31 research outputs found

    A Hennessy-Milner Theorem for ATL with Imperfect Information

    Full text link
    We show that a history-based variant of alternating bisimulation with imperfect information allows it to be related to a variant of Alternating-time Temporal Logic (ATL) with imperfect information by a full Hennessy-Milner theorem. The variant of ATL we consider has a common knowledge semantics, which requires that the uniform strategy available for a coalition to accomplish some goal must be common knowledge inside the coalition, while other semantic variants of ATL with imperfect information do not accommodate a Hennessy-Milner theorem. We also show that the existence of a history-based alternating bisimulation between two finite Concurrent Game Structures with imperfect information (iCGS) is undecidable

    Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games

    Full text link
    In the context of multi-agent systems, the rational verification problem is concerned with checking which temporal logic properties will hold in a system when its constituent agents are assumed to behave rationally and strategically in pursuit of individual objectives. Typically, those objectives are expressed as temporal logic formulae which the relevant agent desires to see satisfied. Unfortunately, rational verification is computationally complex, and requires specialised techniques in order to obtain practically useable implementations. In this paper, we present such a technique. This technique relies on a reduction of the rational verification problem to the solution of a collection of parity games. Our approach has been implemented in the Equilibrium Verification Environment (EVE) system. The EVE system takes as input a model of a concurrent/multi-agent system represented using the Simple Reactive Modules Language (SRML), where agent goals are represented as Linear Temporal Logic (LTL) formulae, together with a claim about the equilibrium behaviour of the system, also expressed as an LTL formula. EVE can then check whether the LTL claim holds on some (or every) computation of the system that could arise through agents choosing Nash equilibrium strategies; it can also check whether a system has a Nash equilibrium, and synthesise individual strategies for players in the multi-player game. After presenting our basic framework, we describe our new technique and prove its correctness. We then describe our implementation in the EVE system, and present experimental results which show that EVE performs favourably in comparison to other existing tools that support rational verification

    On bisimulation and model-checking for concurrent systems with partial order semantics

    Get PDF
    EP/G012962/1In concurrency theory—the branch of (theoretical) computer science that studies the logical and mathematical foundations of parallel computation—there are two main formal ways of modelling the behaviour of systems where multiple actions or events can happen independently and at the same time: either with interleaving or with partial order semantics. On the one hand, the interleaving semantics approach proposes to reduce concurrency to the nondeterministic, sequential computation of the events the system can perform independently. On the other hand, partial order semantics represent concurrency explicitly by means of an independence relation on the set of events that the system can execute in parallel; following this approach, the so-called ‘true concurrency’ approach, independence or concurrency is a primitive notion rather than a derived concept as in the interleaving framework. Using interleaving or partial order semantics is, however, more than a matter of taste. In fact, choosing one kind of semantics over the other can have important implications—both from theoretical and practical viewpoints—as making such a choice can raise different issues, some of which we investigate here. More specifically, this thesis studies concurrent systems with partial order semantics and focuses on their bisimulation and model-checking problems; the theories and techniques herein apply, in a uniform way, to different classes of Petri nets, event structures, and transition system with independence (TSI) models. Some results of this work are: a number of mu-calculi (in this case, fixpoint extensions of modal logic) that, in certain classes of systems, induce exactly the same identifications as some of the standard bisimulation equivalences used in concurrency. Secondly, the introduction of (infinite) higher-order logic games for bisimulation and for model-checking, where the players of the games are given (local) monadic second-order power on the sets of elements they are allowed to play. And, finally, the formalization of a new order-theoretic concurrent game model that provides a uniform approach to bisimulation and model-checking and bridges some mathematical concepts in order theory with the more operational world of games. In particular, we show that in all cases the logic games for bisimulation and model-checking developed in this thesis are sound and complete, and therefore, also determined—even when considering models of infinite state systems; moreover, these logic games are decidable in the finite case and underpin novel decision procedures for systems verification. Since the mu-calculi and (infinite) logic games studied here generalise well-known fixpoint modal logics as well as game-theoretic decision procedures for analysing concurrent systems with interleaving semantics, this thesis provides some of the groundwork for the design of a logic-based, game-theoretic framework for studying, in a uniform manner, several concurrent systems regardless of whether they have an interleaving or a partial order semantics

