summary of the models is illustrated in Figure 4 (using, as an
example, the A6 Run with five steps).

Figure 4. LSTM model summary—A6 Run (five multisteps).

Table 2 presents the remaining hyperparameters used to build the models. In this
case, no optimization method was used. The usage of Grid Search was very costly in
computational terms (which made it unfeasible) and Random Search eventually resulted in
similar results in terms of typical metrics (e.g., accuracy, precision, recall), but worse results
in terms of the accident prediction in the analysis after the training and testing processes.

Table 2. LSTM model hyperparameters.

Model Hyperparameters

LSTM Layers Activation Function tanh
Dense Layer (Output) Activation Function sigmoid
Dropout Layers rate = 0.3
Optimizer adam
Loss function binary_crossentropy
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The models were developed using the tensorflow framework [24] (version tensorflow-
gpu 2.4.1). A Python script was developed to perform all of the aforementioned steps.

The pseudocode is illustrated as follows:

Regarding the model fitting process (which went up to a maximum of 1000 epochs),
two different callbacks were defined:

ModelCheckpoint Used to save the weights of the model into a checkpoint file. This is
useful so the weights can be loaded later to continue the training from
the saved state.

EarlyStopping Useful for stopping the training when a monitored metric is no longer
improving. In this case, the callback monitors the validation loss metric,
with a patience of 20 epochs for improvement.

6. Results

This section describes the results from the training and testing of the models, which
were performed in an iterative fashion. First, different sets of parameters (Time Windows,
Batch Size, Neurons and Timesteps) were tested for one-step ahead forecast, which, in this
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case, means forecasting one second into the future. Then, only the best set of parameters
(Correct Decision Percentage (CDP) higher than 33%; this metric is further discussed below)
were then used to perform multistep forecasting. This approach has the disadvantage of
possibly not presenting optimal results. It is possible that some other set of parameters
could eventually perform better. This decision was related to practical reasons: performing
training and testing on all sets of possible parameters is highly consuming, both in terms of
time and computation.

Table 3 presents the best results achieved for both scenarios regarding the one-step
ahead forecast.

Table 3. One-Step Ahead Forecast Results, Part I. Legend: TW—Time Window; BS—Batch Size; N—
Neurons; TS—Timesteps; PC—Predicted Collisions; CPP—Collision Prediction Percentage; FP—False
Positives; CDP—Correct Decision Percentage.

Run TW BS N TS Precision Recall F-Beta PC CPP FP CDP

Scenario A

A1 2000 256 10 10 0.9981 0.9990 0.9985 38 67% 39 40%
A2 2000 128 32 10 0.9979 0.9993 0.9986 41 72% 27 49%
A3 1500 256 32 15 0.9986 0.9990 0.9988 42 74% 20 55%
A4 1500 128 32 20 0.9986 0.9825 0.9905 40 70% 30 46%
A5 2000 128 64 15 0.9977 0.9983 0.9980 41 72% 36 44%
A6 1500 256 64 20 0.9979 0.9992 0.9986 44 77% 36 47%
A7 2000 256 64 10 0.9981 0.9991 0.9986 37 65% 22 47%

Scenario B

B1 1500 128 32 10 0.9981 0.9993 0.9987 41 72% 52 38%
B2 2000 128 32 15 0.9982 0.9994 0.9988 41 72% 34 45%
B3 2000 128 32 20 0.9978 0.9991 0.9984 43 75% 42 43%
B4 1500 128 64 15 0.9981 0.9992 0.9987 35 61% 27 42%
B5 1500 256 64 20 0.9984 0.9990 0.9987 36 63% 18 48%
B6 2000 256 64 20 0.9985 0.9990 0.9988 37 65% 15 51%
B7 1500 256 64 10 0.9978 0.9992 0.9985 44 77% 54 40%

The first part on the table (on the left side) presents the set of parameters used on
the corresponding run. Then, the middle section presents some partial results of the
Model.evaluate() function (available on the Tensorflow built-in API), which returns both the
loss and metric values of the model after testing (using the test dataset).

