

From napkin sketches to reliable software

Citation for published version (APA):
Engelen, L. J. P. (2012). From napkin sketches to reliable software. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR740040

DOI:
10.6100/IR740040

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR740040
https://doi.org/10.6100/IR740040
https://research.tue.nl/en/publications/3cc6d815-6246-4aa6-8853-3dbc21e0b802

From Napkin
Sketches to

Reliable
Software

Luc Engelen

From Napkin Sketches to Reliable Software

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duin, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op dinsdag 11 december 2012 om 16.00 uur

door

Lucas Johannes Petrus Engelen

geboren te Nijmegen

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.G.J. van den Brand

Copromotor:
dr. S. Andova

From Napkin Sketches to Reliable Software

Luc Engelen

Promotor: prof.dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotor: dr. S. Andova
(Eindhoven University of Technology)

Additional members of the core committee:

prof.dr.ir. T. Basten (Eindhoven University of Technology)
prof.dr. P.D. Mosses (Swansea University)
prof.dr.ir. A. Rensink (University of Twente)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).
IPA dissertation series 2012-11.

Part of the work in this thesis has been carried out as part of the Ideals project with
ASML as the industrial partner, the Falcon project with Vanderlande Industries as the
industrial partner, and the KWR 09124 project LithoSysSL. The Ideals project and the
Falcon project fall under the responsibility of the Embedded Systems Institute. The Ideals
project is partially supported by the Netherlands Ministry of Economic Affairs under the
SenterNovem TS (TSIT3003) program, and the Falcon project is partially supported by
the Netherlands Ministry of Economic Affairs under the Embedded Systems Institute
(BSIK03021) program.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3290-2

c© L.J.P. Engelen, 2012.

Printed by the print service of the Eindhoven University of Technology

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronically, mechanically, photo-
copying, recording or otherwise, without prior permission of the author.

Acknowledgements

Life as a PhD student has various advantages. For example, as part of my job, I got to
visit Portugal, England, Belgium, Germany, South-Korea, and France, and if my planning
had been a little better, I could have visited the Czech Republic as well. For this and
other reasons, I would like to thank my promotor Mark van den Brand for hiring me and
giving me the opportunity to experience all the benefits of a career as a PhD student.
Additionally, I thank Mark for his guidance and support over the years.

Around the start of the final year of my project, Suzana Andova agreed to be my
copromotor. From that moment on, the rate of my scientific output in terms of papers
increased significantly, for which I would like to thank Suzana. Without her confidence
and experience as guidance, finishing this thesis would have taken much more time.

Besides Mark and Suzana, Marcel van Amstel and Anton Wijs were co-authors of
some of the papers that form the basis of this thesis. I enjoyed the discussions we had
concerning the research we performed, and I learned a lot from both cooperations.

Furthermore, I would like to thank the reading committee, consisting of Twan Basten
from the Eindhoven University of Technology, Peter Mosses from Swansea University, and
Arend Rensink from the University of Twente, for reviewing this thesis.

During most of my employment at the Software Engineering and Technology group, I
shared an office with Marcel van Amstel, Jeroen Arnoldus, and Zvezdan Protić. Later on,
we relocated and were joined by Yanja Dajsuren, Arjan van der Meer, Ulyana Tikhonova,
and Bogdan Vasilescu. I enjoyed the time we spent together in our office, during summer
schools, at workshops, and at the Efteling, and I would like to thank all of them for
that. Furthermore, I thank all my other colleagues and former colleagues at the Software
Engineering and Technology group for providing a pleasant working environment, and
Tom Verhoeff in particular for noticing an oversight with significant consequences in one
of the model transformations developed by Marcel and me.

It took some time to finish this thesis after my PhD project ended, and I thank Harold
Weffers for allowing me to work on it during my employment at LaQuSo.

Finally, I would like to thank my family, friends, volleyball team mates, and my
girlfriend Sandra for their support and the much appreciated distractions they provided.

Luc Engelen
Eindhoven, August 2012

Table of Contents

Acknowledgements i

Table of Contents iii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Research Questions . 5
1.3 Outline and Origin of Chapters . 6
1.4 Suggested Method of Reading . 8

2 Integrating Textual and Graphical Modeling Languages 9
2.1 Introduction . 9
2.2 UML Activities and Surface Languages . 10
2.3 Specification of the Surface Language . 11
2.4 Grammarware . 14
2.5 Modelware . 16
2.6 Other Applications of our Approach . 18
2.7 Case Study . 18
2.8 Related Work . 19
2.9 Conclusions and Future Work . 21

3 Simple Language of Communicating Objects 23
3.1 Metamodel . 23
3.2 Concrete Syntax . 26
3.3 Target Languages . 28
3.4 Semantic Gaps and Platform Gaps . 29
3.5 Model Transformations . 30
3.6 Sequences of Transformations . 43
3.7 Simplified SLCO . 45
3.8 Implementation . 46

iv Table of Contents

4 Exploring the Boundaries of Model Verification 49
4.1 Introduction . 49
4.2 Approach . 51
4.3 Comparison of Transformations . 52
4.4 Experiments . 54
4.5 Discussion . 59
4.6 Related Work . 59
4.7 Conclusions and Future Work . 59

5 Prototyping the Semantics of a Domain-Specific Modeling Language 61
5.1 Introduction . 61
5.2 Prototyping Semantics . 63
5.3 Visualization . 69
5.4 Verification . 71
5.5 Related Work . 72
5.6 Conclusions and Future Work . 72

6 Reusability and Correctness of Endogenous Model Transformations 75
6.1 Introduction . 75
6.2 Model Transformations for SLCO . 77
6.3 Correctness of Model Transformations . 82
6.4 Related work . 88
6.5 Conclusions and Future Work . 89

7 Evolution of a Domain-Specific Modeling Language 91
7.1 Introduction . 91
7.2 Development Process . 92
7.3 Evolution . 93
7.4 Related Work . 99
7.5 Conclusions and Future Work . 101

8 Checking Property Preservation of Refining Transformations 103
8.1 Introduction . 103
8.2 Background . 105
8.3 LTS Transformations . 109
8.4 Checking Property Preservation . 112
8.5 Experimental Results . 118
8.6 Related Work . 119
8.7 Conclusions and Future Work . 120

9 Conclusions 123
9.1 Contributions . 123
9.2 Future Work . 126

Bibliography 129

Table of Contents v

A Software Tools 139
A.1 ASF+SDF and the Meta-Environment . 139
A.2 openArchitectureWare . 141
A.3 ATL Transformation Language . 142
A.4 Dot and Graphviz . 142

B Operational Semantics of SLCO 143
B.1 Syntax . 143
B.2 Semantics . 144
B.3 State Machines . 146
B.4 Initialization . 150

C Two Transformations for SLCO 153
C.1 Simple Transformation . 153
C.2 General Transformation . 155

D Correctness of a Transformation 159

E Case Studies Concerning Property Preservation 165
E.1 ACS, 1394-fin, and Wafer Stepper . 165
E.2 Broadcast . 166
E.3 Alternating Bit Protocol . 167

Summary 169

Curriculum Vitae 171

IPA Dissertation Series 173

Chapter 1

Introduction

In model-driven software engineering (MDSE), models play an important part in the
software engineering process [103]. MDSE combines domain-specific modeling languages
(DSMLs) [32] with model transformations and is aimed at automatically transforming
models written in DSMLs to various artifacts, such as source code and formal models for
verification and simulation. DSMLs are modeling languages that offer, through appropriate
notations and abstractions, expressive power focused on, and usually restricted to, a
particular problem domain. They allow developers to create models using constructs that
describe the problem domain, instead of the solution domain. In traditional software
engineering, developers manually create implementations based on designs, whereas in
MDSE, model transformations are employed to transform models to implementations
automatically. Essentially, the models that are transformed to implementations form the
designs of software systems, and automated transformation is meant to prevent errors in
the implementations that result from misinterpretations of these designs.

The work described in this thesis was initiated within the Ideals project [19]. This
project focused on improving the evolvability of software-intensive high-tech systems
by developing methods, techniques, and tools. A lack of proper abstractions for the
components and subsystems of a complex embedded system was identified as one of
two major causes of the large effort required to maintain and develop these systems.
Because of this lack of proper abstractions, little correspondence was perceived between
design documents, written on a high level of abstraction, and their implementations,
implemented using constructs on a low level of abstraction. To tackle this problem, the
application of MDSE in combination with DSMLs was investigated.

ASML, the world’s leading manufacturer of lithography systems for the semiconductor
industry, participated in the Ideals project as the industrial partner. At the time of
the project, the Unified Modeling Language (UML) [86] was gradually introduced as
a modeling language for software within ASML, and experiments with MDSE were
performed. The UML is named the de facto modeling language for software in industry
and offers a number of separate views on systems, in the form of graphical diagrams. One
of the experiments with MDSE entailed the investigation of deriving formal models for

2 Introduction

performance analysis from UML models. To perform the analysis, the Parallel Object-
Oriented Specification Language (POOSL) [108] was used. The benefits of this formal
language had become clear because previous experiments had shown that POOSL correctly
predicted important properties of a newly developed component at an early state of the
development process. However, to spare ASML’s software engineers from learning the
syntax and semantics of POOSL, or any other formal modeling language, models for these
languages should be derived from UML models. In that way, engineers could still benefit
from the results of formal analysis, without having to learn multiple modeling languages.
In short, UML models should be the starting point for both implementations and various
artifacts for analysis.

TU2P Interpretation
MPOOSL MUML I

Figure 1.1: Envisioned outcome of the Ideals project

Figure 1.1 schematically depicts the desired outcome of the part of the Ideals
project that concerned MDSE. It shows that information is distilled from a large UML
model MUML and transformed to a POOSL model MPOOSL by means of a model transfor-
mation TU2P . The dotted circle illustrates that only a part of the information contained in
the UML model is used to create the POOSL model. The primary purpose of modelMUML

is to serve as the design of an implementation I of a system. Software engineers interpret
model MUML and develop implementation I manually, as depicted by the dashed arrow.

While developing the transformation from UML to POOSL and experimenting with
the creation of suitable UML models, a number of problems surfaced. The diagrams of the
UML are not necessarily complete or consistent [73, 74], and its lack of formal semantics
gives rise to different interpretations of the constructs it offers. The positive side of this
is the freedom it offers its users, which is one possible explanation for the popularity of
the language [72]. Although UML models are allowed to be inconsistent and incomplete,
however, models that are the starting point for a transformation to POOSL need to be
consistent and complete. This requirement gives rise to very elaborate UML models,
and creating such models using commercially available graphical editors proved to be
cumbersome. Furthermore, the constructs of the UML were not adequate for describing
models suited for performance analysis. The language does not offer the appropriate
abstractions for all aspects of the desired performance model, and some of the constructs
offered by POOSL had no equivalent counterpart in the UML.

When the Ideals project was finished, we decided to create a new DSML to replace the
UML as a starting point for the transformation to POOSL because of the aforementioned
difficulties. Additionally, this newly developed DSML was intended to be a suitable
starting point for transformations to other formalisms and to have an intuitive graphical
syntax similar to that of the UML. We named this DSML the Simple Language of
Communicating Objects (SLCO). Inspired by the Falcon project [7], we decided to use
a small system of interoperating conveyor belts as a case study for SLCO. The overall
challenge of the Falcon project was developing a fully integrated and automated logistics
warehouse of the future. Conveyor belts form an important part of such a warehouse.
Another goal for our DSML thus became to automatically generate software for the
controllers of such conveyor belts, based on high-level descriptions specified in the DSML.
For verification of SLCO models by means of model checking [26], we decided to develop

1.1. Problem Statement 3

a transformation to Promela, the specification language of the model checker Spin [55].

Figure 1.2: A single SLCO model for code generation and formal analysis

Figure 1.2 schematically depicts the automated generation of a model MPOOSL for
performance analysis, a model MSpin for verification, and an implementation I for a
system of interoperating conveyor belts from a model MSLCO specified using the newly
developed DSML. The models for formal analysis and the implementation are generated
by means of the model transformations TS2P , TS2S , and TS2I .

The development of SLCO and its accompanying model transformations was also
triggered by the desire to investigate the internal and external quality of model transforma-
tions. The quality of the definition of a model transformation is referred to as the internal
quality of a transformation, and the quality of the process of transforming a source model
to a target model is referred to as the external quality of a model transformation [3].
The research performed by Van Amstel mainly focuses on the internal quality of model
transformations [3], whereas the work described in this thesis is concerned with the
external quality of model transformations and their correctness in particular.

To successfully develop the new DSML and the accompanying model transformations,
a number of problems needed to be solved.

1.1 Problem Statement
There are a number of prerequisites for automatically generating reliable software from
high-level descriptions. One of the prerequisites is that the models that form these
descriptions should provide an unambiguous specification of the systems they describe.
The need for unambiguous models can only be satisfied if the DSML used to specify these
models has a formal syntax and semantics.

Additionally, to successfully describe systems on a high level of abstraction using a
DSML, this language must offer all the appropriate constructs for the domain at hand.
This means that the desired behavior and structure of the resulting software must be
expressible in the DSML that is used to describe this software.

Furthermore, to automatically generate software implemented using constructs on
a low level of abstraction from designs using concepts on a high level of abstraction,
refining model transformations are needed that add implementation details to the models
that form these designs. Instead of interpreting a model and manually constructing the
corresponding implementation, a software engineer can then generate an implementation
from a model by applying one or more model transformations. Implementation details
are added to the model in each transformation step, until the resulting model contains
sufficient details for deployment on an execution platform.

Because models and model transformations are the primary artifacts in MDSE,
being able to validate them during all phases of their development is another important
prerequisite. One way of validating models entails using existing languages and tools. By

4 Introduction

transforming DSML models to models supported by existing tools, these tools can be used
for the validation of (parts of) the DSML models. For instance, model MPOOSL shown in
Figure 1.2 can be used to simulate model MSLCO , and MSpin can be used to simulate or
verify MSLCO . However, the usefulness of this transformational approach to validation
is directly related to the correspondence between the DSML and the languages used for
validation. Only those constructs of a DSML that have a counterpart in the languages
used for validation can be translated, and only the translatable parts of a DSML model
can be validated using the tools for these languages. If not all constructs of a DSML
have counterparts in existing languages, custom tools, for instance for the generation and
visualization of state spaces, are needed that are specifically built for the validation of
DSML models.

Figure 1.3: Generating an implementation in small steps

Because we add implementation details to models using refining model transformations
only, these transformations form a significant part of the design of the resulting software.
When generating software by applying model transformations to an initial model, this
model and the applied model transformations together define the resulting software in
its entirety. Early validation of model transformations is therefore equally important as
early validation of models. The validation of model transformations is meant to assess
whether these transformations correctly refine models. For each source model and a set of
properties that hold for this model, a refining transformation is considered to be correct if
the properties also hold for the target model. In this way, an implementation of a system
satisfying certain properties can be generated by refining an abstract model that forms
the design of this system, if this model satisfies the given properties.

To simplify the development and validation of model transformations, we decom-
pose the transformations into small steps. Splitting a monolithic transformation into
smaller steps naturally results in multiple intermediate models, and we propose to use
these models to develop and validate the transformations. Figure 1.3 shows how the
transformation from model MSLCO to implementation I is split into three steps. The
refining transformations T 1

R and T 2
R add implementation details to model M1

SLCO , which
results in model M3

SLCO . This model contains enough implementation details to be
straightforwardly transformed to implementation I. Together, transformations T 1

R , T
2
R ,

and TS2I of Figure 1.3 replace the monolithic transformation TS2I of Figure 1.2. Analysis
of model M1

SLCO and the intermediate models M2
SLCO and M3

SLCO provides additional
insight into the transformation process that can be used for the development and valida-
tion of the transformation from SLCO models to implementations. The approach using

1.2. Research Questions 5

the monolithic transformation illustrated in Figure 1.2 does not offer this insight.
Finally, the fact that a model transformation correctly refines a single given model

does not guarantee that it can be applied successfully to any possible model. Applying
a model transformation to a source model and then comparing the source and target
model provides useful information for the developer of the transformation, but it does
not prove any properties of this transformations. To ensure that a sequence of refining
model transformations leads to a correct implementation for any model it is applied to,
the correctness of all model transformations in the sequence must be established.

1.2 Research Questions
We formulated a number of research questions aimed at resolving the problems described
in Section 1.1. The central research question is as follows.

RQ: How can we improve the reliability of software that is automatically
generated from high-level descriptions?

This central research question is split into a number of more specific research questions.
Each of these questions is addressed in the remainder of this thesis.

To generate software from high-level descriptions, we first need to be able to produce
models that form these descriptions. During the Ideals project, we noticed that it was
cumbersome to create large UML models using only graphical editors. In search of a
practical solution to this problem, we formulated the following research question.

RQ1: How can large models for existing modeling languages be created effi-
ciently using existing tools?

In this thesis, we describe how software is generated from models on a high level of
abstraction by first refining these models and then generating an implementation from
the resulting model. The original model is refined by applying a sequence of model
transformations, where the application of each transformation leads to an intermediate
model. To be able to apply techniques for verification to as many of these intermediate
models as possible, we formulated the following research question.

RQ2: How does the size and complexity of model transformations affect the
verifiability of intermediate models produced by sequences of refining model
transformations?