    Nash equilibrium and bisimulation invariance

    Get PDF
    Game theory provides a well-established framework for the analysis of concurrent and multi-agent systems. The basic idea is that concurrent processes (agents) can be understood as corresponding to players in a game; plays represent the possible computation runs of the system; and strategies define the behaviour of agents. Typically, strategies are modelled as functions from sequences of system states to player actions. Analysing a system in such a setting involves computing the set of (Nash) equilibria in the concurrent game. However, we show that, with respect to the above model of strategies (arguably, the "standard" model in the computer science literature), bisimilarity does not preserve the existence of Nash equilibria. Thus, two concurrent games which are behaviourally equivalent from a semantic perspective, and which from a logical perspective satisfy the same temporal logic formulae, may nevertheless have fundamentally different properties (solutions) from a game theoretic perspective. Our aim in this paper is to explore the issues raised by this discovery. After illustrating the issue by way of a motivating example, we present three models of strategies with respect to which the existence of Nash equilibria is preserved under bisimilarity. We use some of these models of strategies to provide new semantic foundations for logics for strategic reasoning, and investigate restricted scenarios where bisimilarity can be shown to preserve the existence of Nash equilibria with respect to the conventional model of strategies in the computer science literature

    Strategic logics : complexity, completeness and expressivity

    Get PDF
    by transferring normative attributes from an agent to another. Such interactions are called delegation. Formal models of delegation and control were studied in, e.g., [189, 149, 191]. In this work, we consider the scenario where agents delegate control over propositions to other agents. The distinction between controllable and uncontrollable propositions stems from areas like discrete event systems and control theory, where, e.g., Boutilier [39] studied control in the context of deontic logic. Control and controllable propositions were also studied in [52, 66, 249, 248]. We now give an overview of the thesis. The main purpose of Chapter 2 is to introduce basic concepts and notation and to review relevant literature. The first section presents a brief survey on modal logic. Then, in sections 2.2, 2.3 and 2.4, we introduce epistemic, temporal and strategic modal logics and state known results that characterise their expressivity and computational complexity. In particular, we consider variants of ATL as extensions of branching-time logics. With such ATL-like logics we can describe dynamic multi-agent interactions. In Section 2.5, we discuss extensions of ATL with epistemic notions. Additionally, we suggest a framework for memory-bounded strategic reasoning. In particular, we introduce an epistemic variant of ATL that accounts for agents with limited memory resources as this case was neglected in the literature to date. In Chapter 3, we investigate the computational complexity of ATL and its epistemic extension ATEL. We show in detail how 'the complexity of the satisfiability problem for both logics can be settled at ExpTIME-complete. The part of the chapter about ATL is based on the paper 'ATL Satisfiability is Indeed ExpTIME-COmplete' by Walther, Lutz, Wolter and Wooldridge in the Journal of Logic and Computation, 2006 (265)' and the part about ATEL is based on the paper 'ATEL with Common and Distributed Knowledge is ExpTime-Complete' by Walther which was presented at the 4th Workshop on Methods for Modalities, Humbolt University, Berlin, December 1-2, 2005 [264]. In Chapter 4, we aim to extend the expressiveness of ATL without increasing its computational complexity. We introduce explicit names for strategies in the object language and extend modal operators with the possibility to bind agents to strategy names. In this way, we can fix the decisions of agents that possibly belong to several coalitions. By identifying the behaviqur of agents, we can reason about the effects of agents changing coalitions. Dynamic coalitions provide more flexibility to adapt abilities to a changing environment. We investigate the expressivity of the resulting logic ATLES and compare it to ATL and ATL*. Moreover, we formulate two model checking problems for ATLES and investigate their complexity as well as the complexity of the satisfiability problem for ATLES. Additionally, we present a complete axiomatisation. This chapter is based on the paper 'Alternating-time Temporal Logic with Explicit Strategies' by Walther, van der Hoek and Wooldridge which is going to presented at the 11th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), Brussels, Belgium, June 25-27, 2007 [266]

    A Hennessy-Milner Theorem for ATL with Imperfect Information

    No full text
    International audienceWe show that a history-based variant of alternating bisimulation with imperfect information allows it to be related to a variant of Alternating-time Temporal Logic (ATL) with imperfect information by a full Hennessy-Milner theorem. The variant of ATL we consider has a common knowledge semantics, which requires that the uniform strategy available for a coalition to accomplish some goal must be common knowledge inside the coalition, while other semantic variants of ATL with imperfect information do not accomodate a Hennessy-Milner theorem. We also show that the existence of a history-based alternating bisimulation between two finite Concurrent Game Structures with imperfect information (iCGS) is undecidable