In this use case, it is not possible to simply decide which models perform best based
on typical metrics such as Accuracy or Precision, Recall or F-Beta: all values were very
close to 1 (100%). Hence, a more in-depth analysis was performed using Microsoft Excel
(results visible on the right section of the table). The most important metrics are, in the
first instance, the Collision Prediction Percentage (CPP) (number of collisions from the test
dataset that were in fact predicted) and also the number of False Positives (FPs) (situations
where the model wrongly forecasts a collision, which is an undesired situation). In order to
make a proper decision related to these two metrics, a new metric was defined:

CDP =
Predicted Collisions

FPs + Total Collisions

This metric gives a value related to the number of correct decisions on the critical
points of decision: the collisions themselves and the FPs instances. Taking, as an exam-
ple, Scenario A, one can consider that the best-performing run (regarding CDP) is A3,
with 55% correct decisions. Although, for instance, A6 predicted more accidents correctly
(44 vs. 42), the number of FPs is also much higher (36 vs. 20), which ultimately leads to a
worse performance.

Hence, the choice of the best-performing model is mostly based on CDP, which relates
both metrics, and is thus not simply based on the number of total predicted accidents.
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As stated before, these best-performing run parameters were then used to train and
test new models for the Multi-steps (MS) forecasting, of which the results are presented
in Table 4.

Table 4. MS Forecast Results. Legend: MS—Multiple steps; FPs—False Positives; PC—Predicted
Collisions; CPP—Collision Prediction Percentage; CDP—Correct Decision Percentage; APT—Average
Prediction Time (s).

Scenario A Scenario B

Run MS FPs PC CPP CDP APT (s) Run MS FPs PC CPP CDP APT (s)

A1

2 51 51 89% 47% 1.76

B1

2 73 42 74% 32% 2.00
3 54 47 82% 42% 2.49 3 51 50 88% 46% 2.88
4 44 49 86% 49% 2.29 4 57 51 89% 45% 3.00
5 69 52 91% 41% 3.33 5 96 54 95% 35% 4.59

A2

2 43 52 91% 52% 1.81

B2

2 31 41 72% 47% 2.00
3 34 47 82% 52% 2.70 3 58 41 72% 36% 3.00
4 55 50 88% 45% 2.48 4 36 35 61% 38% 2.60
5 81 55 96% 40% 4.51 5 86 50 88% 35% 4.04

A3

2 42 50 88% 51% 2.06

B3

2 49 36 63% 34% 1.97
3 40 52 91% 54% 2.67 3 57 42 74% 37% 2.57
4 59 53 93% 46% 2.74 4 68 48 84% 38% 2.83
5 170 54 95% 24% 4.56 5 89 54 95% 37% 4.59

A4

2 45 43 75% 42% 1.98

B4

2 53 43 75% 39% 2.02
3 45 52 91% 51% 2.90 3 57 48 84% 42% 2.77
4 39 49 86% 51% 2.76 4 47 51 89% 49% 2.90
5 78 55 96% 41% 4.53 5 68 54 95% 43% 4.44

A5

2 39 45 79% 47% 1.82

B5

2 61 50 88% 42% 1.90
3 39 49 86% 51% 2.76 3 41 50 88% 51% 3.00
4 49 52 91% 49% 2.88 4 55 52 91% 46% 2.90
5 84 53 93% 38% 4.26 5 73 54 95% 42% 4.48

A6

2 49 47 82% 44% 2.00

B6

2 43 46 81% 46% 1.98
3 36 49 86% 53% 2.63 3 42 54 95% 55% 2.87
4 64 54 95% 45% 2.72 4 33 51 89% 57% 2.94
5 82 55 96% 40% 4.56 5 80 53 93% 39% 4.45

A7

2 38 47 82% 49% 2.00

B7

2 53 47 82% 43% 1.98
3 41 52 91% 53% 2.65 3 75 53 93% 40% 2.75
4 49 50 88% 47% 3.02 4 58 52 91% 45% 2.94
5 88 54 95% 37% 4.50 5 105 54 95% 33% 4.54

The results are now organized and discussed by multistep groups. Table 5 presents
the results for the two MS runs, for both Scenario A and B.

Table 5. Two MS results. Legend: R—Run; FPs—False Positives; PC—Predicted Collisions; CPP—
Collision Prediction Percentage; CDP—Correct Decision Percentage; APT—Average Prediction
Time (s).