We developed a domain-specific modeling language, called the Simple Language of
Communicating Objects (SLCO), and implemented a number of transformations that
refine SLCO models. To be able to prove that these transformations preserve certain
desirable properties of the source model, we first need to define the formal semantics
of SLCO. Before giving a formal definition of the semantics of SLCO, we wanted to
experiment with a number of variations of the semantics. To do so, we implemented an
executable prototype of the semantics of SLCO. The following research question is related
to this prototype.

RQ3: What are the advantages and disadvantages of implementing an ex-
ecutable prototype of the semantics of a domain-specific modeling language
using ASF+SDF?

6 Introduction

Generating reliable software by refining models is only possible if the model trans-
formations used for the refinement preserve certain desirable properties of these models.
After formally defining the semantics of SLCO, based on the aforementioned prototype,
we investigated proving the correctness of a number of model transformations. This led
to the following research question.

RQ4: Can we show that the model transformations that we implemented to
refine SLCO models preserve certain desirable properties of such models?

Although we aimed at designing a DSML that is platform independent from the start,
our DSML evolved over time. To learn from our experiences in developing SLCO and to
be able to apply this knowledge while designing other DSMLs, we posed the following
research question.

RQ5: What are the main influences on the design of a DSML and the
corresponding model transformations?

Research question RQ4 deals with a fixed set of model transformations. We investigated
how to prove the correctness of these transformations by means of proofs performed
manually. In contrast, the following research question is aimed at automated verification
of model transformations.

RQ6: Can we verify the correctness of model transformations automatically?

1.3 Outline and Origin of Chapters
The remainder of this thesis is structured as follows. For each chapter that is based on
an earlier publication, the origin of the chapter is given.

Chapter 2: Integrating Textual and Graphical Modeling Languages In this
chapter, we address research question RQ1. We illustrate how a textual alternative for a
particular type of graphical diagrams can be used to make it easier to construct large
UML models, and we compare two implementations that integrate this language into
the UML. This chapter is based on the following publication.

[39] L.J.P. Engelen and M.G.J. van den Brand. Integrating Textual
and Graphical Modelling Languages. Proceedings of the Ninth
Workshop on Language Descriptions Tools and Applications, 2010.
doi:10.1016/j.entcs.2010.08.035.

Chapter 3: Simple Language of Communicating Objects In this chapter, we
introduce SLCO, the DSML that is used in the case study described in Chapter 4. The
development of this language is discussed in Chapters 5, 6, and 7. This chapter is based
on the following submission.

[4] M.F. van Amstel, S. Andova, M.G.J. van den Brand, and L.J.P.
Engelen. In Vitro Development of a Domain-Specific Modeling
Language. Submitted to Science of Computer Programming, 2012.

http://dx.doi.org/10.1016/j.entcs.2010.08.035

1.3. Outline and Origin of Chapters 7

Chapter 4: Exploring the Boundaries of Model Verification In this chapter,
we address research question RQ2 by discussing experiments we performed to compare
coarse-grained and fine-grained sequences of model transformations. This chapter is based
on the following publication.

[6] M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen.
Using a DSL and Fine-Grained Model Transformations to Ex-
plore the Boundaries of Model Verification. Proceedings of the
Third Workshop on Model-Based Verification and Validation, 2011.
doi:10.1109/SSIRI-C.2011.26.

Chapter 5: Prototyping the Semantics of a Domain-Specific Modeling Lan-
guage In this chapter, we address research question RQ3. We describe the executable
prototype that we implemented, and show how such a prototype can aid in the develop-
ment of domain-specific modeling languages and model transformations. This chapter is
based on the following publication.

[9] S. Andova, M.G.J. van den Brand, and L.J.P. Engelen. Prototyping
the Semantics of a DSL using ASF+SDF: Link to Formal Verification
of DSL Models. Proceedings of the Second International Workshop
on Algebraic Methods in Model-based Software Engineering, 2011.
doi:10.4204/EPTCS.56.5.

Chapter 6: Reusability and Correctness of Endogenous Model Transforma-
tions In this chapter, we address research question RQ4 by showing how the formal
semantics of SLCO and formal definitions of model transformations can be used to prove
the correctness of these transformations. This chapter deals with endogenous model
transformations, which are transformations for which the input and output language is
the same [79]. This chapter is based on the following publication.

[10] S. Andova, M.G.J. van den Brand, and L.J.P. Engelen. Reusable
and Correct Endogenous Model Transformations. Proceedings of
the 5th International Conference on Model Transformation, 2012.
doi:10.1007/978-3-642-30476-7_5.

Chapter 7: Evolution of a Domain-Specific Modeling Language In this chapter,
we address research question RQ5. We show how SLCO has evolved over time and discuss
the main influences on the design of the language. This chapter is based on the following
publication.

[5] M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen. An
Exercise in Iterative Domain-Specific Language Design. Proceed-
ings of the Joint ERCIM Workshop on Software Evolution and
International Workshop on Principles of Software Evolution, 2010.
doi:10.1145/1862372.1862386.

Chapter 8: Checking Property Preservation of Refining Transformations In
this chapter, we address research question RQ6. We describe a technique that makes it
possible to check whether model transformations preserve certain properties. In contrast
to Chapter 6, the technique described in Chapter 8 is fully automated. This chapter is
based on the following publication.

http://dx.doi.org/10.1109/SSIRI-C.2011.26
http://dx.doi.org/10.4204/EPTCS.56.5
http://dx.doi.org/10.1007/978-3-642-30476-7_5
http://dx.doi.org/10.1145/1862372.1862386

8 Introduction

[40] L.J.P. Engelen and A.J. Wijs. Checking Property Preservation of
Refining Transformations for Model-Driven Development. Tech-
nical Report, Department of Mathematics and Computer Science,
Eindhoven University of Technology, 2012.

Chapter 9: Conclusions This final chapter concludes this thesis. It revisits the
research questions and gives directions for future research.

The research for the publications that form the basis of Chapters 2, 5, and 6 was
conducted by Luc Engelen and his supervisors, and the research for the publications that
form the basis of Chapters 3, 4, 7, and 8 was conducted by Luc and researchers of the
Software Engineering and Technology group of the Eindhoven University of Technology.
Luc served as the first author of the publications that form the basis of Chapters 2, 3, 5,
and 6 and as the second author of the publication that forms the basis of Chapter 8. The
publications that form the basis of Chapters 4 and 7 were written in close cooperation
between Luc and Marcel van Amstel. Luc started the development of SLCO and is
responsible for its initial design. He collaborated with his supervisors and Marcel van
Amstel to improve and extend the language. Luc has developed the metamodels, grammars,
transformations, and the proprietary tools mentioned in this thesis, except for the
metamodels of NQC and Promela, and the transformation from SLCO to Promela, which
were originally implemented by Marcel van Amstel and updated by Luc at a later stage.
Furthermore, Luc developed the formal semantics of SLCO. All of the original work has
been revised for this thesis to reflect our growing insight.

1.4 Suggested Method of Reading
Chapter 2 and Chapters 4 to 8 are largely self-contained and can be read independently
from each other. However, to reduce duplication of information, Chapter 3 serves as
an introduction to Chapters 4 to 7, and Appendix A provides short descriptions of the
software tools used throughout this thesis.

Chapter 2

Integrating Textual and Graphical Modeling Languages

Graphical diagrams are the main modeling constructs offered by the popular modeling
language UML. Because textual representations of models also have their benefits, such as
conciseness, we investigated the integration of textual and graphical modeling languages,
by comparing two approaches. One approach uses grammarware, and the other uses
modelware. As a case study, we implemented two versions of a textual alternative for
activity diagrams, which is an example of a surface language. This chapter describes
our surface language, the two approaches, and the two implementations that follow these
approaches.

2.1 Introduction
Many popular Eclipse-based modeling formalisms focus on notations that are either
mainly textual or mainly graphical. Although tools exist that transform models written
in a textual language to representations of those models that can be manipulated and
depicted using graphical notations, the construction and manipulation of models written
using a combination of both languages is not well facilitated.

The popular modeling language UML offers graphical diagrams for the construction
of models. Research has shown, however, that graphical languages are not inherently
superior to textual languages [91] and that both types of languages have their benefits.
Therefore, we investigate the integration of textual and graphical languages to be able to
exploit the benefits of both types of languages. In particular, this integration facilitates
the creation of large UML models and addresses research question RQ1.

RQ1: How can large models for existing modeling languages be created effi-
ciently using existing tools?

One of the problems that arise when using two or more languages to construct one
model is that parts of the model written in one language can refer to elements contained
in parts written in another language. Transforming a model written in multiple languages

10 Integrating Textual and Graphical Modeling Languages

to a model written in one language involves introducing correct references between various
parts of the model.

Existing tools are aimed at converting textual models conforming to grammars into
models conforming to metamodels and vice versa [35, 61]. These tools can not transform
models that consist of parts that conform to grammars as well as parts that conform to
metamodels.

We use a textual alternative for activity diagrams, a textual surface language, as a
case study and have implemented two versions of this language. One alternative uses
tools and techniques related to grammars, and the other uses tools and techniques related
to models and metamodels. The approach related to grammars transforms UML models
containing fragments of behavior modeled using our surface language to plain UML
models by rewriting the XMI representation of the model provided as input. We used the
ASF+SDF Meta-Environment [20] to implement this approach. The approach related
to models and metamodels extracts the fragments of surface language, converts them
to metamodel based equivalents, transforms these equivalents to Activities, and uses
these to replace the fragments in the original model. We used the openArchitectureWare
platform [50,111] to implement this approach.

The remainder of this chapter is organized as follows: Section 2.2 introduces a number
of relevant concepts. A specification of the surface language we implemented, a description
of its embedding in the UML, and the transformation from surface language to Activities
is given in Section 2.3. The approach based on grammars is described in Section 2.4, and
the approach based on models and metamodels is described in Section 2.5. A number of
other applications involving the integration of textual and graphical languages, and the
transformation of models constructed using multiple languages are discussed in Section 2.6.
Section 2.7 provides a short description of a case study concerning the application of our
surface language. Section 2.8 discusses how our work relates to earlier work. We draw
conclusions and discuss future work in Section 2.9.

2.2 UML Activities and Surface Languages
The surface language we present is a textual alternative for the activity diagrams of the
UML. In this section, we give a brief description of Activities and explain what a surface
language is. We use the naming convention used by the OMG in the definition of the
UML [86] when discussing concepts of the UML. This means that we use medial capitals
for the names of these concepts.

2.2.1 UML Activities
Activities are one of the concepts offered by the UML to specify behavior. Some aspects
of an Activity can be visualized in an activity diagram. The leftmost part of Figure 2.1
shows an example of such a diagram.

An Activity is a directed graph, whose nodes and edges are called ActivityNodes and
ActivityEdges. There are a number of different ActivityNodes, such as ControlNodes
(depicted by diamonds) and Actions (depicted by rounded rectangles), and two types of
ActivityEdges, namely ControlFlows and ObjectFlows.

The informal description of the semantics of Activities states that the order in
which Actions are executed is based on the flow of tokens. There are two kinds of
tokens: control tokens and object tokens. ControlFlows, which are depicted by arrows

2.3. Specification of the Surface Language 11

activity diagram

A

a: B

m()

B

n()

class diagram

<<CallOperationAction>>
n()

target

result

<<ReadVariableAction>>
b

result

<<AddVariableValueAction>>
b

value

[b = self.a][else]

behavior {
 var b: B
| while b = self.a do
 b := b.n()
 od
}

Figure 2.1: Two representations of the same behavior

connecting ActivityNodes, show how control tokens flow from one ActivityNode to the
other. ObjectFlows, which are depicted by arrows connecting OutputPins and InputPins,
show how object tokens flow from one Action producing an object to another Action that
uses this object.

The ObjectFlows in Figure 2.1 are depicted by the arrows connecting the small
rectangles on the borders of the Actions. These small rectangles are the InputPins and
OutputPins of those Actions.

2.2.2 Surface Languages
Every model conforms to a metamodel, which defines the elements that play a role in
the model. If a model conforms to a certain metamodel, each element of the model is
an instance of an element in that metamodel. The UML defines a number of diagrams,
which can be used to depict certain parts of a model. There are diagrams that depict the
structure of a model, diagrams that depict the behavior of parts of the model, etc. These
diagrams offer a graphical representation for instances of elements in the metamodel.

In the context of the UML, the term surface language is used to refer to a concrete
syntax that offers an alternative notation for these diagrams. In our case, instead of a
graphical representation, a textual representation is given for instances of elements of
the metamodel. Other names for surface languages related to Activities and Actions are
surface action languages and action languages.

2.3 Specification of the Surface Language
To define our surface language, we must specify its syntax, semantics, and embedding
in the UML. The syntax of the surface language and its embedding in the UML are
described below. The semantics of the language is defined implicitly by describing the
transformation from behavior specified in our surface language to Activities.

12 Integrating Textual and Graphical Modeling Languages

2.3.1 Syntax
The syntax of behavior modeled in our surface language is defined as follows.

SLB ::= “behavior” “{” [MVD] MS “}”
MVD ::= “var” VD {“; ” VD} “|”
VD ::= VN “:” TN
MS ::= S {“; ” S},

where the structure of variable names VN , and type names TN is left unspecified. A
description of behavior SLB consists of a sequence of variable declarations MVD and a
sequence of statements MS . A variable declaration VD consists of a variable name and a
type name.

The syntax of statements is defined as follows.

S ::= “if” E “then” MS “fi”
| “if” E “then” MS “else” MS “fi”
| “while” E “do” MS “od”
| “return” E
| SN “(” [ME] “)” “to” E
| E “.” ON “(” [ME] “)”
| E “.” SFN [“[” N “]”] “ : = ” E
| VN [“[” N “]”] “ : = ” E ,

where the structure of signal names SN , operation names ON , structural feature
names SFN , and natural numbers N is left unspecified. A statement S can contain
expressions E and sequences of expressions ME .

The syntax of expressions is defined as follows.

ME ::= E {“, ” E}
E ::= “create” “(” CN “)”

| “self”
| VN
| E “.” SFN
| E “.” ON “(” [ME] “)”,

where the structure of class names CN and operation names ON is left unspecified.
The note below the class diagram in Figure 2.1 shows an example of behavior modeled

using our surface language. The behavior is equivalent to the behavior represented by the
activity diagram on the left of the figure.

2.3.2 Embedding in the UML
We use a concept of the UML called OpaqueBehavior to embed our surface language in
the UML. Listing 2.1 shows a fragment of an XMI representation of a UML model that
contains an instance of OpaqueBehavior.

OpaqueBehavior uses a list of text fragments and a list of language names to specify
behavior. The first list specifies the behavior in one or more textual languages, and the
second list specifies which languages are used in the first list. OpaqueBehavior can be
used to specify behavior using, for instance, fragments of Java code or natural language.
In our case, as shown in Listing 2.1, both lists contain a single item. The first list contains

2.3. Specification of the Surface Language 13

<packagedElement xmi:type="uml:Class" name="C">
<ownedBehavior xmi:type="uml:OpaqueBehavior" name="b">
<body>return self</body>
<language>SL</language>

</ownedBehavior>
</packagedElement>

Listing 2.1: Embedding in the UML of behavior modeled using a language called ‘SL’

Figure 2.2: Transformations performed by the functions TB , TMS , TS , and TE

a specification of behavior using our surface language, and the second list indicates that
we use this surface language.

We transform a UML model containing behavior modeled using our surface language
to a UML model without such behavior by replacing all these occurrences of surface
language embedded in OpaqueBehavior by equivalent Activities.

2.3.3 Transformation
As described in Section 2.3.1, behavior specified using our surface language consists of
two parts: a sequence of variable declarations and a sequence of statements. The process
of transforming behavior modeled using a surface language to an Activity can be divided
into two steps:

1. The variable declarations are translated to UML Variables.

2. The sequence of statements is translated to an equivalent group of ActivityNodes
and ActivityEdges.

Translating variable declarations to UML Variables is a trivial step, which we will
not discuss. The transformation of sequences of statements to equivalent fragments of
UML Activities is described informally by means of the transformation function TB . The
function TB uses the auxiliary transformation functions TMS , TS , and TE .

Figure 2.2 gives a schematic representation of the transformations performed by these
functions. The clouds and the dashed arrows in the figure indicate how the fragments are
joined together to create an Activity. Each cloud in a fragment is replaced by another
fragment of an Activity. An incoming dashed ActivityEdge shows how a fragment is

14 Integrating Textual and Graphical Modeling Languages

Figure 2.3: Two ways of incorporating textual languages in the UML

connected to an outgoing ActivityEdge of the containing fragment; an outgoing dashed
ActivityEdge shows how a fragment is connected to an incoming ActivityEdge of the
containing fragment.

The function TB creates a group of ActivityNodes and ActivityEdges that is equivalent
to the sequence of statements provided as input and connects this group with an InitialNode
and an ActivityFinalNode using two ControlFlows. The function TMS creates an equivalent
group of ActivityNodes and ActivityEdges for each of the statements in the sequence
provided as input and connects these groups using ControlFlows. The function TS creates
a group of ActivityNodes and ActivityEdges that is equivalent to the statement provided
as input. Statements and expressions that are part of the statement provided as input are
also translated to equivalent groups of ActivityNodes and ActivityEdges. These groups
are connected to the first group using ControlFlows, for statements, or ObjectFlows, for
expressions. The function TE creates a group of ActivityNodes and ActivityEdges that is
equivalent to the expression provided as input. Other expressions that are part of this
expression are also translated to equivalent groups of ActivityNodes and ActivityEdges.
These groups are connected to the first group using ObjectFlows.

