31,560 research outputs found

    A game theoretic approach for the association problem in two-tier HetNets

    Get PDF
    International audienceThis paper addresses a Bayesian game theoretic framework for determining the association rules that decide to which cell a given mobile user should associate in LTE two-tier Heterogeneous Networks (HetNets). Users are assumed to compete to maximize their throughput by picking the best locally serving cell with respect to their own measurement, their demand and a partial statistical channel state information (CSI) of other users. In particular, we investigate the properties of a hierarchical game, in which the macro-cell BS is a player on its own. We derive analytically the utilities related to the channel quality perceived by users to obtain the equilibria. We show by means of a Stackelberg formulation, how the operator, by dynamically choosing the offset about the state of the channel, can optimize its global utility while end-users maximize their individual utilities. The proposed hierarchical decision approach for wireless networks can reach a good trade-off between the global network performance at the equilibrium and the requested amount of signaling. Typically, it is shown that when the network goal is orthogonal to user's goal, this can lead the users to a misleading association problem. Numerical results validate the expectation from the theoretical analysis and illustrate the advantages of the proposed approach

    Automated Dynamic Offset Applied to Cell Association

    Full text link
    In this paper, we develop a hierarchical Bayesian game framework for automated dynamic offset selection. Users compete to maximize their throughput by picking the best locally serving radio access network (RAN) with respect to their own measurement, their demand and a partial statistical channel state information (CSI) of other users. In particular, we investigate the properties of a Stackelberg game, in which the base station is a player on its own. We derive analytically the utilities related to the channel quality perceived by users to obtain the equilibria. We study the Price of Anarchy (PoA) of such system, where the PoA is the ratio of the social welfare attained when a network planner chooses policies to maximize social welfare versus the social welfare attained in Nash/Stackeleberg equilibrium when users choose their policies strategically. We show by means of a Stackelberg formulation, how the operator, by sending appropriate information about the state of the channel, can configure a dynamic offset that optimizes its global utility while users maximize their individual utilities. The proposed hierarchical decision approach for wireless networks can reach a good trade-off between the global network performance at the equilibrium and the requested amount of signaling. Typically, it is shown that when the network goal is orthogonal to user's goal, this can lead the users to a misleading association problem.Comment: 12 pages, 3 figures, technical report. arXiv admin note: text overlap with arXiv:1002.3931, arXiv:0903.2966 by other author

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Grounding Language for Transfer in Deep Reinforcement Learning

    Full text link
    In this paper, we explore the utilization of natural language to drive transfer for reinforcement learning (RL). Despite the wide-spread application of deep RL techniques, learning generalized policy representations that work across domains remains a challenging problem. We demonstrate that textual descriptions of environments provide a compact intermediate channel to facilitate effective policy transfer. Specifically, by learning to ground the meaning of text to the dynamics of the environment such as transitions and rewards, an autonomous agent can effectively bootstrap policy learning on a new domain given its description. We employ a model-based RL approach consisting of a differentiable planning module, a model-free component and a factorized state representation to effectively use entity descriptions. Our model outperforms prior work on both transfer and multi-task scenarios in a variety of different environments. For instance, we achieve up to 14% and 11.5% absolute improvement over previously existing models in terms of average and initial rewards, respectively.Comment: JAIR 201

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Surface networks

    Get PDF
    © Copyright CASA, UCL. The desire to understand and exploit the structure of continuous surfaces is common to researchers in a range of disciplines. Few examples of the varied surfaces forming an integral part of modern subjects include terrain, population density, surface atmospheric pressure, physico-chemical surfaces, computer graphics, and metrological surfaces. The focus of the work here is a group of data structures called Surface Networks, which abstract 2-dimensional surfaces by storing only the most important (also called fundamental, critical or surface-specific) points and lines in the surfaces. Surface networks are intelligent and “natural ” data structures because they store a surface as a framework of “surface ” elements unlike the DEM or TIN data structures. This report presents an overview of the previous works and the ideas being developed by the authors of this report. The research on surface networks has fou

    Visual Information Retrieval in Digital Libraries

    Get PDF
    The emergence of information highways and multimedia computing has resulted in redefining the concept of libraries. It is widely believed that in the next few years, a significant portion of information in libraries will be in the form of multimedia electronic documents. Many approaches are being proposed for storing, retrieving, assimilating, harvesting, and prospecting information from these multimedia documents. Digital libraries are expected to allow users to access information independent of the locations and types of data sources and will provide a unified picture of information. In this paper, we discuss requirements of these emerging information systems and present query methods and data models for these systems. Finally, we briefly present a few examples of approaches that provide a preview of how things will be done in the digital libraries in the near future.published or submitted for publicatio

    Structures for Sophisticated Behaviour: Feudal Hierarchies and World Models

    Get PDF
    This thesis explores structured, reward-based behaviour in artificial agents and in animals. In Part I we investigate how reinforcement learning agents can learn to cooperate. Drawing inspiration from the hierarchical organisation of human societies, we propose the framework of Feudal Multi-agent Hierarchies (FMH), in which coordination of many agents is facilitated by a manager agent. We outline the structure of FMH and demonstrate its potential for decentralised learning and control. We show that, given an adequate set of subgoals from which to choose, FMH performs, and particularly scales, substantially better than cooperative approaches that use shared rewards. We next investigate training FMH in simulation to solve a complex information gathering task. Our approach introduces a ‘Centralised Policy Actor-Critic’ (CPAC) and an alteration to the conventional multi-agent policy gradient, which allows one multi-agent system to advise the training of another. We further exploit this idea for communicating agents with shared rewards and demonstrate its efficacy. In Part II we examine how animals discover and exploit underlying statistical structure in their environments, even when such structure is difficult to learn and use. By analysing behavioural data from an extended experiment with rats, we show that such hidden structure can indeed be learned, but also that subjects suffer from imperfections in their ability to infer their current state. We account for their behaviour using a Hidden Markov Model, in which recent observations are integrated imperfectly with evidence from the past. We find that over the course of training, subjects learn to track their progress through the task more accurately, a change that our model largely attributes to the more reliable integration of past evidenc
    • 

    corecore