R FPs PC CPP CDP APT R FPs PC CPP CDP APT

Scenario A Scenario B

A1 51 51 89% 47% 1.76 B1 73 42 74% 32% 2.00
A2 43 52 91% 52% 1.81 B2 31 41 72% 47% 2.00
A3 42 50 88% 51% 2.06 B3 49 36 63% 34% 1.97
A4 45 43 75% 42% 1.98 B4 53 43 75% 39% 2.02
A5 39 45 79% 47% 1.82 B5 61 50 88% 42% 1.90
A6 49 47 82% 44% 2.00 B6 43 46 81% 46% 1.98
A7 38 47 82% 49% 2.00 B7 53 47 82% 43% 1.98
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In Scenario A, the two best-performing models were from run A2 and run A3 (only
models with a CDP over 50%). One can consider that run A2 outperforms run A3: it
predicted more accidents (91% vs. 88%), and despite having an higher FPs value (43 vs.
42), it still had a better CDP final value (52% vs. 51%). Thus, run A2 is the best-performing
model when considering two MS forecasting.

In Scenario B, the higher CDP values were achieved by run B2 and run B6, with 47%
and 46%, respectively. However, in this case, and despite the fact that the first one achieved
an higher value for CDP, its Accident Prediction Percentage is much lower (72% vs. 81%).
Considering that the Average Prediction Time is similar for both, run B6 can be considered
the best-performing model.

Table 6 illustrates the results for the three MS forecasts (Scenario A and B).

Table 6. Three MS results. Legend: R—Run; FPs—False Positives; PC—Predicted Collisions; CPP—
Collision Prediction Percentage; CDP—Correct Decision Percentage; APT—Average Prediction
Time (s).

R FPs PC CPP CDP APT R FPs PC CPP CDP APT

Scenario A Scenario B

A1 54 47 82% 42% 2.49 B1 51 50 88% 46% 2.88
A2 34 47 82% 52% 2.70 B2 58 41 72% 36% 3.00
A3 40 52 91% 54% 2.67 B3 57 42 74% 37% 2.57
A4 45 52 91% 51% 2.90 B4 57 48 84% 42% 2.77
A5 39 49 86% 51% 2.76 B5 41 50 88% 51% 3.00
A6 36 49 86% 53% 2.63 B6 42 54 95% 55% 2.87
A7 41 52 91% 53% 2.65 B7 75 53 93% 40% 2.75

In Scenario A, the results in terms of CDP are very similar between the runs (except
for run A1, with the lowest CDP value of 42%). In terms of CPP, runs A3, A4 and A7
performed equally well with 91%. These runs differ only in terms of FPs and the Aver-
age Prediction Time (s) (APT). Run A4 had the best APT (2.90s) (runs A3 and A7 were
very similar, with 2.67 s and 2.65 s). In terms of FPs, run A3 had the lowest number—
40 vs. 45 and 41. Thus, taking all values into consideration, run A3 was considered the
best-performing overall.

In Scenario B, the CDP values became globally higher when comparing to the two MS
results. Here, the two models with highest CDP were run B5 and run B6. Both performed
similar in terms of FPs (41 vs. 42) and APT (3 s vs. 2.87 s). The main difference relies on the
CPP, for which run B6 had the higher value, 95% vs. 88%, than run B5. Hence, run B6 is
considered to have the best-performing model.

Table 7 shows the results for the four MS runs in both scenarios.

Table 7. Four MS results. Legend: R—Run; FPs—False Positives; PC—Predicted Collisions; CPP—
Collision Prediction Percentage; CDP—Correct Decision Percentage; APT—Average Prediction
Time (s).

R FPs PC CPP CDP APT R FPs PC CPP CDP APT

Scenario A Scenario B

A1 44 49 86% 49% 2.29 B1 57 51 89% 45% 3.00
A2 55 50 88% 45% 2.48 B2 36 35 61% 38% 2.60
A3 59 53 93% 46% 2.74 B3 68 48 84% 38% 2.83
A4 39 49 86% 51% 2.76 B4 47 51 89% 49% 2.90
A5 49 52 91% 49% 2.88 B5 55 52 91% 46% 2.90
A6 64 54 95% 45% 2.72 B6 33 51 89% 57% 2.94
A7 49 50 88% 47% 3.02 B7 58 52 91% 45% 2.94

In Scenario A, only run A4 achieved a CDP greater than 50%. Despite having other
runs with better CPP values (e.g., runs A3, A5 and A6), they also had more FPs. Since run
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A4 was the only run that could at least make a correct decision in every two (>50%), it is
considered the best-performing run.