2.4 Grammarware
In this section, we describe the implementation of our surface language using a tool for
text-to-text transformations. Tools for text-to-text transformations are often referred to
as grammarware. We start by describing our approach in Section 2.4.1. Section 2.4.2
describes some important aspects of the implementation.

2.4.1 Approach
The leftmost part of Figure 2.3 gives a schematic overview of the transformation process
when performed using a text-to-text (T2T) transformation. The goal of this process is
to transform a UML model containing behavior specified using a surface language to a
plain UML model. In the approach using grammarware, we transform models containing
fragments of surface language to plain UML models by transforming the XMI [85]

2.4. Grammarware 15

representations of those models. This transformation from one textual representation to
the other consists of two steps:

1. A mapping from names occurring in the model to XMI identifiers is made by
traversing the parse tree of the XMI representation of the original model and storing
each name and the corresponding identifier in a table.

2. The transformation described in Section 2.3.3 is performed by translating fragments
of surface language to XMI representations of equivalent Activities.

The first step of the transformation makes it possible to retrieve the identifier of an
element in the second step. Each element in the XMI representation of a UML model has
a unique identifier. Actions that refer to other elements, such as AddVariableValueActions
and CreateObjectActions, refer to these other elements using their identifiers. An
AddVariableValueAction refers to a Variable using the identifier of that Variable; a
CreateObjectAction refers to a Classifier using the identifier of that Classifier.

Grammarware has been a subject of research for quite some time. An advantage of
using grammarware to perform this transformation is the ease of use provided by the
maturity of the tools and their documentation.

A disadvantage of transforming models using a text-to-text transformation is that
the models have to be exported to a textual format. Having to deal with the textual
representation of a model lowers the level of abstraction of the transformation. In our
case, for instance, the transformation deals with concepts of the XMI language, at a low
level of abstraction, instead of concepts of the UML, at a higher level of abstraction.

2.4.2 Implementation
We implemented the transformation described in Section 2.3.3 following the approach
described in Section 2.4.1 in the language ASF+SDF [30] using an integrated development
environment (IDE) for that language, called the ASF+SDF Meta-Environment [20]. We
discuss some of the details of our implementation below. The language ASF+SDF and
its IDE are described in Appendix A.

An advantage of using SDF to define the syntax of our surface language is that it
enabled us to combine this definition with an existing syntax definition of the XMI
format, without any alterations to the definitions. This is due to the fact that context-
free languages are closed under union. Because transformations implemented in ASF
are syntax safe, the transformation from UML models containing fragments of surface
language to plain UML models only produces results that adhere to the definition of XMI.

A disadvantage of the current implementation is that it can only parse one variant of
XMI. Most tools that import or export files in the XMI format use their own interpretation
of the format. These vendor specific interpretations are often incompatible with other
interpretations. Because of this, our implementation is limited to XMI files produced by
the UML2 plug-in of Eclipse since it can only read and produce models that adhere to the
interpretation of XMI of that plug-in. A solution for this problem would be to introduce
an intermediate language that serves as the starting point of a number of transformations
to variants of XMI. We could then transform a model containing fragments of surface
language to this intermediate language and subsequently from this intermediate language
to a number of variants of XMI. The limited portability is another disadvantage of using
the Meta-Environment for the implementation of our approach since it is currently only
available for the Unix family of operating systems.

16 Integrating Textual and Graphical Modeling Languages

Listing 2.2 shows a part of the implementation in ASF of the transformation from
behavior modeled using our surface language to Activities. All variable names in this
listing start with a dollar sign. The listing shows that a table mapping names to
identifiers, denoted by the variable $Context , is used both to retrieve the identifier that
corresponds to a given name as well as create fresh identifiers. It also shows that every
ReadVariableAction encountered in a fragment of surface language is replaced by the
XMI in lines 7 to 9.

1 $VariableName := $ReadVariableAction,
2 variableExists($Context, $VariableName) == true,
3 $Var := getVariableId($Context, $VariableName),
4 <$Id1, $Context1> := newId($Context),
5 <$Id2, $Context2> := newId($Context1),
6 $ObjectContent* :=
7 <node xmi:type="uml:ReadVariableAction" xmi:id=$Id1 variable=$Var>
8 <result xmi:id=$Id2 />
9 </node>

10 ====>
11 statementWithResult2Action($ReadVariableAction, $Context)=
12 <$ObjectContent*, $Id2, $Id1, $Context2>

Listing 2.2: ASF rule that creates a ReadVariableAction

Listing 2.3 shows the part of the SDF definition that defines the syntax of the surface
language statement representing a ReadVariableAction and declares the corresponding
variables. Line 4 of this definition defines that a ReadVariableAction is denoted by the
name of a variable, as is specified in Section 2.3.1.

1 sorts
2 ReadVariableAction
3 context-free syntax
4 VariableName -> ReadVariableAction
5 variables
6 "$ReadVariableAction"[0-9]* -> ReadVariableAction

Listing 2.3: SDF definition that defines the statement representing a ReadVariableAction

2.5 Modelware
This section describes the implementation of our surface language using tools for model-to-
text, text-to-model, and model-to-model transformations. In this context, the term “model”
refers to an instance of an explicit metamodel. Tools that can perform transformations
related to models are often referred to as modelware. Section 2.5.1 describes our approach.
Section 2.5.2 describes the most important aspects of the implementation. The tools used
for the implementation are described in Appendix A.

2.5.1 Approach
The rightmost part of Figure 2.3 gives a schematic overview of the approach using model-
to-text (M2T), text-to-model (T2M), and model-to-model (M2M) transformations within

2.5. Modelware 17

a UML modeling tool. The process of using modelware to transform a UML model
containing fragments of surface language to a plain UML model can be divided into the
following steps:

1. The fragments of surface language are extracted from the original model.

2. The extracted fragments are parsed and converted to a format usable by tools for
model-to-model transformations.

3. The extracted and converted fragments of surface language are translated to equiv-
alent Activities, as described in Section 2.3.3.

4. The fragments of surface language in the original model are replaced by the Activities
created in the previous step.

An advantage of this approach is that all transformations can be performed from within
one and the same modeling environment. In contrast to the approach described in Section
2.4.1, no models have to be imported or exported during the transformation process.

2.5.2 Implementation
We used three tools for model transformation from the openArchitectureWare platform to
implement the transformation described in Section 2.3.3 following the approach described
in Section 2.5.1. These tools are described in Appendix A, and the implementation is
described below.

We use Xpand to extract fragments of surface language from models by traversing
these models. For each instance of OpaqueBehavior in a model, the string describing
its behavior is stored in a text file, including the name of the OpaqueBehavior and the
name of the Class it is contained in. Listing 2.4 shows the fragment of surface language
extracted from the OpaqueBehavior of Listing 2.1.

behavior b C {
return self

}

Listing 2.4: Extracted fragment of surface language

We use Xtext to parse and convert the extracted fragments of surface language to
a format that is readable by Xtend. Because Xtext uses ANTLR, the class of textual
representations that can be parsed is restricted to those that can be described by an
LL(k) grammar. A disadvantage of using Xtext is that we had to modify our grammar
for this reason.

One of the advantages of using the tools offered by the openArchitectureWare platform
is their portability. The platform is a collection of plug-ins for Eclipse, and both Eclipse
and these plug-ins are available on a number of different operating systems.

Listing 2.5 shows a part of the transformation implemented in Xtend from behav-
ior modeled using our surface language to Activities. The listing shows that a new
ReadVariableAction, an OutputPin, and an ObjectFlow are created by defining local
variables using let expressions. These expressions are followed by a chain expression,
which denotes the sequential evaluation of the expressions connected by the “->” symbols.
The last two of these expressions use the ObjectFlow to connect the OutputPin of the
ReadVariableAction to the InputPin of another Action.

18 Integrating Textual and Graphical Modeling Languages

Void addReadVariableAction(
uml::Activity a, uml::Package p, surfacelanguage::Variable v,
uml::InputPin ip

) :
let act = new uml::ReadVariableAction :
let op = new uml::OutputPin :
let of = new uml::ObjectFlow :
a.node.add(act)

-> a.edge.add(of)
-> act.setResult(op)
-> act.setVariable(v.createVariable(p))
-> of.setSource(op)
-> of.setTarget(ip)
;

Listing 2.5: Xtend extension that adds a ReadVariableAction to an Activity

2.6 Other Applications of our Approach
Our approach is not only suitable for the embedding of our textual surface language in
Activities. The concept of OpaqueBehavior described in Section 2.3.2 can, for instance,
also be used to embed textual languages describing behavior in other parts of the UML.
Similar concepts, like OpaqueExpression and OpaqueAction, can be used to embed textual
languages for other purposes than describing behavior. It is possible, for instance, to use
a subset of Java as an expression language for UML StateMachines.

Thus far, we described how UML models combined with our surface language can
be transformed to equivalent UML models. The result of the transformation described
in Section 2.3.3, however, is only defined if the names used in the fragments of surface
language of an input model correspond with elements that exist in the rest of the model.
To check whether models meet this condition, we have implemented another version of
our transformation, which performs a simple form of checking. This transformation takes
a UML model containing fragments of surface language as input and transforms this into
a list of error messages. The transformation traverses the model and the fragments of
surface language and checks whether the names used in the statements of the surface
language correspond to elements that exist in other parts of the model. If the behavior
shown in the note in Figure 2.1 would refer to an attribute self .b, for instance, the
transformation would produce a message stating that class A does not have an attribute
named b.

2.7 Case Study
We applied the surface language described in this chapter during a case study with an
industrial partner. As part of the Ideals project [19], we investigated a straightforward
transformation from UML models to formal models suited for performance analysis. To
ensure the straightforwardness of this transformation, detailed UML models were required.
Initially, the behavior of the components of these models was described graphically using
a combination of activity diagrams and state machine diagrams, where each state machine
referred to a number of activities. However, to reduce the amount of work required to
produce these detailed models, we replaced some of the activity diagrams by equivalent
descriptions of behavior expressed using our surface language.

2.8. Related Work 19

Number of Number of graphical Number ofComponent Activities elements statements
A 4 9 + 6 + 5 + 8 3 + 1 + 1 + 2
B 2 6 + 9 1 + 2
C 2 5 + 5 1 + 1
D 4 26 + 14 + 14 + 11 6 + 3 + 3 + 2
E 5 17 + 11 + 15 + 16 + 17 4 + 2 + 3 + 4 + 4
F 5 7 + 17 + 9 + 7 + 19 1 + 4 + 2 + 1 + 5
G 3 6 + 6 + 6 1 + 1 + 1

Table 2.1: Comparison of the size of graphical and textual specifications of behavior

behavior {
 setVAT to laser;
 enableLaserGate to laser;
 HV to laser
}

activity diagram

<<SendSynchronousSignalAction>>

enableLaserGate via laser

<<SendSynchronousSignalAction>>

setVAT via laser

<<SendSynchronousSignalAction>>

HV via laser

Figure 2.4: An Activity and its textual equivalent from the Ideals project

For seven of the components of such a detailed UML model, Table 2.1 shows the
number of Activities required to model part of their behavior. Furthermore, the size of
each of the corresponding activity diagrams is illustrated by means of the number of
graphical elements contained by these diagrams. In the rightmost column of the table,
the number of statements of the corresponding textual specification is given. On the
left of Figure 2.4, one of the Activities of component A is shown, which consists of nine
graphical elements. On the right of the figure, an equivalent textual specification of this
behavior is shown, expressed using our surface language.

Although most of the activity diagrams mentioned in Table 2.1 are small, such as the
one in Figure 2.4, creating them showed to be cumbersome and the amount of additional
information they offer in comparison to the textual specifications is limited. As mentioned
above, each StateMachine is related to a number of Activities. Because of their conciseness,
the textual equivalents of the Activities could be incorporated directly into the diagrams
of the related state machines, thus reducing the number of diagrams.

2.8 Related Work
We chose to design and implement a new surface language instead of implementing a
design proposed by others. Section 2.8.1 describes two existing proposals for surface
languages and indicates why we decided not to implement either of them. There are many

20 Integrating Textual and Graphical Modeling Languages

alternatives for the languages we used to implement our surface language. Section 2.8.2
lists a number of alternatives for the grammarware we used and Section 2.8.3 lists a number
of alternatives for the modelware we used. Section 2.8.4 describes another approach for
integrating textual and graphical modeling languages.

2.8.1 Surface Languages
Dinh-Trong, Ghosh, and France propose an Action Language based on the syntax of
Java [34]. We decided not to implement their Action Language because their definition of
the language contains a number of primitive types and Java constructs whose relation to
the UML is not specified. Other important features of their language are that parameters
that serve as input or output of an Activity and attributes with multiplicity greater than
one are not taken into account.

Haustein and Pleumann propose a surface language that is an extension of the
OCL [51, 87]. They embed OCL expressions in their language by adding an Action to
the UML that evaluates an OCL expression and returns the resulting value. We took
a different approach because we wanted to design and implement a simple alternative
for activity diagrams that did not rely on or incorporate other languages. Incorporating
an expression language like the OCL in our language would introduce a large number of
language constructs that have no relation to our primary interest, which is the specification
of behavior.

2.8.2 Grammarware
SDF is based on SGLR, a scannerless generalized LR parser [110]. As an alternative
to using SDF, SGLR can be used directly to parse textual representations of models.
However, this requires either manual creation of the parse tables that SGLR takes as
input or generating them from language descriptions formalized using a custom syntax
definition formalism. Since SGLR can parse arbitrary languages with a context-free
syntax and context-free languages are closed under union, multiple syntax definitions can
be combined into one without any modifications to the original syntax definitions, as is
the case for SDF.

Other common tools used for parsing, such as ANTLR, JavaCC [66], and YACC [58],
can also be used to parse textual representations of models. They pose more restrictions
on the grammars used for the description of the textual representations, however, since
the grammars need to be of the LALR or the LL class.

After parsing the textual representations of models, the resulting parse trees have to
be transformed. Besides using special purpose transformation tools, generic programming
languages can be used to manipulate the parse trees. The source transformation language
TXL [28] is an example of a special purpose language. Paige and Radjenovic [89], and
Liang and Dingel [76] have experimented with TXL in the context of model transformation.
Although their research also deals with using grammarware for transformations related to
models, it differs from ours because it does not focus on the integration of text-based and
metamodel-based languages.

Stratego/XT provides an alternative for ASF+SDF [22]. It is a language and toolset
for program transformation that also uses SDF for parsing. It offers programmable
rewrite strategies, which allow its users to define the order in which rewrite rules are
applied. In ASF+SDF, the user has no control over the order of application. In contrast
to ASF+SDF, Stratego/XT is not supported by an IDE.

2.9. Conclusions and Future Work 21

Figure 2.5: An activity diagram and a straightforward textual equivalent

2.8.3 Modelware
TCS [61] is an alternative for Xtext. It is suited for both text-to-model and model-to-text
transformations and uses one specification to define the transformations in both directions.
In the case of TCS, the main constructs are called templates. These templates are similar
to the rules of Xtext; each template specifies the textual representation of an instance of
an element of the metamodel.

Figure 2.5 illustrates how the resulting languages differ from our surface language in
case a straightforward mapping, like those offered by Xtext and TCS, is used without
additional transformations. The behavior shown in Figure 2.5 is equivalent to the behavior
shown in Listing 2.4. The description of behavior shown in Figure 2.5 is much more wordy
than that of Listing 2.4, even for such a trivial example.

There are many languages for model transformation, including QVT [84], ATL [60],
and Epsilon [67]. Since our approach does not rely on any specific properties of Xtend,
each of these transformation languages can replace Xtend in our implementation.

2.8.4 Embedding Textual Modeling into Graphical Modeling
Scheidgen’s approach for integrating textual and graphical modeling languages [102] is
based on the fact that Eclipse uses the Model View Controller pattern [96]. A mapping
from textual notation to metamodel elements is used to generate a model from a textual
representation of that model and vice versa. This custom textual notation and the
graphical notations provided by Eclipse provide independent Views for the same Model.
The Controller is used to modify the underlying model without interfering directly with
the other views. The embedded text editor contained in the implementation of this
approach offers syntax highlighting and code completion. Similar to Xtext and TCS,
the language describing mappings from textual notation to metamodel elements offers
only straightforward mappings, which makes it less flexible than the approach using
grammarware.

2.9 Conclusions and Future Work
In this chapter, we addressed research question RQ1 by investigating two approaches for
the integration of textual and graphical modeling languages. To create large, detailed
UML models efficiently, we implemented a textual surface language as an alternative
for activity diagrams. We described this surface language, the two approaches, the

22 Integrating Textual and Graphical Modeling Languages

implementations that follow these approaches, and a number of related applications. The
approach using grammarware transforms models containing fragments of surface language
to plain models by rewriting the XMI representations of these models. The approach using
modelware extracts fragments of surface language from a model, converts these fragments
to a representation based on metamodels, transforms them to equivalent Activities,
and replaces the original fragments with the equivalent Activities. The approaches we
presented are not limited to the transformation of models to equivalent models. We also
implemented a transformation that transforms models containing fragments of surface
language into a list of error messages, thus providing a simple form of checking.