    Runtime Monitoring for Uncertain Times

    Get PDF
    In Runtime Verification (RV), monitors check programs for correct operation at execution time. Also called Runtime Monitoring, RV offers advantages over other approaches to program verification. Efficient monitoring is possible for programs where static checking is cost-prohibitive. Runtime monitors may test for execution faults like hardware failure, as well as logical faults. Unlike simple log checking, monitors are typically constructed using formal languages and methods that precisely define expectations and guarantees. Despite the advantages of RV, however, adoption remains low. Applying Runtime Monitoring techniques to real systems requires addressing practical concerns that have garnered little attention from researchers. System operators need monitors that provide immediate diagnostic information before and after failures, that are simple to operate over distributed systems, and that remain reliable when communication is not. These challenges are solvable, and solving them is a necessary step towards widespread RV deployment. This thesis provides solutions to these and other barriers to practical Runtime Monitoring. We address the need for reporting diagnostic information from monitored programs with nfer, a language and system for event stream abstraction. Nfer supports the automatic extraction of the structure of real-time software and includes integrations with popular programming languages. We also provide for the operation of nfer and other monitoring tools over distributed systems with Palisade, a framework built for low-latency detection of embedded system anomalies. Finally, we supply a method to ensure program properties may be monitored despite unreliable communication channels. We classify monitorable properties over general unreliable conditions and define an algorithm for when more specific conditions are known

    From napkin sketches to reliable software

    Get PDF
    In the past few years, model-driven software engineering (MDSE) and domain-specific modeling languages (DSMLs) have received a lot of attention from both research and industry. The main goal of MDSE is generating software from models that describe systems on a high level of abstraction. DSMLs are languages specifically designed to create such models. High-level models are refined into models on lower levels of abstraction by means of model transformations. The ability to model systems on a high level of abstraction using graphical diagrams partially explains the popularity of the informal modeling language UML. However, even designing simple software systems using such graphical diagrams can lead to large models that are cumbersome to create. To deal with this problem, we investigated the integration of textual languages into large, existing modeling languages by comparing two approaches and designed a DSML with a concrete syntax consisting of both graphical and textual elements. The DSML, called the Simple Language of Communicating Objects (SLCO), is aimed at modeling the structure and behavior of concurrent, communicating objects and is used as a case study throughout this thesis. During the design of this language, we also designed and implemented a number of transformations to various other modeling languages, leading to an iterative evolution of the DSML, which was influenced by the problem domain, the target platforms, model quality, and model transformation quality. Traditionally, the state-space explosion problem in model checking is handled by applying abstractions and simplifications to the model that needs to be verified. As an alternative, we demonstrate a model-driven engineering approach that works the other way around using SLCO. Instead of making a concrete model more abstract, we refine abstract models by transformation to make them more concrete, aiming at the verification of models that are as close to the implementation as possible. The results show that it is possible to validate more concrete models when fine-grained transformations are applied instead of coarse-grained transformations. Semantics are a crucial part of the definition of a language, and to verify the correctness of model transformations, the semantics of both the input and the output language must be formalized. For these reasons, we implemented an executable prototype of the semantics of SLCO that can be used to transform SLCO models to labeled transition systems (LTSs), allowing us to apply existing tools for visualization and verification of LTSs to SLCO models. For given input models, we can use the prototype in combination with these tools to show, for each transformation that refines SLCO models, that the input and output models exhibit the same observable behavior. This, however, does not prove the correctness of these transformations in general. To prove this, we first formalized the semantics of SLCO in the form of structural operational semantics (SOS), based on the aforementioned prototype. Then, equivalence relations between LTSs were defined based on each transformation, and finally, these relations were shown to be either strong bisimulations or branching bisimulations. In addition to this approach, we studied property preservation of model transformations without restricting ourselves to a fixed set of transformations. Our technique takes a property and a transformation, and checks whether the transformation preserves the property. If a property holds for the initial model, which is often small and easy to analyze, and the property is preserved, then the refined model does not need to be analyzed too. Combining the MDSE techniques discussed in this thesis enables generating reliable and correct software by means of refining model transformations from concise, formal models specified on a high level of abstraction using DSMLs
    corecore