In Scenario B (similarly to Scenario A), only one run (B6) was able to achieve a CDP
over 50–57%. Runs B4, B5 and B7 had similar results for APP, but the number of FPs was
much higher, which made them less suitable solutions.

Finally, Table 8 presents the results for the five MS forecast.

Table 8. Five MS results. Legend: R—Run; FPs—False Positives; PC—Predicted Collisions; CPP—
Collision Prediction Percentage; CDP—Correct Decision Percentage; APT—Average Prediction
Time (s).

R FPs PC CPP CDP APT R FPs PC CPP CDP APT

Scenario A Scenario B

A1 69 52 91% 41% 3.33 B1 96 54 95% 35% 4.59
A2 81 55 96% 40% 4.51 B2 86 50 88% 35% 4.04
A3 170 54 95% 24% 4.56 B3 89 54 95% 37% 4.59
A4 78 55 96% 41% 4.53 B4 68 54 95% 43% 4.44
A5 84 53 93% 38% 4.26 B5 73 54 95% 42% 4.48
A6 82 55 96% 40% 4.56 B6 80 53 93% 39% 4.45
A7 88 54 95% 37% 4.50 B7 105 54 95% 33% 4.54

In Scenario A, not a single model was able to achieve a CDP over 50%. Despite having
excellent results in terms of CPP (all above 90%), they all also had a high number of FP
classifications, which caused lower CDP values. Run A1 had fewer FPs, but, on the other
hand, it also had the lowest APT. Considering all metrics, run A4 had the best performance,
with the highest values for CPP and CDP.

Similarly, in Scenario B, none of the models were able to achieve a CDP greater than
50%, and they all had invalid results for CPP (the lowest value was still a prediction of 50
out of 57). Again, all the models presented relatively high numbers of FPs. Run B4 can be
considered the best: it had fewer FPs and an APT of 4.44 s (most of the runs also performed
at around 4.5 s, except run 2).

Summary

This subsection discusses the best obtained results, which are summarized in Table 9.

Table 9. Collision prediction summary results. Legend: MS—Multiple steps; FPs—False Positives;
PC—Predicted Collisions; CPP—Collision Prediction Percentage; CDP—Correct Decision Percentage;
APT—Average Prediction Time (s).

MS Scenario Run FPs PC CPP CDP APT (s)

2 A A2 43 52 91% 52% 1.81
B B6 43 46 81% 46% 1.98

3 A A3 40 52 91% 54% 2.67
B B6 42 54 95% 55% 2.87

4 A A4 39 49 86% 51% 2.76
B B6 33 51 89% 57% 2.94

5 A A4 78 55 96% 41% 4.53
B B4 68 54 95% 43% 4.44

When considering the best-performing runs, the system globally achieved very good
results in terms of CPP, as most collisions were predicted correctly—the worst performance
was achieved in 2 MS for Scenario B, where still 81% of the accidents were predicted.
Although the models performed well for CPP, the main drawback comes from the high
number of FPs. This higher value also ultimately resulted in lower values for the CDP—
roughly one in every two critical decisions made by the system were correct.
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When comparing the usage of two or three MS, it is possible to conclude that it is
better to utilize the latter: it achieved better CPPs and CDPs. Furthermore, the models also
performed better in terms of APTs—the higher values means that the collisions were also
predicted sooner.

Between three and four MS, the results are very similar in terms of CDP and APT.
However, on the four MS case, the CPP values are lower. Hence, no performance gain is
noted when increasing the MS for the forecast. In this case, using extra computation for a
longer forecast does not pay off.

Finally, regarding the maximum value for MS (five), the CPP values are very good
(both above 95%), but the number of FPs are very high, which leads to lower values for
CDP. Despite making less accurate decisions, the APT values are much higher (around
4.5 s in both cases).