The research presented in this chapter did not focus on studying the suitability of
textual surface languages as a method for the efficient creation of large, detailed models.
However, experiments with a case study related to the Ideals project [19] showed that
the surface language described in this chapter does provide a convenient way of creating
such models for the UML. By replacing activity diagrams with fragments of surface
language, the number of diagrams could be significantly reduced, without reducing the
understandability of the model of the case study.

Both approaches and the corresponding implementations have their advantages and
disadvantages when applied to integrate a textual language into an existing modeling
language. The main advantages of the approach that uses grammarware are the flexibility
offered by the syntax definition formalism and the ease of use provided by the maturity
of the tools and their documentation. A downside of this approach is that dealing with
the XMI representation of models lowers the level of abstraction of the transformations
related to the approach. An advantage of the approach that uses modelware is that all of
the aforementioned operations related to this approach can be performed from within one
modeling environment. A disadvantage of the current implementation of this approach
is that the available tools pose more restrictions on the grammar of the language we
embed, in comparison to the approach using grammarware. Our approaches provide
advantages over the approaches described in Section 2.8 because they both offer a more
complex mapping from textual representations to metamodel elements, which can be
used to obtain simpler textual representations. The fact that the implementation using
grammarware poses less restrictions on the syntax of the textual language is also an
advantage over these approaches.

The current implementation that uses grammarware can parse only one variant of XMI,
but a future extension that introduces an intermediate language could pose a solution for
this shortcoming. Investigating the use of more advanced parsing technology as a basis
for the modelware tools is another promising direction for future research.

Chapter 3

Simple Language of Communicating Objects

The Simple Language of Communicating Objects (SLCO) is a small domain-specific
modeling language for the specification of systems consisting of objects that operate in
parallel and communicate with each other. Via a number of model transformations, SLCO
models can be simulated, executed, and verified. In this chapter, we describe the language
itself, the languages used for simulation, execution, and verification, and the model
transformations related to the language. Additionally, we describe the implementation
of the language and its transformations. This chapter serves as an introduction for
Chapters 4 to 7. Chapter 4 uses SLCO for a case study, and Chapters 5, 6, and 7 describe
its development. In this chapter, we provide an informal description of the semantics of
SLCO. A formal semantics is presented in Appendix B.

3.1 Metamodel
An SLCO model consists of a number of classes, objects, and channels, as shown by
the partial metamodel in Figure 3.1. Objects are instances of classes. A class describes
the structure and behavior of its instances. It has ports and variables that define the
structure of its instances and state machines that describe their behavior. It is possible
to specify the initial values of variables. If no initial value is specified, integer variables
are initialized to 0, Boolean variables are initialized to true, and string variables are
initialized to the empty string. The variables of a class are global variables in the sense
that they can be used by all state machines that are part of the class. Ports are used
to connect channels to objects, and each port is connected to at most one channel. The
state machines that are part of a class can only send and receive signals via the ports of
this class. In case a class specifies that its instances consist of multiple state machines,
these state machines operate in parallel.

A state machine consists of variables, states, and transitions. In contrast to the
variables of a class, the variables of a state machine are local variables because they can
only be used by the state machine that contains them. SLCO offers two special types of
states: initial states and final states. A state machine starts in its initial state, and an

24 Simple Language of Communicating Objects

Figure 3.1: Main constructs of SLCO

SLCO model has successfully terminated when all its constituting state machines have
reached a final state. Each state machine has exactly one initial state and can contain
any number of ordinary and final states. A transition has a source and a target state,
and is associated with a finite, ordered sequence of statements. Each statement is either
blocked or enabled, and a transition is enabled if its sequence of statements is empty or
the first statement of its sequence is enabled. Otherwise, it is blocked. Taking an enabled
transition from its source state to its target state leads to the execution of the associated
statements. If one of these statements is blocked, then its execution is halted until it
becomes enabled. The execution of a single statement is atomic, but the execution of a
number of statements is not. This means that the execution of statements related to a
given transition can be interleaved by the execution of statements related to a transition
of a concurrent state machine. If a transition has multiple outgoing transitions that are
enabled, one of them is taken non-deterministically.

Figure 3.2: Channels in SLCO

Objects communicate with each other via channels, which are either bidirectional or
unidirectional. SLCO offers three types of channels: synchronous channels, asynchronous,

3.1. Metamodel 25

lossy channels, and asynchronous, lossless channels. Each asynchronous channel is
implicitly associated to one or two one-place buffers. A unidirectional channel is associated
to one buffer, and a bidirectional channel is associated to two buffers, one for each direction.
Signals can be sent over an asynchronous, lossless channel in a certain direction if the
buffer associated to that direction is empty. If a buffer is not empty, statements that
send signals over this buffer block. Signals can always be sent over asynchronous, lossy
channels. Because these channels are lossy, however, some signals sent over these channel
are not stored in the corresponding buffer. If the buffer corresponding to a channel already
contains a signal and another signal is sent over this channel, the existing signal is replaced
with the new signal. If the buffer associated to a channel is empty, the signal reception
statements that receive signals via this channel are blocked. If the buffer associated to
a channel contains a signal and a matching signal reception statement is executed, the
signal is removed from the buffer and received by the state machine executing the signal
reception statement. A channel can only be used to send and receive signals with a
certain signature, which defines the number of arguments of a signal and the types of
these arguments. The part of the SLCO metamodel concerning channels is shown in
Figure 3.2.

Figure 3.3: Statements in SLCO

SLCO offers five types of statements, as shown in Figure 3.3. A Boolean expression
represents a statement that blocks the transition from a source to a target state until the
expression evaluates to true. The part of the SLCO metamodel concerning expressions
is shown in Figure 3.4. A delay statement blocks a transition until a specified amount
of time measured in milliseconds has passed. A transition with a (conditional) signal
reception statement is enabled if a signal with appropriate arguments is received via
the indicated port and the optional condition holds. There are two ways of specifying
that a signal reception is conditional. First, expressions given as arguments of a signal
reception specify that only signals whose argument values are equal to the corresponding
expressions are accepted. Second, only those signals are accepted for which the optional
condition of a signal reception evaluates to true. This condition is a Boolean expression
that may refer to the arguments of the signal that is offered via the port. Besides these
statements, SLCO also offers statements for assigning values to variables and for sending
signals via ports.

26 Simple Language of Communicating Objects

Figure 3.4: Expressions in SLCO

3.2 Concrete Syntax
SLCO has both a textual and a graphical concrete syntax. The graphical concrete syntax
consists of communication diagrams, structure diagrams, and behavior diagrams. The
diagrams in Figures 3.5, 3.6, and 3.7 show an example of an SLCO model using the
graphical syntax. Below, we describe the model shown in these figures.

The communication diagram in Figure 3.5 shows two objects p and q that communicate
over an asynchronous, lossless channel c1 , an asynchronous, lossy channel c2 , and a
synchronous channel c3 . Asynchronous, lossless channels, such as c1 , are denoted by
dashed lines, asynchronous, lossy channels, such as c2 , are denoted by dotted lines, and
synchronous channels, such as c3 , are denoted by solid lines. The diagram shows that
both objects have three ports. The ports of object p are named In1 , In2 , and InOut ,
and the ports of object q are named Out1 , Out2 , and InOut . Arrowheads indicate the
directionality of channels: unidirectional channels have one arrowhead and bidirectional
channels have two. Object q can only send signals over channel c1 via its port Out1 ,
for example, and object p can only receive signals sent over channel c1 via its port In1 .
Channel c3 , however, can be used for communication in both directions. Channel c1
can only be used to send and receive signals with a Boolean argument, channel c2 is
restricted to signals with integer arguments, and channel c3 is restricted to signals with
string arguments. The figure also shows that object p is an instance of class P and that
object q is an instance of class Q .

Figure 3.5: Objects, ports, and channels of an SLCO model

The structure diagram in Figure 3.6 shows the structure of classes P and Q . Class P
consists of three state machines (Rec1 , Rec2 , and SendRec), and class Q consists of one
state machine (Com). Furthermore, it shows that class P comprises an integer variable m

3.2. Concrete Syntax 27

and that state machines SendRec and Com comprise a string variable s . The initial value
of variable m is 0. The initial values of the other variables are not specified, which means
that they are initialized to empty strings as described above.

Figure 3.6: Classes, state machines, and variables of an SLCO model

Figure 3.7: State machines of an SLCO model

The behavior diagram in Figure 3.7 shows the four state machines of our example
model. The three state machines on the left of this figure specify the behavior of object p,
and the state machine on the right specifies the behavior of object q . Initially, all of
these state machines are in their initial states, which are named Rec1 , Rec2 , SendRec,
and Com0 . The fact that these states are initial states is indicated by an incoming arrow
from a solid black dot. The black dot itself does not represent a separate state.

When state machine Com makes the transition from state Com0 to state Com1 , it
executes the statement send P (true) to Out1 . The signal sent by object q is never
received by object p, however, because the statement receive P ([[false]]) from In1 of
state machine Rec1 can only receive signals if their argument equals false. The double
square brackets in the signal reception statement are used to distinguish expressions from
variables. For instance, receive S(v) from P represents a statement that receives signals
named S from port P and stores the value of the received argument in variable v . In
contrast, the statement receive S([[v]]) from P only receives those signals named S
from port P whose argument is equal to the value of variable v .

After state machine Com has been in state Com0 for 5 ms, the transition from
state Com0 to final state Com2 is enabled. This means that after 5 ms have passed while

28 Simple Language of Communicating Objects

state machine Com is in state Com0 , it can non-deterministically choose to send a signal
or terminate. The fact that state Com2 is a final state is indicated by an outgoing arrow
to a circled black dot. Also in this case, the circled black dot itself does not represent a
separate state.

While making the transition from state Com1 to state Com2 , a signal Q(5) is sent to
port Out2 first. Then, after a signal S (s) is received from port InOut and a signal T (s)
is sent to the same port afterwards, state Com2 is reached. Both ports named InOut are
connected to a synchronous channel, which means that communication via these ports is
synchronous. A statement that sends signals via these ports can only be executed when
the object on the other side of the channel is able to accept the signal that is being sent.
If there is no matching signal reception for a given statement that sends a signal, the
latter statement blocks.

The conditional signal reception statement receive Q(m |m >= 0) from In2 specifies
that state machine Rec2 will only accept a signal Q(m) if the condition m >= 0 holds.
After receiving such a signal, the value of global variable m is incremented.

The first statement of the transition of state machine SendRec blocks until the value
of global variable m equals 6. Once this condition holds, a signal is sent via port InOut ,
after which the state machine waits for the reception of a signal via the same port.

model CoreWithTime {
classes
Q {

ports Out1 Out2 InOut
state machines

Com {
variables String s
initial Com0 state Com1 final Com2
transitions

InitialToState from Com0 to Com1 {
send P(true) to Out1

}
...

}
}
...

objects p: P q: Q
channels
c1(Boolean) async lossless from q.Out1 to p.In1
c2(Integer) async lossy from q.Out2 to p.In2
c3(String) sync between p.InOut and q.InOut

}

Listing 3.1: Part of a textual SLCO model

As mentioned above, SLCO also has a textual concrete syntax. Listing 3.1 shows a
part of the example model using the textual syntax.

3.3 Target Languages
SLCO models can be simulated, executed, and verified by transforming them to equivalent
models and implementations in a number of languages. Before describing the transforma-
tions from SLCO to these languages, we discuss the target languages themselves.

3.4. Semantic Gaps and Platform Gaps 29

3.3.1 POOSL
We use the Parallel Object-Oriented Specification Language (POOSL) [108], a formal
modeling language for simulation and performance analysis, for simulation of SLCO
models. The behavioral part of POOSL is based on the formal language CCS [81], and
the part for modeling data is based on traditional object-oriented languages. A POOSL
model consists of a set of concurrent processes connected by channels. These processes
can communicate by exchanging synchronous messages via these channels. POOSL is
supported by two tools: SHESim and Rotalumis. SHESim offers interactive simulation of
POOSL models using its built-in POOSL interpreter. Rotalumis is a command-line tool
that can simulate POOSL models at high speed by compiling them to byte code that can
be executed on a virtual machine.

3.3.2 NQC
To execute SLCO models, an implementation platform is required. We chose to use
the Lego Mindstorms1 platform for this purpose. The key part of this platform is a
programmable controller called RCX. This RCX has an infrared port for communication
and is connected by wires to sensors and motors for interaction with its environment.
We deliberately opted for the outdated RCX controller, instead of the newer and more
advanced NXT controller, to investigate the strength of our transformational approach
when dealing with a primitive execution platform. The language we use to program
these programmable controllers is called Not Quite C (NQC) [13]. NQC is a restricted
version of C, combined with an API that provides access to the various capabilities of the
Lego Mindstorms platform, such as sensors, outputs, timers, and communication via the
infrared ports.

3.3.3 Promela
Model checking is an automated verification technique that checks whether a formally
specified property holds for a model of a system [26]. We use the model checker Spin [55]
for verifying our models. Spin can, among others, check a model for deadlocks, unreachable
code, and determine whether it satisfies a Linear Temporal Logic (LTL) property [95].
LTL is used to express properties of paths in a finite-state representation of the state
space of a system. The input language for Spin is Promela. Promela has constructs for
modeling selections and loops, based on Dijkstra’s guarded commands, and primitives for
message passing between processes over channels, either using queues or handshaking.
This enables modeling of both asynchronous and synchronous communication, respectively.
The syntax of expressions and assignments in Promela is similar to that of C.

3.4 Semantic Gaps and Platform Gaps
There are a number of differences between SLCO, POOSL, NQC, and Promela in terms
of the language constructs they offer. These differences are often referred to as semantic
gaps [8]. Furthermore, the Lego Mindstorms execution platform has practical limitations
that poses restrictions to implementations in NQC. These restrictions form platform gaps
because they do not hold for models specified using the other languages. We identified a

1http://mindstorms.lego.com/

http://mindstorms.lego.com/

30 Simple Language of Communicating Objects

number of gaps between SLCO and the target languages and platforms, which are shown
in Table 3.1. To successfully transform an SLCO model into an equivalent model or
implementation in one of the other languages, these gaps have to be bridged.

NQC POOSL Promela SLCO
(A)synchronous asynchronous synchronous both bothcommunication
Reliability of unreliable reliable reliable bothcommunication
Support for string no yes symbolic names for yesconstants integer constants
Connectivity for
communication broadcast point-to-point point-to-point point-to-point

Number of objects limited ∞ ∞ ∞

Table 3.1: Language and platform characteristics

Each column lists the characteristics of one of the four languages and the corresponding
platform. The first row indicates whether communication is synchronous or asynchronous.
In case communication is synchronous, both the sender and receiver of a signal need to
be available before a signal can be sent. In this way, sender and receiver synchronize
on communication. In case communication is asynchronous, a sender can send a signal
and proceed with its execution even though the receiver is not yet ready to receive the
signal. The second row indicates whether communication over channels is reliable. In
case a channel is reliable, which is also referred to as lossless, a signal that is sent will
always arrive at the receiving end. In case a channel is unreliable, which is also referred
to as lossy, a signal that is sent may get lost. The third row indicates whether a language
supports string constants. Although Promela has no support for strings, it offers an
enumerated type that allows representing numeric constants using symbolic names, which
can be regarded as a restricted form of string constants. The fourth row shows whether
signals are broadcasted or sent using point-to-point communication. When signals are
broadcasted, each signal can be received by multiple objects. In the case of point-to-point
communication, however, signals are sent from one object to exactly one other object.
The fifth row lists the amount of objects that can be instantiated simultaneously. In
POOSL, Promela, and SLCO, this amount is unlimited. For Lego Mindstorms, however,
this number is limited in practice. Because every object should be deployed on an RCX,
the amount of concurrent objects is bounded by the available number of RCX controllers.

3.5 Model Transformations
Two types of model transformations are applied to transform SLCO models to models
or implementations in one of the target languages: endogenous transformations and
exogenous transformations. The input and output language of an endogenous model
transformation is the same, whereas exogenous model transformations transform models
from one language to another language [79]. The endogenous transformations are used
to refine SLCO models by bridging the semantic and platform gaps. After all gaps have
been bridged, the straightforward exogenous transformations can be applied.

3.5. Model Transformations 31

3.5.1 Endogenous Transformations
For each of the semantic gaps and platform gaps described in Section 3.4, we implemented
an endogenous model transformation that bridges this gap. To keep these transformations
simple, they can only be applied to models adhering to certain conditions. In addition to
the transformations that bridge the gaps, we implemented transformations that refine
models to ensure that they adhere to the aforementioned conditions.

3.5.1.1 Synchronized Communication over Asynchronous Channels

To bridge the semantic gap between languages offering synchronous communication and
languages that do not, we implemented two transformations. Both transformations take
an SLCO model and a synchronous channel as input, and produce a model in which this
channel is replaced by an asynchronous, lossless channel and the objects that communicate
over this channel are adapted such that they communicate asynchronously.

Figure 3.8: State machines before and after applying the simple version of Tas

The first transformation is simple, but can only be applied to models that do not
contain states with multiple outgoing transitions if one of these transitions starts with a
statement that sends a signal over the synchronous channel. The transformation ensures
that the behavior of the model is still as desired by adding acknowledgment signals for
synchronization. Whenever a signal is sent, the receiving party sends an acknowledgement
indicating that the signal has been received. The sending party waits until it receives
this acknowledgement. In this way, synchronization is achieved. On the left of Figure 3.8,
two partial state machines are shown that send and receive a signal S . Initially, ports In
and Out are connected by a synchronous channel. After transformation, acknowledgements
are added, as shown on the right of the figure, and the synchronous channel is replaced
with an asynchronous, lossless channel. This transformation is described in more detail
in Appendix C, and its correctness is discussed in Chapter 6 and Appendix D.

