682 research outputs found

    Advanced list scheduling heuristic for task scheduling with communication contention for parallel embedded systems

    No full text
    WOSInternational audienceModern embedded systems tend to use multiple cores or processors for processing parallel applications. This paper indeed aims at task scheduling with communication contention for parallel embedded systems and proposes three advanced techniques to improve the list scheduling heuristic. Five groups of node levels (two existing groups and three new groups) are firstly used as node priorities to generate node lists. Then the critical child technique improves the selection of a processor in the scheduling process. Finally, the communication delay technique enlarges the idle time intervals on communication links. We also propose an advanced dynamic list scheduling heuristic by combining the three techniques. Experimental results show that the combined advanced dynamic heuristic is efficient to shorten the schedule length for most of the randomly generated DAGs in the cases of medium and high communication. Our method accelerates an application up to 80% in the case of high communication and can also reduce the use of hardware resources

    A communication-ordered task graph allocation algorithm

    Get PDF
    technical reportThe inherently asynchronous nature of the data flow computation model allows the exploitation of maximum parallelism in program execution?? While this computational model holds great promise several problems must be solved in order to achieve a high degree of program performance?? The allocation and scheduling of programs on MIMD distributed memory parallel hardware is necessary for the implementation of e cient parallel systems?? Finding optimal solutions requires that maxi mum parallelism be achieved consistent with resource limits and minimizing communication costs and has been proven to be in the class of NP complete problems?? This paper addresses the problem of static allocation of tasks to distributed memory MIMD systems where simultaneous computation and communication is a factor?? This paper discusses similarities and di erences between several recent heuristic allocation approaches and identi es common problems inherent in these approaches?? This paper presents a new algorithm scheme and heuristics that resolves the identi ed problems and shows signi cant performance bene ts?

    A communication-ordered task graph allocation algorithm

    Get PDF
    technical reportThe inherently asynchronous nature of the data flow computation model allows the exploitation of maximum parallelism in program execution. While this computational model holds great promise, several problems must be solved in order to achieve a high degree of program performance. The allocation and scheduling of programs on MIMD distributed memory parallel hardware, is necessary for the implementation of efficient parallel systems. Finding optimal solutions requires that maximum parallelism be achieved consistent with resource limits and minimizing communication costs, and has been proven to be in the class of NP-complete problems. This paper addresses the problem of static allocation of tasks to distributed memory MIMD systems where simultaneous computation and communication is a factor. This paper discusses similarities and differences between several recent heuristic allocation approaches and identifies common problems inherent in these approaches. This paper presents a new algorithm scheme and heuristics that resolves the identified problems and shows significant performance benefits

    Optimal processor assignment for pipeline computations

    Get PDF
    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered

    Link contention-constrained scheduling and mapping of tasks and messages to a network of heterogeneous processors

    Get PDF
    In this paper, we consider the problem of scheduling and mapping precedence-constrained tasks to a network of heterogeneous processors. In such systems, processors are usually physically distributed, implying that the communication cost is considerably higher than in tightly coupled multiprocessors. Therefore, scheduling and mapping algorithms for such systems must schedule the tasks as well as the communication traffic by treating both the processors and communication links as important resources. We propose an algorithm that achieves these objectives and adapts its tasks scheduling and mapping decisions according to the given network topology. Just like tasks, messages are also scheduled and mapped to suitable links during the minimization of the finish times of tasks. Heterogeneity of processors is exploited by scheduling critical tasks to the fastest processors. Our extensive experimental study has demonstrated that the proposed algorithm is efficient, robust, and yields consistent performance over a wide range of scheduling parameters.published_or_final_versio

    Improved Mixed-Integer Programming Models for Multiprocessor Scheduling with Communication Delays

    Get PDF
    We revise existing and introduce new mixed-integer programming models for the Multiprocessor Scheduling Problem with Communication Delays. At first, we show how to provably reduce the number of product variables necessary to explicitly linearize the so-called packing formulation that contains bilinear terms. Then, we reveal that the feasible region of almost all existing formulations contains redundant solutions and formulate new constraints in order to exclude these. At the same time, by exploiting further structural properties, the models are improved concerning their size, strength, and modeling complexity. The discussion of these improvements leads to new much more compact formulations which are then experimentally compared with each other and with other formulations from the literature. We set up a realistic scenario with a preprocessing of the task graphs, delivering the gained information equally to all the tested models and evaluate not only running times but also the obtained lower and upper bounds on the makespan objective for unsolved instances of a large scale benchmark set
    corecore