All things considered, our results can be looked at from two perspectives: if one con-
siders that CPP and CDP are a priority, using three MS is the best solution; however, using
five MS is better if higher APT are preferred (despite having lower CDP values)—higher
APT gives drivers more time to receive the warning notification, analyze the environment
and take action if necessary. However, one must be conscious that using five MS has the
drawback of having slightly lower CDP: roughly four in every ten predictions result in
an actual collision (a high number of warning notifications received by the drivers are in
fact false alarms). On the other hand, the system may be able to avoid (at least) 95% of the
accidents if the drivers are able to manually act in those 4.5 s (roughly). Hence, a trade-off
is also noted here.

Nevertheless, an explanation for the high number of FPs is related to the scenario’s
implementation on the SUMO simulator. SUMO does not have collision simulation by
default, and they had to be deliberately caused by parameterization. Hence, there are
near-accident incidents happening throughout the simulation runs. On such occasions,
the mobility patterns and configurations of the vehicles are very similar to those for
accidents; however, the road users do not actually end up colliding.

Figure 5 illustrates an example of a near-collision incident (from Scenario A—seed 0).
The picture illustrates an example of an incident where a car turning left and a

motorcycle going straight almost end up colliding. From the model’s point of view, this
situation is very similar to the simulated accidents, which leads to incorrect positive
predictions. Naturally, from a purely statistical view, these cases are still counted as FPs.
Unfortunately, counting these particular cases is very hard to achieve: it must be performed
manually while looking at the simulator running close to real time, which makes this
analysis impractical.

(a) t = 7807.8 s (b) t = 7808.0 s

Figure 5. Cont.
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(c) t = 7808.2 s (d) t = 7808.5 s
Figure 5. Near-collision example: Scenario A, seed 0.

Considering this, not all FP classifications mean necessarily bad results: a notification
of imminent danger that is related to these near-collision incidents may also help to avoid
them, since the drivers have enough time to adjust their behavior and proceed more
carefully (also helping to increase safety on the roads).

7. Conclusions and Future Work

This work describes the development and testing of a system that aims to improve
road safety for Vulnerable Road Users (VRUs) (motorcyclists) by predicting collisions
through means of Machine Learning (ML).

In order to build datasets to feed the proposed stacked, unidirectional Long Short-Term
Memory (LSTM) models, two different simulation scenarios containing collisions between
passenger vehicles and motorcycles at an intersection were developed using VEINS (which
couples Simulation of Urban MObility (SUMO) and OMNeT++).

From the obtained results, the system performs best when using five Multi-steps (MS)
(5 s into the future) for the prediction (although the results present a lower Correct Decision
Percentage (CDP) in comparison to fewer MS).

In Scenario A, 96% of the collisions were predicted with a 4.53 s average and a CDP
of 41% (with a total of 78 False Positives (FPs)); In Scenario B, 95% of the collisions were
predicted with a 4.44 s average, while the CDP was 43% (68 FPs).

The proposed system allows the usage of safety measures that could greatly improve
VRU safety on the roads. However, due to the relatively high number of False Positives,
it does not allow the implementation of automatic safety mechanisms (e.g., automatic
emergency breaking), since is not desirable to actuate in such cases. Hence, the best way of
actuating is passively, by warning the drivers of the vehicles of imminent collision, leaving
to them the performance of defensive and preventive actions. Nonetheless, some FP cases
were related to near-collision incidents that occur throughout the simulation runs, where the
mobility patterns of the involved vehicles were very similar to those of regular collisions.
Since these situations may also be avoided (although they are counted as FPs from a purely
statistical view), not all FP cases should necessarily be seen as bad results.

Although the system performed well for two different scenarios (with consistent
results), the data used to test it were generated and collected by means of simulation.
Naturally, such solution limits the realism and applicability of the solution in the real world,
which is the main limitation of this work.

At this point, the authors are working on deploying the model on the simulation
platform, utilizing the Python-C API, and connecting the VEINS framework application
(C++) to the Python script, in order to allow the treatment of the collected data and also
predict probabilities of collisions in the next steps as the simulation is running.
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As future work, the authors also intend to test the implementation of safety measures
on the simulation framework to study their effects on traffic, especially in terms of safety,
but also on mobility.
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