The second transformation can be applied to any SLCO model, but is more complex.
The partial state machine on the left of Figure 3.9 shows an example of a situation
where the transformation described above cannot be applied. State S0 has multiple
outgoing transitions, and one of these transitions starts with a statement that sends a
signal. In such situations, a more complex protocol has to be applied to ensure that
the behavior of the model before and after transformation is the same, apart from the
communication over the channel that is replaced. Also in this example, ports In and Out
are initially connected by a synchronous channel, which is replaced by an asynchronous,
lossless channel. In Figure 3.9, the second partial state machine from the left shows how
the sending state machine is affected by the transformation, and the third partial state
machine from the left shows how the receiving state machine is affected. Additionally,
two other state machines are added to the model, which are shown on the right of

32 Simple Language of Communicating Objects

Figure 3.9: State machines before and after applying the general version of Tas

Figure 3.9. State machine S_Reader is added to the object that sends signals, and state
machine R_Reader is added to the object that receives signals. Together with these
state machines, the sender and receiver implement a protocol that ensures that states S1
and R1 are only reached if the communication between the sender and receiver was
successful. Furthermore, as long as the sender and receiver are unable to communicate,
all enabled outgoing transitions of states S0 and R0 can be made. Appendix C provides
a more detailed description of this transformation.

The protocol that is employed by this transformation is not straightforward. Therefore,
we used the state-space generator for SLCO described in Chapter 5 for feedback during
its development. Informally, the protocol consists of the following steps. Initially, the
value of variable var_Out is equal to 0, and the value of variable var_In is equal to 3.
First, the sending object sends a signal S (1) to indicate that it wants to communicate. It
can proceed to state S2 if all previous signals have been acknowledged by the receiving
object, which is the case if variable var_Out is equal to 0. The signal sent by the
sending object is received by state machine R_Reader , and the value of its argument
is stored in var_In. Once the receiving object is informed of the intent of the sending
object by means of the execution of statement var_In == 1 , it sends a signal S (2) to
indicate that it is ready to communicate. Once this signal has been received and the
value of its argument has been stored in variable var_Out by state machine S_Reader ,
the sending object may choose to complete the communication by sending signal S (3).
Alternatively, it may choose to cancel the communication by sending signal S (4). Upon
receiving one of these signals, the receiving object can take the transition to state R1 if
the communication has been completed successfully, or take the transition to state R0
if it has been canceled. Either way, it acknowledges the reception of the signal of the
sending object by sending a signal S (0). The state machines S_Reader and R_Reader
ensure that the statements that send signals cannot be blocked, by emptying the buffers
associated to the channels continuously. It is possible that the sending object sends
signal S (4) after sending signal S (1), while the receiving object remains in state R0 . The
self-loop on state R0 ensures that an acknowledgement is also sent in this situation.

In the remainder, the simple version of this transformation is referred to as TSas , and
the general version is referred to as TGas . In cases where it is not relevant which of these
two transformations is applied, the abbreviation Tas is used.

3.5. Model Transformations 33

3.5.1.2 Lossless Communication over a Lossy Channel

Transformation Tll implements lossless communication over a lossy channel by introducing
auxiliary objects that implement a concurrent version of the Alternating Bit Proto-
col (ABP) [12] known as the Concurrent Alternating Bit Protocol (CABP) [11]. This
transformation is only applicable to unidirectional channels that are used to communicate
signals named Signal and whose only argument is a string.

Figure 3.10: Two objects communicating over an asynchronous, lossless channel

Figure 3.10 shows a model consisting of two objects (a and b) that communicate
over an asynchronous, lossless channel (C). After transformation, channel C is replaced
by the channels c1 to c6 and four objects that implement the CABP, as shown in
Figure 3.11. Object a is connected to an object named sender , which communicates
over an asynchronous, lossy channel c2 with an object named receiver . The object
named receiver is in turn connected to the object b. After transformation, objects a
and b communicate with each other via the aforementioned objects, instead of directly.
Objects a and b are connected to these objects by synchronous channels. After receiving
a signal from object a, object sender repeatedly sends this signal over channel c2 until it
receives an acknowledgement from object ar , to which it is connected via the synchronous
channel c6 . After receiving a signal over channel c2 , object receiver forwards this signal
to object b and instructs object as to continuously acknowledge the reception of this
signal. Object as does this by continuously sending signals over the asynchronous, lossy
channel c5 . The acknowledgement sent by object as contains a two-valued argument
that is used by object ar to assess whether a particular acknowledgement signal was
already received before. Once object ar has received a new acknowledgement, it notifies
object sender . After receiving such a notification, object sender is able to receive a new
signal from object a and transmit this signal over channel c2 .

In Figure 3.12, the four state machines are shown that specify the behavior of the four
objects that implement the CABP. To show which state machine is part of which class,
the names of the states have been chosen such that they reflect the names of the classes
and objects.

3.5.1.3 Adding Delays to Transitions

Transformation Ttime takes a model and a set of transitions as input, and adds delay
statements to these transitions. This transformations is used to control the frequency of
the acknowledgments sent by the objects implementing the CABP. Because it reduces the
number of signals that are sent, it also reduces the number of collisions between messages
sent via infrared on the Lego Mindstorms platform.

3.5.1.4 Replacing Strings by Integers

Transformation Tint replaces each string constant in an SLCO model with a unique integer
constant and changes the type of all string variables and arguments to integer. This
transformation deals with the fact that NQC does not offer strings.

34 Simple Language of Communicating Objects

Figure 3.11: Two objects that communicate via the CABP

Figure 3.12: Four state machines implementing the CABP

3.5.1.5 Making the Sender of a Signal Explicit

When multiple objects broadcast signals with the same name and number of arguments
over the same medium, the receiving object cannot determine the origin of such a signal.
This situation arises when multiple RCX controllers communicate with each other, because
they communicate by broadcasting messages via infrared. To enable a receiving controller
to determine the origin of each signal it receives, transformation Tic can be applied to a
model. This transformation takes a model and a set of channels as input, and adds an
index to all signal names that identifies the channel over which these signals are sent.

3.5.1.6 Reducing the Number of Objects

Transformation Tmerge merges multiple objects into one object. Given a model and a set
of objects, it creates a new object that contains all the variables, ports, and state machines
contained by the objects provided as input. By reducing the number of objects in a model,
it bridges the corresponding gap between SLCO and NQC. If any of the objects that are

3.5. Model Transformations 35

being merged communicate over synchronous channels, then this form of communication
is replaced by communication using shared variables. Transformation Tmerge is only
applicable to objects that satisfy the following condition: each pair of state machines that
are part of two communicating objects must communicate over a unique unidirectional,
synchronous channel.

Figure 3.13: Two state machines before and after merging objects

Figure 3.13 shows how communication over a synchronous channel is replaced by
communication using shared variables. The two partial state machines on the left of the
figure are part of two separate objects and communicate with each other by sending and
receiving signals over a synchronous channel that connects ports In and Out . After merging
these two objects, the state machines are adapted as shown on the right of the figure
and communicate using the shared variables C_name and C_abl . Variable C_name
is used to store and retrieve the names of the signals that are being exchanged, and
variable C_abl encodes the states of the employed communication protocol. The sending
state machine sets the value of C_abl to 1 to indicate that it wants to communicate.
The receiving state machine indicates that it is also able to communicate by setting the
value of C_abl to 2. If both state machines are able to communicate, the sending state
machine can complete the communication process by setting C_abl to 3. It may also
choose to cancel the communication by setting C_abl to 0. The receiving state machine
acknowledges successful completion of the communication process by setting C_abl to 0.

3.5.1.7 Making all Signal Names Equal

To keep the transformation that adds the CABP as simple as possible, our implementation
of the CABP takes signals with a fixed name as input, transfers them over a lossy channel,
and delivers them at the receiving end. Before this instance of the CABP can be used
to substitute an asynchronous, lossless, unidirectional channel, the signal names that
are sent over this channel have to be changed into this fixed name. Transformation Targ
adapts signals such that their name is changed into this fixed name and the name of
the original signal is sent as an argument of the resulting signal. For example, the
statement send Block() to O is replaced by the statement send Signal(“Block”) to O .

36 Simple Language of Communicating Objects

3.5.1.8 Replacing a Bidirectional Channel by two Unidirectional Channels

Our implementation of the CABP can only substitute asynchronous, lossless, unidirectional
channels. In some cases, therefore, a transformation is needed that replaces communication
over a bidirectional channel by communication over two unidirectional channels before
transformation Tll can be applied. Transformation Tuni performs this task.

3.5.1.9 Exclusive Channels for Pairs of State Machines

Transformation Tmerge cannot merge objects if multiple state machines that are part of
an object communicate via the same port. To modify models that do not adhere to this
condition, we implemented a transformation Tex that replaces a channel between a pair
of objects with a number of identical channels. For each pair of communicating state
machines that are part of the two objects, a channel is introduced.

Figure 3.14: Communication before and after adding exclusive channels

On the left of Figure 3.14, two objects are shown that communicate over a single
channel. Both objects contain two state machines (which are not shown in this type of
diagram) that communicate over this channel. After applying transformation Tex , the
channel is replaced by four channels, as shown on the right of Figure 3.14.

Figure 3.15: State machines before and after adding exclusive channels

As a part of the process of replacing a channel by multiple channels, transformation Tex
modifies the state machines that communicate over these channels. Before transformation,
both state machines that are part of object a send signals via port Out , and both state
machines that are part of object b receive signals via port In. After transformation, one
of the state machine of object a sends signals via ports Out1 and Out3 , and the other
uses ports Out2 and Out4 . The receiving state machines are modified in a similar fashion.
Figure 3.15 shows parts of one of the state machine of object a and parts of one of the
state machines of object b before and after transformation. The names of the states of
these partial state machines correspond to the names of the classes they belong to. The

3.5. Model Transformations 37

situation before transformation is illustrated on the left of the figure, and the situation
after transformation is shown on the right.

3.5.1.10 Reducing the Number of Channels

When two objects are connected by more than one channel, these channels can be merged
into one if they have the same type and directionality, and support the same argument
types. Therefore, we implemented a transformation Tmc that merges multiple channels
between a pair of objects into one channel. Merging channels is a way of optimizing
models because it can be used to reduce the number of instances of the CABP that need
to be added.

3.5.1.11 Cloning Classes

Many of the transformations described above use two auxiliary transformations. One of
these transformations takes a model and a channel as input, and clones the classes of
the objects that communicate over this channel. After applying this transformation, the
objects that communicate over the channel are instances of the new cloned classes, and all
remaining instances of the original classes remain unchanged. This transformation ensures
that all transformations that alter objects that communicate over a certain channel only
affect these particular objects.

Figure 3.16: A model before and after cloning classes

Figure 3.16 shows the communication diagram of a model before and after applying
this transformation. After transformation, the classes of the objects communicating over
channel c1 are cloned. In the resulting model, object a1 is an instance of class A_c and
object b an instance of class B_c.

3.5.1.12 Removing Unused Classes

The second auxiliary transformation used by the transformations described above removes
all uninstantiated classes from a model. The model depicted on the right of Figure 3.16,
for example, no longer contains an instance of class B , which means that this class can
be removed without affecting the system specified by the model.

3.5.2 Exogenous Transformations
Each of the following exogenous model transformations takes an SLCO model as input
and produces a model or an implementation in one of the target languages. Because of
the gaps described in Section 3.4, the SLCO model provided as input must be specified
using a subset of SLCO that matches the capabilities of the target language and platform.

38 Simple Language of Communicating Objects

Any model that is specified using constructs that have no direct counterparts in the target
language must first be refined using the transformations described in Section 3.5.1.

3.5.2.1 Transforming SLCO to POOSL

1 ...
2 process class P()
3 instance variables m: Integer, PSendRecs: String
4 communication channels In1, In2, InOut
5 message interface InOut?T(String); In2?Q(Integer); ...
6 initial method call P_initial()()
7 instance methods
8 P_initial()() | |
9 m := 0; par Rec1_Rec1()() and Rec2_Rec2()() and SendRec_SendRec()() rap

10 .
11 Rec1_Rec1()() | var_1: Boolean |
12 In1?P(var_1 | var_1 = false); Rec1_Rec1()()
13 .
14 SendRec_SendRec()() | |
15 [m = 6] skip; InOut!S("a"); InOut?T(PSendRecs); SendRec_SendRec()()
16 .
17 ...
18 Com_Com0()() | |
19 sel delay(5) or Out1!P(true); Com_Com1()() les
20 .
21 ...
22 behaviour specification
23 (p: P[c3/InOut, c1/In1, c2/In2] || q: Q[c1/Out1, c2/Out2, c3/InOut])
24 \ {c1, c2, c3}
25 .

Listing 3.2: Part of a POOSL model

Because of the gaps between SLCO and POOSL, the transformation from SLCO to
POOSL is restricted to models that contain only synchronous channels. An example of the
output of this transformation is shown in Listing 3.2. This fragment of a POOSL model
is the result of applying the transformation to a slightly modified version of the model of
Figures 3.5, 3.6, and 3.7. The model has been modified by replacing all asynchronous
channels by synchronous channels.

The transformation transforms each SLCO class to a POOSL process class. Lines 2
to 16 of Listing 3.2 show the process class that represents the SLCO class P . The state
machines of each class are transformed to a number of process methods, one for each state.
The method in lines 11 to 13 represents the state Rec1 , the method in lines 14 to 16
represents the state SendRec, and the method in lines 18 to 20 represents the state Com0 .
Besides this, an additional process method is generated for each class, which calls all
process methods representing the initial states of the state machines of the class. These
additional process methods also initialize the variables of the classes and state machines
to their initial values, if applicable. Lines 8 to 10 show the process method that initializes
the variable m of class P and calls the process methods that represent the initial states
of its state machines as part of a parallel composition.

Since each SLCO class corresponds to exactly one POOSL process class, it is clear that
the global variables of an SLCO class can be represented by variables of the corresponding
POOSL class. An SLCO state machine, however, is represented by multiple process

3.5. Model Transformations 39

methods, and a group of process methods within a process class cannot share variables that
are inaccessible by other process methods of that class. For this reason, the local variables
of SLCO state machines have to be represented by variables of process classes too. These
variables can no longer be considered to be local to a certain state machine, since all the
process methods of a class can access them, even those representing other state machines
of the same class. Line 3 shows the declaration of the POOSL variables representing the
global SLCO variable m and the local SLCO variable s of state machine SendRec.

States with a single outgoing transition are translated to process methods containing
a single sequence of statements. This sequence of statements represents the outgoing
transition. Line 12 shows the sequence of statements representing the outgoing transition
of state Rec1 , and line 15 shows the sequence of statements representing the outgoing
transition of state SendRec.

States with multiple outgoing transitions are translated to process methods containing
a select statement. Each of the alternatives of such a select statement represents one of
the outgoing transitions. Line 19 shows the select statement representing the outgoing
transitions of state Com0 . The semantics of the POOSL select statement is as follows.
Each of the alternatives of a select statement is a sequence of statements. If one or more
of these sequences starts with a statement that is enabled, one of these sequences is
chosen non-deterministically and executed. If none of the statements are enabled, the
select statement is blocked until one of the statements it contains becomes enabled.

As mentioned above, each transition is transformed to a sequence of statements. If
a transition leads to an ordinary state, the sequence of statements representing this
transition ends with a process method call. This process method call calls the method
representing the target state of the transition. Line 12 shows the sequence of statements
that represents the transition from state Rec1 to itself. If a transition leads to a final
state, this process method call is omitted. The first alternative of the select statement
on line 19 shows an example of this situation. After 5 ms, the method representing
state Com0 terminates.

POOSL does not offer the form of conditional signal reception that uses expressions
as arguments to limit the types of signals that can be received. For this reason, auxiliary
variables are introduced to mimic this form of conditional signal reception. Lines 11
and 12 show how variable var_1 is used to do so.

Lines 23 and 24 show that objects p and q are declared to be instances of classes P
and Q , and that channels c1 , c2 , and c3 are connected to the ports of these objects.

3.5.2.2 Transforming SLCO to NQC

The transformation from SLCO to NQC transforms SLCO models to NQC implementa-
tions, provided that the following two conditions hold. First, all objects describing the
behavior of the controllers must communicate with each other via asynchronous, lossy
channels. Second, all communication between these objects and the object(s) representing
the hardware environment takes place over synchronous channels.

Figure 3.17 shows the state machine of object ar that is part of the implementation
of the CABP introduced in Section 3.5.1.2 after merging it with objects a and sender .
Listing 3.3 shows a fragment of NQC code that is the result of applying the transformation
from SLCO to NQC to a model containing the merged objects.

