7,006 research outputs found

    Vehicle Routing and Scheduling Problem for a multi-period, multi-perishable product system with time window: A Case study

    Get PDF
    [EN] The well-known Vehicle Routing Problem (VRP) is to find proper sequence of routes in order to minimize transportation costs. In this paper, a mixed-integer programming model is presented for a food distributer company and the model outputs are to determine the optimal routes and amount of pickup and delivery. In the objective function, the costs of transportation, holding, tardiness and earliness are considered simultaneously. The proposed model with respect to real conditions is multi-period and has two different time periods: one for dispatching vehicles to customers and suppliers and the other for receiving customers’ orders. Time window and split pickup and delivery are considered for perishable products. The proposed model is nonlinear and will be linearized using exact techniques. At the end, model is solved using GAMS and the sensitivity analysis is performed. The results indicate that the trend of changes in holding and transportation costs in compared to tardiness and earliness costs are closed together and are not so sensitive to demand changes.Rashidi Komijan, A.; Delavari, D. (2017). Vehicle Routing and Scheduling Problem for a multi-period, multi-perishable product system with time window: A Case study. International Journal of Production Management and Engineering. 5(2):45-53. doi:10.4995/ijpme.2017.5960SWORD455352DENG, A., MAO, C., & ZHOU, Y. (2009). Optimizing Research of an Improved Simulated Annealing Algorithm to Soft Time Windows Vehicle Routing Problem with Pick-up and Delivery. Systems Engineering - Theory & Practice, 29(5), 186-192. doi:10.1016/s1874-8651(10)60049-xAndersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial aspects and literature survey: Combined inventory management and routing. Computers & Operations Research, 37(9), 1515-1536. doi:10.1016/j.cor.2009.11.009Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints. European Journal of Operational Research, 218(1), 1-6. doi:10.1016/j.ejor.2011.07.037Belfiore, P., & Yoshizaki, H. T. Y. (2013). Heuristic methods for the fleet size and mix vehicle routing problem with time windows and split deliveries. Computers & Industrial Engineering, 64(2), 589-601. doi:10.1016/j.cie.2012.11.007Cacchiani, V., Hemmelmayr, V.C., Tricoire, F., (2012). A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discrete Applied Mathematics, 163(1), 53-64. https://doi.org/10.1016/j.dam.2012.08.032Cattaruzza, D., Absi, N., Feillet, D., & Vidal, T. (2014). A memetic algorithm for the Multi Trip Vehicle Routing Problem. European Journal of Operational Research, 236(3), 833-848. doi:10.1016/j.ejor.2013.06.012Çetinkaya, C., Karaoglan, I., & Gökçen, H. (2013). Two-stage vehicle routing problem with arc time windows: A mixed integer programming formulation and a heuristic approach. European Journal of Operational Research, 230(3), 539-550. doi:10.1016/j.ejor.2013.05.001Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483. doi:10.1016/j.cie.2009.05.009Hasani-Goodarzi, A., & Tavakkoli-Moghaddam, R. (2012). Capacitated Vehicle Routing Problem for Multi-Product Cross- Docking with Split Deliveries and Pickups. Procedia - Social and Behavioral Sciences, 62, 1360-1365. doi:10.1016/j.sbspro.2012.09.232Rahimi-Vahed, A., Gabriel Crainic, T., Gendreau, M., & Rei, W. (2015). Fleet-sizing for multi-depot and periodic vehicle routing problems using a modular heuristic algorithm. Computers & Operations Research, 53, 9-23. doi:10.1016/j.cor.2014.07.004Shahin Moghadam, S., Fatemi Ghomi, S. M. T., & Karimi, B. (2014). Vehicle routing scheduling problem with cross docking and split deliveries. Computers & Chemical Engineering, 69, 98-107. doi:10.1016/j.compchemeng.2014.06.015Silva, M. M., Subramanian, A., & Ochi, L. S. (2015). An iterated local search heuristic for the split delivery vehicle routing problem. Computers & Operations Research, 53, 234-249. doi:10.1016/j.cor.2014.08.005Taş, D., Jabali, O., & Van Woensel, T. (2014). A Vehicle Routing Problem with Flexible Time Windows. Computers & Operations Research, 52, 39-54. doi:10.1016/j.cor.2014.07.005Yu, B., & Yang, Z. Z. (2011). An ant colony optimization model: The period vehicle routing problem with time windows. Transportation Research Part E: Logistics and Transportation Review, 47(2), 166-181. doi:10.1016/j.tre.2010.09.010Zhang, S., Lee, C. K. M., Choy, K. L., Ho, W., & Ip, W. H. (2014). Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem. Transportation Research Part D: Transport and Environment, 31, 85-99. doi:10.1016/j.trd.2014.05.01

    A multi-arm bandit neighbourhood search for routing and scheduling problems

    Get PDF
    Abstract Local search based meta-heuristics such as variable neighbourhood search have achieved remarkable success in solving complex combinatorial problems. Local search techniques are becoming increasingly popular and are used in a wide variety of meta-heuristics, such as genetic algorithms. Typically, local search iteratively improves a solution by making a series of small moves. Traditionally these methods do not employ any learning mechanism. We treat the selection of a local search neighbourhood as a dynamic multi- armed bandit (D-MAB) problem where learning techniques for solving the D-MAB can be used to guide the local search process. We present a D-MAB neighbourhood search (D-MABNS) which can be embedded within any meta- heuristic or hyperheuristic framework. Given a set of neighbourhoods, the aim of D-MABNS is to adapt the search sequence, testing promising solutions rst. We demonstrate the eectiveness of D-MABNS on two vehicle routing and scheduling problems, the real-world geographically distributed mainte- nance problem (GDMP) and the periodic vehicle routing problem (PVRP). We present comparisons to benchmark instances and give a detailed analysis of parameters, performance and behaviour. Keywords Meta-heuristic Local search Vehicle routin

    A Survey On Multi Trip Vehicle Routing Problem

    Get PDF
    The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    Get PDF
    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution.Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers.Owing to both the asymmetry in the distribution networks (the supplier sites greatly outnumber the retailer distribution centers) and the better inventory and transport coordination mechanisms, this is likely to result in high savings.A mathematical model was used to analyze the benefits of FGP for a case study in the Dutch retail sector.Extensive numerical results are presented to show the effect of the orchestration shift from supplier to retailer, the improved coordination mechanisms, and sector-wide cooperation.pricing;retailing;distribution;supply chain management;Netherlands

    Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    Get PDF
    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution. Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers. Owing to both the asymmetry in the distribution networks (the supplier sites greatly outnumber the retailer distribution centers) and the better inventory and transport coordination mechanisms, this is likely to result in high savings. A mathematical model was used to analyze the benefits of FGP for a case study in the Dutch retail sector. Extensive numerical results are presented to show the effect of the orchestration shift from supplier to retailer, the improved coordination mechanisms, and sector-wide cooperation.supply chain management;factory gate pricing;retail distribution

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717
    corecore