Every state machine that describes the behavior of an object in an SLCO model is
transformed into an NQC task. Lines 2 to 23 show the task that represents the state
machine of Figure 3.17. Line 3 shows the declaration and initialization of local variable b

40 Simple Language of Communicating Objects

Figure 3.17: Part of the Concurrent Alternating Bit Protocol

1 ...
2 task AR() {
3 int b = 0; int temp;
4 AR:
5 temp = Message();
6 if (
7 temp != 0 && ((temp & 112) / 16) == 0 && ((temp & 128) / 128) == b
8) {
9 name = 2; abl = 1; goto Ack;

10 }
11 temp = Message();
12 if (
13 temp != 0 && ((temp & 112) / 16) == 0 && ((temp & 128) / 128) == (1 - b)
14) {
15 goto AR;
16 }
17 goto AR;
18 Ack:
19 if (abl == 2) {
20 abl = 3; /* skip */; until (abl == 0); b = 1 - b; goto AR;
21 }
22 goto Ack;
23 }

Listing 3.3: Fragment of NQC code

and auxiliary variable temp. The purpose of auxiliary variable temp is explained below.
Global variables of SLCO objects, such as abl and name in Figure 3.17, are represented
by global variables of NQC programs, and are not shown in Listing 3.3.

Each state is represented by a label, followed by sequences of statements that represent
the outgoing transitions of the state, and a goto statement that jumps back to the label.
Lines 4 to 17 show the labeled sequence of statements representing state AR, and lines 18
to 22 represent state Ack .

If the statements of an SLCO transition start with a statement that might block
execution, this statement is translated to an NQC if statement and the remaining SLCO
statements are translated to NQC statements that form the body of this if statement.
In case the first statement is a signal reception statement, the if statement is preceded
by a call to the API function Message. The purpose of this API call is explained below.
Lines 5 to 10, 11 to 16, and 19 to 21 represent the transitions of the state machine in
Figure 3.17. The remaining statements that are part of an SLCO transition are translated
as follows. Assignments in SLCO are translated to assignments in NQC, as shown in
lines 9 and 20. Expressions and signal receptions are translated to until statements, as

3.5. Model Transformations 41

shown in line 20. Statements that send signals are not shown in this example. They are
translated to calls to the API function SendMessage, using the encoding explained below.

An RCX controller can only send and receive integer values over its infrared port.
Since signals in SLCO consist of a name and possibly a number of arguments, they have
to be encoded such that they can be represented as a single integer before they can
be sent, and they have to be decoded after being received. Lines 5 and 11 show that
first the auxiliary variable temp is used to store the value of the integer that has been
received last. Then, this integer is decoded as shown in lines 7 and 13. The encoding of a
signal, which is not shown in this example, is done using a similar procedure. The actual
sending and receiving of integer values is done via API calls to the functions Message
and SendMessage, as mentioned above.

In addition to an SLCO model, the transformation from SLCO to NQC also takes a
mapping from elements in the SLCO model to concepts of NQC as input. Listing 3.4
shows a part of the mapping for the model described in Section 3.6. For each class that
needs to be transformed to an NQC program, this mapping defines how some of the
signals of an SLCO model correspond to information received from sensors and commands
sent to motors. Each signal that is not mentioned in this mapping is assumed to be part
of the communication between controllers via infrared and is translated accordingly, as
described above.

1 class Middle
2 port2motor
3 Motor -> OutB 7
4 port2sensor
5 Sensor -> Sensor2 Light
6 signal2motor
7 Motor Left -> On Reverse
8 Motor Right -> On Forward
9 Motor Off -> Float

10 signal2sensor
11 Sensor Block -> Below -10
12 Sensor BlockPassed -> Above -2

Listing 3.4: Part of a mapping from SLCO to NQC

In line 3, port Motor of an SLCO model is mapped to output port OutB of a Lego
Mindstorms controller. The speed of the motor is set to 7. In line 5, SLCO port Sensor
is mapped to input port Sensor2 of a Lego Mindstorms controller, which is connected to
a light sensor. Signals named Left , Right , and Middle sent over port Motor are mapped
to commands for a motor in lines 7 to 9. Lines 11 and 12 show how signals named Block
and BlockPassed are mapped to information received from sensors. In line 11, for example,
receiving a signal named Block is mapped to the event that the value transmitted by the
sensor connected to port Sensor2 drops below −10.

3.5.2.3 Transforming SLCO to Promela

The transformation from SLCO to Promela transforms SLCO models containing only
synchronous channels and asynchronous, lossless channels to Promela models. Listing 3.5
shows a fragment of a Promela model that is the result of applying this transformation to a
slightly modified version of the SLCO model described in Figures 3.5, 3.6, and 3.7. Because
Promela does not support the more general form of conditional signal reception, the

42 Simple Language of Communicating Objects

condition m >= 0 is removed from the signal reception in the SLCO model. Additionally,
the asynchronous, lossy channel is replaced by an asynchronous, lossless channel.

1 mtype {S, P, Q, T, a}
2 int p_m = 0
3 chan c1_q2p = [1] of {mtype, bool}
4 chan c3_1_q2p = [0] of {mtype, mtype}
5 chan c3_2_q2p = [0] of {mtype, mtype}
6 ...
7 active [1] proctype p_Rec1() {
8 Label_Rec1: {
9 if :: {c1_q2p?P,eval(false); goto Label_Rec1} fi

10 }
11 }
12
13 active [1] proctype p_Rec2() {
14 Label_Rec2: {
15 if :: {c2_q2p?Q,p_m; p_m = p_m + 1; goto Label_Rec2} fi
16 }
17 }
18 ...
19 active [1] proctype q_Com() {
20 mtype q_s;
21 Label_Com0: {
22 if :: {skip; goto Label_Com2}
23 :: {c1_q2p!P,true; goto Label_Com1}
24 fi
25 }
26 Label_Com1: {
27 if ::
28 {c2_q2p!Q,5; c3_1_p2q?S,q_s; c3_2_q2p!T,q_s; goto Label_Com2}
29 fi
30 }
31 Label_Com2: skip
32 }

Listing 3.5: Part of a Promela model

For each object in an SLCO model, the state machines that describe its behavior are
transformed to Promela processes. Lines 7 to 11 in Listing 3.5 show the process that
represents state machine Rec1 of object p, lines 13 to 17 show the process that represents
state machine Rec2 of object p, and lines 19 to 32 show the process that represents state
machine Com of object q .

Channels between objects in SLCO are transformed to channels between processes
in Promela. Line 3 shows the declaration of the Promela channel representing the
SLCO channel named c1 . The 1 between square brackets indicates that this channel is
asynchronous. The declaration specifies that this channel is suited for messages consisting
of two parts: a symbolic name (mtype) and a Boolean value. Lines 4 and 5 show the
declaration of two channels representing the SLCO channel named c3 . Although Promela
offers bidirectional channels, a separate channel is declared for each direction. This is
done because the semantics of channels in Promela differs from their semantics in SLCO.
In SLCO, an object can only receive signals sent by another object. In Promela, however,
a process can retrieve a message from a channel that it has sent over this channel itself.
For this reason, we introduce two Promela channels for each bidirectional SLCO channel.
Each of the Promela channels is used only to communicate in one direction, which means

3.6. Sequences of Transformations 43

that a process uses the channel either to send messages or to receive messages, but not
both. The 0 between square brackets indicates that this channel is synchronous.

The local variables of state machines are represented by local variables of processes, as
shown in line 20. Global variables of SLCO objects are represented by global variables of
the Promela model. They are accessible by all processes in the model. On line 2, global
variable m of object p is declared.

Ordinary states are transformed to labeled selection statements, and final states are
transformed to labeled skip statements. Lines 21 to 25 represent state Com0 of object q ,
lines 26 to 30 represent state Com1 , and line 31 represents state Com2 .

Every outgoing transition of a state is represented by an alternative of the selection
statement that represents this state. Each of these alternatives ends with a goto statement
to the label representing the target state of the transition. State Rec1 of object p has
only one outgoing transition, as shown in line 9. State Com0 of object q has two outgoing
transitions. The transition to state Com2 is shown in line 22, and the transition to
state Com1 is shown in line 23.

The semantics of the selection statement is such that it will non-deterministically
execute one of the alternatives for which the first statement is executable, and it will block
if none of these statements are executable. The statements of a transition are transformed
to Promela statements in a straightforward way. Expressions and assignments in SLCO
are translated to equivalent expressions and assignments in Promela, as shown in line 15.
A signal reception is transformed to a receive statement, as shown in line 9. The receive
statement c1_q2p?P, eval(false) represents the reception of signals named P with an
argument that must be equal to false. A Promela receive statement blocks until it is able
to receive a message over a channel. A send signal statement is transformed to a send
statement in a similar fashion, as shown in lines 23 and 28.

3.6 Sequences of Transformations

Figure 3.18: Cooperating conveyor belts

To illustrate how the transformations described in Section 3.5 can be applied, we intro-
duce a system of three cooperating conveyor belts, schematically depicted in Figure 3.18.
We show how different implementations for controlling this system can be generated by
composing a number of transformations into different sequences of transformations. The
two vertical rectangles in Figure 3.18 denote conveyor belts that transport items towards
another conveyor belt, which is represented by a horizontal rectangle. The arrows in the
rectangles denote the directions in which these conveyor belts can transport items. The
three belts should cooperate such that items supplied by the vertical belts are dropped
onto the horizontal belt, one by one. The horizontal belt should transport each of these
items from the right-most belt to the left and those from the left-most belt to the right.

44 Simple Language of Communicating Objects

The small rectangles labeled ML, MM , and MR depict the motors that drive the conveyor
belts, and the small rectangles labeled SL, S

L
M , SR

M , and SR depict the sensors that detect
the passing items.

Figure 3.19: Communication between the controllers and the environment

An SLCO model that describes this system consists of four components: two ob-
jects (Left and Right) that model the controllers for the vertical belts, one object (Middle)
that models the controller for the horizontal belt, and one object (Environment) that
models the environment. The communication diagram in Figure 3.19 shows how these
objects are connected. Among other things, it also shows that the objects Left and Right
are both instances of class Single. To increase the readability of the figure, the names of
the channels have been omitted.

Figure 3.20: Behavior of controllers

Figure 3.20 shows the two state machines that specify the behavior of the controllers of
this system. The state machine on the left specifies the behavior of objects Left and Right ,
and the state machine on the right specifies the behavior of object Middle. The state
machines related to the environment are not shown.

In Figure 3.21, three sequences of model transformations leading to three distinct
implementations with the same observable behavior are shown. In this figure, SLCO
models are represented by the rectangles labeledM1

SLCO toM16
SLCO , NQC implementations

by rectangles labeledM1
NQC toM3

NQC , single transformations by labeled, solid arrows, and

3.7. Simplified SLCO 45

subsequences of transformation by labeled, dashed arrows. The starting point of all three
sequences, model M1

SLCO , describes the intended cooperation in terms of objects Left ,
Middle, Right , and their hardware environment.

The topmost sequence of transformations in Figure 3.21 transforms the SLCO
model M1

SLCO to the NQC implementation M2
NQC , which is meant to be deployed

on two controllers. First, objects Left and Right are merged, and the channels that
connect these objects to Middle are also merged. To be able to distinguish the origin
of signals after merging the channels, transformation Tic is applied before merging the
channels. Then, synchronous communication is replaced by asynchronous communication,
after which lossless communication over a lossy channel is achieved by adding objects
that implement the CABP. Because this last transformation adds a number of objects to
the model and the resulting model M8

SLCO should only contain as many objects as there
are controllers, these objects must be merged with others to reduce the total number
of objects again. As mentioned above, objects can only be merged if all pairs of state
machines involved in communication communicate over distinct channels. This explains
why transformation Tex is applied before transformation Tmerge is used to reduce the
number of objects. In the final transformation step, all string constants are replaced
by integer constants, leading to model M8

SLCO . Because all semantic gaps and plat-
form gaps have been bridged, transforming this model into implementation M2

NQC using
transformation TNQC is straightforward.

Figure 3.21: Sequences of transformations

The sequence of transformations in the middle of Figure 3.21 leads to an implementation
with three controllers. Because the three controllers communicate by broadcasting signals,
the origin of signals has to be made explicit using transformation Tic. After applying
this transformations, the names of the signals have to be changed again, and all string
constant have to be replaced by integer constants, to be able to apply transformation TNQC .
Transformation TNQC encodes the arguments of signals into a single integer, as discussed
in Section 3.5.2.2. To keep the number of distinct integer constants as low as possible
and achieve an optimal encoding of the signal arguments, transformation Tint is applied
both before and after transformation Targ .

The sequence of transformations in the bottom of Figure 3.21 generates an implemen-
tation for a system with only one controller. Therefore, all objects are merged in the first
transformation step.

3.7 Simplified SLCO
The SLCO metamodel discussed in Section 3.1 and the communication diagrams shown in
the rest of this chapter allow a transition to have multiple statements. When a transition
is made from one state to another, the statements that are part of this transition are
executed one by one. We have already mentioned in Section 3.1 that the execution of

46 Simple Language of Communicating Objects

statements related to a given transition can be interleaved by the execution of statements
related to a transition of a concurrent state machine. In fact, after executing one of the
statements related to a transition, an implicit intermediate state is reached. In some
cases, it is convenient to make all these implicit intermediate states explicit. Figure 3.22
show simplified versions of the state machines of Figure 3.7. In these simplified state
machines, each transition has at most one statement. Because of this, the state machines
have no implicit intermediate states.

Figure 3.22: State machines of the simplified version of the SLCO model of Figure 3.7

Additionally, the simplified state machines only use the general form of conditional
signal reception. To replace the shorthand notation originally used by state machine Rec1 ,
an auxiliary variable v is introduced. Furthermore, the expression true is added as a
condition to the signal reception statements of state machines SendRec and Com.

The version of SLCO that allows only these simplified state machines is used in
Chapter 5, which discusses the process of prototyping the semantics of the language. The
formal semantics of SLCO discussed in Appendix B and applied in Chapter 6 is also
based on this simplified version of SLCO.

3.8 Implementation
In this section, we discuss the implementation of all languages and transformations related
to SLCO. The tools used to implement these languages and transformations are described

3.8. Implementation 47

in more detail in Appendix A. All the grammars, metamodels, and transformations
described below are available online2.

Figure 3.23 gives an overview of the languages and transformations related to SLCO.
In this figure, all languages that are based on a metamodel implemented using the Eclipse
Modeling Framework (EMF) [106] are depicted as rectangles. The rounded rectangles
represent languages that have a textual concrete syntax, and the arrows represent model
transformations, parsers, and template-based code generators, which either transform
models or convert them from one representation to another.

Figure 3.23: Overview of languages and transformations

The metamodels of SLCO, NQC, Promela, and POOSL define the abstract syntax
of these languages. They define the concepts offered by the languages and the relations
between these concepts. To enable creation of models, EMF offers the automatic generation
of a tree-view editor from metamodels.

Unfortunately, creating large models using the standard editor provided by EMF is
cumbersome. To ease the process of modeling, we defined a textual syntax for SLCO
with Xtext [35], which also provides us with a textual editor for SLCO. Since all other
models are automatically generated from SLCO models, there is no need for convenient
editors for the other languages involved.

All endogenous transformations that are used to bridge the gaps between SLCO,
NQC, Promela, and POOSL are implemented using the Xtend model transformation
formalism [50]. In Figure 3.23, these transformations are represented by the arrow that
connects the rectangle labeled SLCO to itself. The transformations from SLCO to POOSL
and NQC are also implemented using Xtend, and the transformation from SLCO to
Promela is implemented using the ATL Transformation Language [62].

The result of each of these transformations is a model that conforms to the correspond-
ing metamodel. These models cannot be used directly in POOSL and Spin or on the
Lego Mindstorms platform. Instead, models in textual form are required for simulation,
verification, and execution. Therefore, we implemented model-to-text transformations
for these tools using Xpand [50]. Additionally, Xpand is used to produce the diagrams
that form the graphical syntax of SLCO. Each of the diagrams is in fact a directed graph
written in Dot that can be visualized with the Graphviz tool [38].

2http://code.google.com/p/simple-language-of-communicating-objects/

http://code.google.com/p/simple-language-of-communicating-objects/

48 Simple Language of Communicating Objects

The textual languages CS and LTS, their relation to Dot, and the transformations
implemented in ASF+SDF [20] are discussed in detail in Chapter 5. The relation between
these languages and the simplified version of SLCO discussed in Section 3.7 is also
described in Chapter 5. Because every textual model that is expressible in the simplified
version of SLCO is also expressible in the regular version of the language, the parser
and editor that are generated from the Xtext grammar of SLCO are also suited for the
manipulation of simplified textual SLCO models.

Chapter 4

Exploring the Boundaries of Model Verification

Traditionally, the state-space explosion problem in model checking is handled by applying
abstractions and simplifications to the model that needs to be verified. In this chapter, we
propose an approach that applies model-driven software engineering and works the other
way around. Instead of making a concrete model more abstract, we propose to refine an
abstract model to make it more concrete. Furthermore, we propose to use fine-grained
sequences of model transformations to enable model checking of models that are as close
to the implementation model as possible. We applied our approach in a case study. The
results show that it is possible to validate models that are more concrete when fine-grained
sequences of transformations are applied.

4.1 Introduction
Model-driven software engineering (MDSE) is a software engineering paradigm in which
models play a central role throughout the entire development process [103]. MDSE
combines domain-specific modeling languages (DSMLs) for modeling at a higher level of
abstraction and model transformations for the automated generation of various artifacts,
such as code, from these models. Our goal is to generate reliable code from models
specified using a DSML. To increase the reliability of generated code, formal methods
such as verification can be used. Model checking is an automated verification technique
that checks whether a formally specified property holds for a model of a system [26]. An
exhaustive state-space search is performed by an automated model checker to determine
whether a property holds in a finite-state model of a system. Often, this state space is
huge and model checking is no longer a feasible approach for verification. Traditionally,
abstractions and simplifications are applied to the model to enable model checking in such
cases [23, 25,113]. We propose an MDSE approach to enable model checking that works
the other way around. Instead of starting with a large model and iteratively simplifying
it, we start with a small model and iteratively refine it.

In a typical MDSE development process, domain-specific models are iteratively refined
using model transformations until a model is acquired with enough details to implement

50 Exploring the Boundaries of Model Verification

a system [69]. To increase the reliability of the final system, model checking can be
employed. Because of the aforementioned state-space explosion problem, model checking
the final system may be infeasible. Instead, we propose to define an additional model
transformation that transforms the domain-specific models to models suitable for model
checking. Using this model transformation, model checking can be applied on the domain-
specific models in every stage of the refinement process. Using this approach, intermediate
models close to the implementation can be model checked, while model checking the final
system may be infeasible. This chapter thus deals with research question RQ2.

RQ2: How does the size and complexity of model transformations affect the
verifiability of intermediate models produced by sequences of refining model
transformations?

In this chapter, we demonstrate this approach using the Simple Language of Com-
municating Objects (SLCO), the DSML for modeling systems consisting of concurrent,
communicating objects described in Chapter 3. SLCO has an intuitive graphical syntax to
model the structure and behavior of a system, and offers constructs such as synchronous
communication to make models concise. As discussed in Section 3.5.1, we implemented
a number of transformations that can be composed into sequences to transform models
specified in SLCO to NQC, a restricted version of C [13]. The semantic properties of
NQC and its implementation platform differ from those of SLCO, which means that some
constructs that are available in SLCO have no direct counterparts in NQC. To enable
transformation from SLCO to the implementation platform, the semantic gaps between
the two platforms need to be bridged [8]. Therefore, we added a number of constructs
to SLCO and implemented a number of endogenous transformations [79] that can be
used to stepwise refine models to align the semantic properties of the DSML with NQC.
These transformations replace the constructs in a model that are not offered by NQC by
constructs that it does offer, while preserving the observable behavior of the model. A
final exogenous transformation transforms the resulting model to executable code.

In Section 3.5.2.3, the transformation from SLCO to Promela is described. Promela is
the language of the model checker Spin [55], and this transformation is used to enable
model checking of the (intermediate) domain-specific models. Our first experiments showed
that verification of models generated by sequences of refining, endogenous transformations
using Spin was infeasible due to state-space explosion, even for small source models, as
described in Section 4.4.2. We concluded that the change induced on the models by the
transformations was too large. In other words, the sequences of transformations were too
coarse-grained. Therefore, we split up the coarse-grained sequences of transformations
into more fine-grained ones. The impact of the individual transformations of such a
fine-grained sequence of transformations on a model is smaller, and the model does
not change drastically. This is reflected in the increase of the state space size that is
searched by Spin. Using this approach, intermediate models generated by the fine-grained
sequences of transformations can be model checked almost all the way up to the models
that can be executed because the state space stays within reasonable bounds.

The remainder of this chapter is structured as follows. Our approach to enable model
checking of intermediate models on the lowest possible level of abstraction is discussed
in Section 4.2. Section 4.3 compares the coarse-grained and fine-grained sequences of
transformations that can be used to refine the models created with SLCO. The experiments
we conducted are presented in Section 4.4. In Section 4.5, we reflect on our work, and
Section 4.6 describes related work. Conclusions and directions for further research are
given in Section 4.7.

4.2. Approach 51

4.2 Approach
Our goal is to generate reliable code from models specified using a DSML. To increase the
reliability of generated code, formal methods such as verification can be used. To ensure
that the same model is verified and executed, models specified using the DSML should
automatically be transformed to models suitable for these purposes. In this way, these
models do not have to be created by hand. This enables the use of formal methods without
having to create models suitable for that purpose separately. This has the advantage that
engineers do not have to learn the syntax and semantics of different languages. Moreover,
manual transformation is a slow and error-prone task.

Often, DSMLs and their envisaged implementation platforms have different semantical
characteristics. Therefore, the semantic gap between the two formalisms needs to be
bridged [8]. We propose to use model transformations to refine DSML models in such
a way that the semantic properties of the DSML and the implementation platform are
aligned. In this way, the abstract DSML model becomes concrete and transformation from
the refined (concrete) model to executable code is merely a syntactical transformation.

To enable verification of DSML models, a transformation from the DSML to a
formalism for verification should be implemented. For our experiments, we implemented a
transformation to a model checking formalism. Using this transformation, it is possible to
verify whether both the abstract and the concrete DSML models fulfill their requirements.
From the experiments presented in Section 4.4, we concluded that verification of an
abstract model poses no problems. However, verification of a concrete model is infeasible
because the verification takes too much time and needs too many resources.

The sequences of transformations used to refine the abstract DSML models produce
intermediate models. These models can be transformed to a verification formalism too.
By verifying the intermediate models, it is possible to verify models that are more concrete.
This approach is schematically depicted in the top half of Figure 4.1. The check marks
indicate models that can be verified, whereas the crosses indicate models that cannot be
verified. Our experiments showed that it is possible to verify some of the intermediate

Figure 4.1: Verification of intermediate models

models, but the most concrete model that can be verified contains little implementation
details. Because the change induced on the models by the transformations is too large,
the intermediate models suffer from state-space explosion after only a few refinement
steps. Therefore, we propose to use more fine-grained sequences of transformations to
enable verification of more concrete models. This can be achieved by splitting existing
transformations into smaller parts. In this way, more intermediate models are generated
that can be verified. This approach is schematically depicted in the bottom half of
Figure 4.1. Using this approach, it is possible to verify models that are closer to the
concrete model. By replacing the transformations Trs and Tabp from Figure 4.1 by the

52 Exploring the Boundaries of Model Verification

smaller transformations Targ , Tuni , Tll , Ttime , Tex , Tmerge , and Tint , for instance, the
state space of the intermediate model Mex can be explored, instead of that of the less
concrete model Mrs . The example shown in Figure 4.1 is an illustration of one of the
experiments presented in Section 4.4. In different cases, the transformation steps as well
as which intermediate models can be verified will vary.

The most concrete model that can be model checked may still not be close enough to
the implementation model. An attempt can be made to split the transformations into
even smaller parts. If this is not possible anymore, another possibility is to apply the
model transformation to part of the model only. Since the refinement, in this case, is
applied to a small part of the model, this will most likely result in models that give rise
to smaller state spaces. Using partial refinement, the boundaries of what can be verified
using model checking can be explored even further.

Using more fine-grained sequences of transformations has some positive side-effects.
Since the individual transformations of fine-grained sequences of transformations tend
to be smaller than those of course-grained ones, it is easier to locate defects in them.
Additionally, these transformations have proven to be more reusable than those used to
form course-grained sequences during our experiments. Another advantage of having
fine-grained sequences of transformations is that it enables shuffling the order in which
the transformations are applied. This order affects the output model, however, and some
sequences of transformations may lead to more efficient implementations than others.
Furthermore, it may be that not all orderings are allowed because the preconditions of
some transformations may be in conflict with the postcondition of others.

4.3 Comparison of Transformations
In this section, we compare the transformations used to form coarse-grained and fine-
grained sequences of model transformations. The transformations used to form fine-
grained sequences, the transformation to Promela, and the transformation to NQC are
discussed in Chapter 3. For this reason, we only describe the transformations used to
form coarse-grained sequences of transformations in this chapter.

4.3.1 Coarse-Grained Sequences of Model Transformations
In Section 4.1, we explained that the characteristics of the platforms differ. To execute
SLCO models, the gaps between SLCO and NQC need to be bridged. Therefore, we
defined a number of transformations that transform an SLCO model to a refined SLCO
model with equivalent observable behavior. Each of these transformations eliminates
one of the gaps between the languages and their platforms. An SLCO model that uses
synchronous communication only, for example, can be transformed to an equivalent SLCO
model that uses asynchronous communication only.

SLCO NQC
(A)synchronous communication synchronous and asynchronous asynchronous
Reliability of communication reliable and unreliable unreliable

Table 4.1: Language and platform characteristics for the coarse-grained sequences

When starting the development of the sequence of transformations from SLCO to
NQC, we identified the gaps between the languages and their platforms shown in Table 4.1.

4.3. Comparison of Transformations 53

This analysis showed that, to automatically generate an NQC implementation from an
SLCO model, transformations are needed that mimic synchronous communication over
an asynchronous channel and that facilitate reliable communication over an unreliable
channel. At that point, these gaps seemed to be the most important, and we designed the
sequence of transformations such that each of the transformations bridges at most one
of the gaps. Two of the following model transformations are implemented to bridge the
gaps between SLCO and NQC. The third transformation is used to ensure that models
adhere to the precondition of one these two transformations.

4.3.1.1 Synchronized Communication over Asynchronous Channels

The transformation that replaces communication using synchronous signals by commu-
nication using asynchronous signals ensures that the behavior of the model is still as
desired by adding acknowledgment signals for synchronization. Whenever a signal is
sent, the receiving party sends an acknowledgement indicating that the signal has been
received. The sending party waits until the acknowledgement has been received. In this
way, synchronization is achieved.

4.3.1.2 Lossless Communication over Lossy Channels

Lossless communication over lossy channels is implemented using a variant of the alter-
nating bit protocol (ABP) [11, 12]. This protocol ensures that each signal that is sent,
is eventually received, assuming that not all signals get lost. This transformation adds
the ABP to a model by adding new state machines implementing the protocol to objects
that communicate over a lossy channel. These new state machines communicate with the
existing state machines in these objects using shared variables.

4.3.1.3 Exclusive Access to Ports

To ensure that a model meets the precondition of the previous transformation, we use a
third transformation. When multiple state machines communicate over the same port, the
previous transformation may only be applied if at most one of the state machines sends
a message over this port at the same time. The transformation that ensures exclusive
access to ports adds a token server to ensure that this is the case. This token server is
implemented as an additional state machine that is added to the objects directly. The
token server and the existing state machines pass information using shared variables.

4.3.2 Fine-Grained Sequences of Model Transformations
Experiments with sequences composed of the model transformations described above
showed that these sequences were too coarse-grained. In particular, applying the trans-
formation that adds a variant of the ABP to a model often led to models with a very
large state space. Therefore, we reexamined the two languages and identified a number of
additional gaps, which are shown in Table 4.2.

When using the coarse-grained sequences of transformations to refine models, the
modeler is responsible for creating input models that do not introduce problems concerning
the three gaps that are not addressed by the transformations described above. Because
these transformations do not introduce objects and cannot be used to reduce the number of
objects, the modeler is responsible for creating input models that contain as much objects
as can be deployed. The transformations described above also do not introduce data

54 Exploring the Boundaries of Model Verification

SLCO NQC
(A)synchronous communication synchronous and asynchronous asynchronous
Reliability of communication reliable and unreliable unreliable
Support for string constants yes no
Connectivity for communication point-to-point broadcast
Number of objects ∞ limited

Table 4.2: Language and platform characteristics for the fine-grained sequences

types that cannot be used in NQC. If the input model does not use these data types, the
transformations will result in a deployable model. Because there is no transformation that
deals with the problem of identifying the sender of a message that has been broadcasted,
only input models with two communicating parties are allowed.

The transformations described in Chapter 3 are replacements of the transformations
described above and can be used to compose more fine-grained sequences of transforma-
tions. For example, the version of the transformation that ensures lossless communication
over a lossy channel described in Section 3.5.1.2 no longer adds state machines to existing
objects, but connects these objects to fresh objects that implement the ABP. After adding
these objects, another transformation, described in Section 3.5.1.6, must be applied to
merge the new and the existing objects, to reduce the total number of objects again and
obtain a model that contains as many objects as can be deployed. Also the transforma-
tion that ensures exclusive use of ports is replaced by another transformation, which is
described in Section 3.5.1.9. The transformation that adds acknowledgements for synchro-
nization, however, is not replaced. This transformation has been expanded to improve its
applicability, but this extension is irrelevant for the experiments described below.

4.4 Experiments
We performed a number of experiments to determine the size of the state space of
intermediate models generated by sequences of refining transformations. By transforming
intermediate SLCO models to Promela models, we obtain models whose state space can be
explored using Spin. For the experiments described below, we configured Spin to explore
the state-spaces by means of a depth-first search with a maximum search depth of 1 · 108

transitions and using at most 4 · 104 megabytes of memory. After describing the models
that serve as inputs in our experiment, we show that an approach using coarse-grained
sequences of transformations quickly leads to models with very large state spaces. Then,
we present the results of our experiments using fine-grained sequences. Finally, we discuss
how applying transformations to a part of the applicable model elements only can also be
used to explore the state space of less abstract versions of models.

4.4.1 Cases
We apply the refining transformations described in Section 4.3 to three different models.
The first model consists of one object that repeatedly sends signals via its port (the
producer) and one object that is always able to receive signals via its port (the consumer).
A synchronous channel connects the ports of the producer to the ports of the consumer.
The communication and behavior diagram of this model are shown in Figure 4.2. In a
number of steps, channel c is replaced by asynchronous, lossy channels.

4.4. Experiments 55

Figure 4.2: A producer and a consumer

The second model describes the behavior of a system consisting of three interoperating
conveyor belts. It is a variant of the model described in Section 3.6 that is obtained by
merging the objects Left and Right , and subsequently merging the channels that connect
them to object Middle. The communication diagram of this model is shown in Figure 4.3,
and the behavior diagram is shown in Figure 4.4. The names of the channels are omitted
from the communication diagram to increase its readability. The state machine on the
right of Figure 4.4 specifies the behavior of object Middle, and the behavior of object L_R
is specified using two instances of the state machine shown on the left of the figure. The
third component, which models the environment of the system, is not described here. This
model is transformed by replacing the synchronous channel that connects object L_R
and object Middle by asynchronous, lossy channels.

Figure 4.3: Communication diagram of the second model

Figure 4.4: State machines of the second model

56 Exploring the Boundaries of Model Verification

The third model consists of two objects that repeatedly send signals via their ports
(the producers) and one object that is always able to receive signals via two ports (the
consumer). Two synchronous channels connect the ports of each of the producers to the
ports of the consumer. Figure 4.5 shows the communication and behavior diagram of this
model. For the experiments, both channels are replaced by asynchronous, lossy channels.

Figure 4.5: Two producers and a consumer

For the experiments described in this section, we used a slightly modified version of
SLCO. In this version of the language, the solid black dots represent the initial states,
whereas in the current version of SLCO described in Chapter 3, they do not. Instead,
the dots and their outgoing arrows are currently only used to indicate the initial states.
For the model shown in Figure 4.2, for example, the fact that the black dots represent
the initial states themselves means that both the producer and the consumer consist
of two states. This is reflected by the tables in the following section. The reason for
this difference between the older version of SLCO and the current version is discussed in
Chapter 7.

4.4.2 Results
Applying a coarse-grained sequence of transformations to the model of the producer and
consumer leads to the state space sizes shown in Table 4.3. The table shows that replacing
synchronous communication by asynchronous communication approximately doubles the
size of the state space. Adding a number of state machines that implement the ABP to
each of the two objects, however, leads to a significant increase of the size of the state
space. Although the resulting state space of the most concrete model is much larger
than the one of the intermediate model, it is still small enough for verification given the
aforementioned configuration of Spin.

Model # States # Transitions
Original 4 6
Asynchronous signals 8 11
Lossless communication 76 066 432 542 196 960

Table 4.3: Coarse-grained sequence applied to the producer and consumer

To further illustrate the effects of coarse-grained sequences of transformations on the
size of the state space, we applied one to the second model, which is slightly more complex
than the first. One of the components in the system of the three conveyor belts consists
of two instances of the same state machine. Both instances communicate over the same
port, which means that a token server must be added when refining this model, before
the transformation that adds the ABP can be employed. Table 4.4 shows that adding a
token server leads to a state space that can still be model checked. The final row in the

4.4. Experiments 57

table indicates that it is impossible to explore the entire state space before the search
depth is exceeded or all available memory is used. This shows that the output of this
transformation is not suited for model checking, even though the input model is still
relatively small.

Model # States # Transitions
Original 494 1 294

Asynchronous signals 748 1 980

Token server 10 090 33 820

Lossless communication – –

Table 4.4: Coarse-grained sequence applied to the interoperating conveyor belts

The results of these experiments led us to implement the versions of the transformations
discussed in Section 4.3.2. Table 4.5 shows the effect of a fine-grained sequence of
transformations on the size of the state spaces of the intermediate models in the case of
the producer and the consumer, and Table 4.6 shows the effect in the case of the three
interoperating conveyor belts. The transformations that ensure that all signals have a
fixed name, replace bidirectional channels by two unidirectional channels, ensure that each
state machine within an object communicates with the ABP over an exclusive channel,
and replace strings by integers have no effect on the size of the state space.

Model # States # Transitions
Original 4 6
Asynchronous signals 8 11
Fixed signal names 8 11
Unidirectional channels 8 11
Lossless communication 114 388 596 367

Delays 1 009 856 5 902 673

Merged objects 83 251 840 592 242 910

Integers instead of strings 83 251 840 592 242 910

Table 4.5: Fine-grained sequence applied to the producer and consumer

Model # States # Transitions
Original 494 1 294

Asynchronous signals 748 1 980

Fixed signal names 748 1 980

Unidirectional channels 748 1 980

Lossless communication 19 148 872 141 049 260

Delays 167 466 690 1 334 614 400

Exclusive channels 167 466 690 1 334 614 400

Merged objects – –

Table 4.6: Fine-grained sequence applied to the interoperating conveyor belts

In the case of the producer and the consumer, each intermediate model has a state-
space that can be explored given the aforementioned configuration of Spin. In the case
of the conveyor belts, however, merging objects leads to a state-space that is too large
to explore. Even though the most concrete model is still unsuited for model checking,

58 Exploring the Boundaries of Model Verification

the fine-grained sequence of transformations made it possible to explore an intermediate
model that is more concrete than the ones produced using the coarse-grained sequence.

4.4.3 Exploring the Boundaries
In both of the cases mentioned above, only two instances of the ABP are added because
communication takes place in two directions between one pair of objects. Table 4.7 shows
the results for the model consisting of two producers and one consumer. To achieve
lossless communication over a lossy channel in this case, four instances of the ABP have
to be added, because communication takes place in two directions between two pairs of
objects.

Model # States # Transitions
Original 8 17
Asynchronous signals 33 68
Fixed signal names 33 68
Unidirectional channels 33 68
Lossless communication – –

Table 4.7: Fine-grained sequence applied to two producers and a consumer

Adding four instances of the objects that implement the ABP leads to an explosion
of the state space. This makes it very hard to verify properties of this model using
state-space exploration. Table 4.8 shows the effect of adding an instance of the ABP to
respectively one, two, and three channels in the model of two producers and one consumer,
while leaving the other channels untouched.

Model # States # Transitions
Original 8 17
Asynchronous signals 33 68
Fixed signal names 33 68
Unidirectional channels 33 68
one ABP instance 5 188 21 335

two ABP instances 527 108 3 224 435

three ABP instances 105 715 260 879 085 750

Table 4.8: Incremental introduction of the ABP

By replacing communication over only a subset of the four channels in the model by
communication via the ABP, a model is obtained with a state space that is significantly
smaller than the state space corresponding to the model in which communication over all
channels is replaced. In this way, verification of a model that resembles the implementation
more closely than the original, more abstract, model is possible. The same approach can
be used to merge only some of the objects in the model of the interoperating conveyor
belts. In general, applying a refining transformation to a part of the applicable elements
in the model only can be used to model check intermediate models that resemble the
implementation as close as possible, in cases where it is impossible to model check the
completely refined model.

4.5. Discussion 59

4.5 Discussion
In Section 4.4, we used the model checker Spin to illustrate the effect of both coarse-grained
and fine-grained sequences of transformations on state spaces. However, our approach is
not limited to one particular model checker. The refining transformations we implemented
take SLCO models as input and produce SLCO models as output. Support for another
model checker or a similar tool can be added by implementing a single transformation
from SLCO to the formalism supported by that tool.

To clearly show the influence of our refining transformations, we used no additional
reduction or abstraction techniques. However, our approach can be combined with such
techniques in practical situations. Using one of the standard state vector compression
modes offered by Spin [54], for instance, it is possible to explore larger state spaces.
Using this compression method and the configuration described in Section 4.4, the state
space of the timed version of the model of the three conveyor belts can be explored using
approximately 15 · 103 megabytes, instead of 31 · 103 megabytes.

Typically, model checking is used to verify whether a property holds for a model
of a system. Because the refining transformations modify the model, properties under
investigation may have to change as well. After adding communication via the ABP to a
model, for example, there are unfair traces in the state space representing the behavior
that all signals are discarded by the lossy channel. To consider only the fair traces, a
fairness constraint has to be added to the property.

4.6 Related Work
Multiple proposals are presented in literature to enable model checking of huge specifica-
tions. Clarke et al. suggest four different abstraction techniques and demonstrate their
practicality on a number of examples [25]. Another possibility, applied by Chan et al., is to
model check only a part of the system [23]. They also applied simplifications to the model
to avoid constructs that could not be handled properly by their model checker. Wing
and Vaziri-Farahani enabled quick verification in a case study by applying abstractions to
both the model and the verification properties [113]. They state that the choice of what
abstractions to apply takes some ‘good’ judgment. All of the aforementioned approaches
work by applying abstraction and simplification to concrete models. Our approach works
the other way around; we refine an abstract model to a more refined one. Our approach
does not preclude the use of abstractions and simplifications on the (intermediate) models.
The B-method [1] is developed as a means to refine abstract specifications into implemen-
tations. By fulfilling a number of proof obligations and thus proving that each refinement
step is sound, it can be proven that an implementation adheres to the corresponding
initial specification. Using the B-method, reliable code is derived starting from one initial
specification, whereas our approach focuses on automatically generating reliable code
from every possible model that can be described using our DSML.

4.7 Conclusions and Future Work
In this chapter, we proposed an approach using model checking to increase the reliability
of code generated from models specified in a DSML called SLCO. A model transformation
from SLCO to a language suitable for model checking has been defined to enable model
checking of domain-specific models. Using this model transformation, model checking can

60 Exploring the Boundaries of Model Verification

be applied on the domain-specific models in every stage of the refinement process. This
chapter addresses research question RQ2 and investigates how the size and complexity
of model transformations affects the verifiability of intermediate models produced by
sequences of model transformations. Our experiments show that using fine-grained
sequences of transformations enables automatically generating more concrete models
that are still suitable for explicit state-space exploration in comparison to coarse-grained
sequences of transformations. Furthermore, even more concrete models can be obtained
by applying transformations to part of a model only.

We conducted experiments to validate our approach on multiple cases related to
SLCO. The results show that it is possible to validate models that are more concrete
when fine-grained sequences of transformations are applied. In other words, reducing the
size and complexity of the refining model transformations improved the verifiability of the
intermediate models produced by such sequences. Additionally, since the transformations
used to compose fine-grained sequences tend to be smaller than those of coarse-grained
sequences, it is easier to locate defects in them. Another advantage of these transformations
is their increased reusability in comparison to the transformations used to form coarse-
grained sequences.

As discussed in Section 4.5, reduction techniques such as partial order reduction and
state vector compression can be applied to a verification model. Additionally, reduction
may be applied to domain-specific models. Models in our DSML consist of state machines,
and therefore, algorithms for state machine composition [53] may be applicable. Additional
research is needed to assess whether reducing the number of state machines in a model
leads to smaller state-spaces.

We consider applying the approach to larger models and more complex sequences
of transformation to be an interesting direction for future work. The cases on which
we applied our technique are rather small, and so are the sequences of transformations.
However, we believe that these small examples already show the advantages of the proposed
approach. Although the systems under investigation might be larger and more complex in
practise, their size and complexity does not bound the verifiability of intermediate models.
Instead, the verifiability of these models is bounded by the practical limitations of the
hardware used to perform state-space exploration, which determines when state-space
explosion causes problems. Thus, our approach of generating the most concrete models
whose state space is still suited for state-space exploration is also applicable on larger
and more complex problems.

Model checking is one way of increasing the reliability of systems created in an MDSE
process. Another way to do this is using formal correctness proofs. When correctness
of model transformations can be formally proven, model checking is no longer required
to validate intermediate results. It would then suffice to validate the initial model only.
Formally proving model transformations requires that the semantics of source and target
language are formally defined. Since a lot of DSMLs have an informal semantics only, the
correctness of model transformations related to such DSMLs cannot be proven. Therefore,
model checking intermediate models may still be required.

Chapter 5

Prototyping the Semantics of a Domain-Specific
Modeling Language

A formal definition of the semantics of a domain-specific modeling language (DSML)
is a key prerequisite for the verification of the correctness of models specified using this
DSML and of transformations applied to these models. For this reason, we implemented a
prototype of the semantics of the Simple Language of Communicating Objects (SLCO).
Using this prototype, models specified in SLCO can be transformed into labeled transition
systems, which allows us to apply existing tools for visualization and verification to models
with little or no further effort. By first implementing this executable prototype, we are able
to investigate a number of alternative design decisions before specifying a formal semantics
for our DSML. The prototype is implemented using the ASF+SDF Meta-Environment, an
IDE for the algebraic specification language ASF+SDF, which offers efficient execution of
the transformation as well as the ability to read models and produce LTSs without any
additional preprocessing or postprocessing.

5.1 Introduction
In Chapter 3, we introduced the Simple Language of Communicating Objects (SLCO),
which provides constructs for specifying systems consisting of objects that operate in
parallel and communicate with each other. The transformations from SLCO to NQC,
POOSL, and Promela described in Chapter 3 provide only a partial transformational
description of the semantics of SLCO, because each of these transformations deals with a
subset of SLCO. One of the goals of the work presented in this chapter is to define the
operational semantics for the entire language.

Another goal of the work presented in this chapter is to facilitate the development
of endogenous model transformations [79] for SLCO and to aid reasoning about their
correctness. One way to reason about the correctness of model transformations is to
compare or relate models before and after transformation, by comparing or relating
the state spaces of these models. If the language used to represent such state spaces

62 Prototyping the Semantics of a Domain-Specific Modeling Language

is supported by a toolset that offers state space reduction, rather larger SLCO models
can be handled, either for analysis of individual models or for comparison of models. As
Promela and Spin do not provide support for these features, we have been motivated to
look for an alternative solution.

Figure 5.1: Overview of languages and tools

In this chapter, we link SLCO to Dot, a language for the graphical representation of
directed graphs [38] that is also used by third-party tools to represent state spaces in the
form of labeled transition systems. This link is achieved via a number of transformation
tools and intermediate languages, as shown in Figure 5.1. In this figure, the names
of existing languages and tools are displayed in an italic typeface. The labeled arrows
represent tools, and the rectangles represent languages. Once the translation into Dot
has been achieved, several third-party toolsets supporting labeled transition systems
are also within reach for manipulation, visualization, and verification of SLCO models.
Our languages and transformation tools are defined and implemented in the ASF+SDF
Meta-Environment [20].

The process of connecting SLCO to Dot involves two intermediate languages named CS
and LTS. The language LTS is a simple language for the representation of labeled transition
systems1. Due to its simplicity and close resemblance to other representations of labeled
transition systems, LTS can easily be linked to existing languages and their supporting
toolsets, such as those described in Sections 5.3 and 5.4, but also other languages that
may be useful in the future. Together, the tools that transform SLCO models to labeled
transition systems represented in LTS form an executable prototype of the semantics of
SLCO. This prototype enables investigating alternative design decisions regarding the
semantics of the language. By implementing an executable prototype of the semantics of
SLCO, we address research question RQ3.

RQ3: What are the advantages and disadvantages of implementing an ex-
ecutable prototype of the semantics of a domain-specific modeling language
using ASF+SDF?

While objects in an SLCO model are defined separately and interact by communicating
over channels, the CS representation of such a model describes its behavior as a whole. The
objects are essentially merged into one (big) component, according to the communication
as defined in the SLCO model. Thus, CS forms, in a rather natural way, the missing link
between the two languages SLCO and LTS. Since the transformation that simplifies SLCO
models and the transformation from CS to LTS are straightforward, the transformation

1To avoid confusion, we only use the acronym LTS to refer to this representation language in this
chapter and do not abbreviate the abstract concept of labeled transition systems itself.

5.2. Prototyping Semantics 63

from simplified SLCO to CS essentially forms the core of the prototype semantics of
SLCO. The transformation performed by CS2Dot is also straightforward and provides a
convenient way to visualize CS representations.

The remainder of this chapter is structured as follows. In Section 5.2, the intermediate
languages and the transformation tools shown in Figure 5.1 are introduced. We show how
third-party tools can be applied to visualize the state-spaces of SLCO models and explain
how these visualizations facilitated the development of SLCO and its accompanying model
transformations in Section 5.3. In Section 5.4, applying existing tools for verification
of SLCO models is discussed. Section 5.5 addresses the related work, and Section 5.6
concludes the chapter and gives directions for future research.

5.2 Prototyping Semantics
Figure 5.1 shows that connecting SLCO to existing tools for verification and visualization
involves intermediate languages and transformation tools. Designing this connection
and defining its main ingredients required, among others, thorough understanding of
the semantics of SLCO and its specification in terms of basic actions. Each of these
basic actions represents (a part of) an action performed by a particular object or the
result of interaction between objects. The idea behind the intermediate language CS is
to explicitly specify these low-level actions, which are implicit in SLCO, and to serve
as an underlying language to express the semantics of SLCO. As a result, CS together
with the transformation SLCO2CS captures the semantics of SLCO. All languages and
transformations described in this section are available for download2.

5.2.1 Languages
The process of transforming an SLCO model into a labeled transition system represented
in the language LTS is split into three steps. First, the SLCO model is simplified, as
described in Section 3.7. Then, this simplified SLCO model is translated into a list of
configurations and steps, represented in the CS language. In this language, we describe
the behavior of the entire system, resulting from the communication of the constituting
objects, whose behavior is modeled as a set of separate state machines in SLCO. Then,
this CS representation is transformed into a list of states and transitions, which form the
LTS representation of the input model.

5.2.1.1 CS

The main ingredients in a CS description are configurations and steps. A configuration
is a representation of a possible state of the system described by the SLCO model. A
configuration can make a step, after which the system reaches another configuration. A
step in CS does not necessarily correspond to a single transition in SLCO. Two transitions
belonging to two separate objects may lead to a single step in CS if the statements of
these transitions send and receive signals over a synchronous channel and thus allow the
two objects to communicate synchronously. Conversely, a single transition in SLCO does
not necessarily correspond to a single step in CS. For an SLCO transition with a delay
statement, several steps (not necessarily executed in sequence) accomplish the behavior
specified by the transition.

2http://code.google.com/p/prototyping-slco-semantics/

http://code.google.com/p/prototyping-slco-semantics/

64 Prototyping the Semantics of a Domain-Specific Modeling Language

<
<p, Rec1, Rec1> <p, Rec2, Rec2a> <p, SendRec, SendRec0> <0, q, Com, Com0>,
[<<q, Com, s>, ""> <<p, SendRec, s>, ""> <<p, Rec1, v>, false> <<p, m>, 0>],
[<<c2, q, Out2, p, In2>, > <<c1, q, Out1, p, In1>, >],
initial
>

Listing 5.1: The initial configuration of the running example

Configurations Each configuration consists of three mandatory parts and an optional
status. The configuration given in Listing 5.1 is the initial configuration of the model
consisting of objects p and q shown in Figures 3.5, 3.6, and 3.22. The first part of a
configuration specifies the current states of all state machines of all objects in the SLCO
model. This part of the configuration is referred to as the active states of a configuration.
If a state machine sm of an object o is currently in state st , this is specified as 〈o, sm, st〉
in the active states part of the configuration. This type of active state is referred to as
a plain active state. Additionally, a second type of active state exists, which is related
to delay statements. These active states are referred to as time-stamped active states.
The time-stamped active state 〈5, o, sm, st〉 denotes that 5 ms have passed since state
machine sm of object o reached state st . Furthermore, 〈passed, o, sm, st〉 denotes that
the maximal amount of time specified by the delay statement of any outgoing transition
of state st has passed. The active states part of a configuration consists of a number of
plain and time-stamped active states, one for each state machine in the model.

The second part of the configuration, the valuation part, maps variables to values.
In the example configuration in Listing 5.1, 〈〈q, Com, s〉, “”〉 expresses that the value of
local variable s of state machine Com of object q is equal to the empty string. The fact
that the value of global variable m of object p is equal to 0 is expressed as 〈〈p,m〉, 0〉.

The third part of the configuration represents a set of buffers. For each asynchronous
channel in the model, one or two buffers are introduced. In case of a bidirectional channel,
two buffers are introduced, and in case of a unidirectional channel, one buffer is introduced.
The configuration in Listing 5.1 contains two buffers, one for each (unidirectional) channel,
and they are both empty. The first buffer corresponds to channel c2 and the second
buffer to channel c1 . Channel c3 is synchronous and has no corresponding buffer.

The optional status of this configuration is set to initial because all state machine
are in their initial state. If all state machines in a configuration are in their final state,
the status of this configuration is set to final. Finally, the status of all remaining
configurations for which there are no steps to other configurations is set to deadlock.

Steps The dynamics of the system modeled by a set of communicating objects is
represented by steps. Each step has a source and a target configuration, and an optional
label. A step represents a (basic) action performed by a state machine, the passing of a
certain amount of time, or the result of synchronous communication between two objects.
Listing 5.2 shows two steps that are part of the CS representation of the SLCO model in
Figures 3.5, 3.6, and 3.22. The first step has a label that represents the reception of the
asynchronous signal Q by state machine Rec2 . The second step represents the transition
from state SendRec0 to SendRec1 of state machine SendRec, which is enabled because
the expression m == 6 holds in the source configuration. Steps that correspond to the
evaluation of an expression, such as this one, have no label.

5.2. Prototyping Semantics 65

<
<
<p, Rec1, Rec1> <p, Rec2, Rec2a> <p, SendRec, SendRec0> <q, Com, Com3>,
[<<q, Com, s>, ""> <<p, SendRec, s>, ""> <<p, Rec1, v>, false> <<p, m>, 0>],
[<<c2, q, Out2, p, In2>, <Q, 5>> <<c1, q, Out1, p, In1>, <P, true>>]

>,
"receive Q(5)",
<
<p, Rec1, Rec1> <p, Rec2, Rec2b> <p, SendRec, SendRec0> <q, Com, Com3>,
[<<q, Com, s>, ""> <<p, SendRec, s>, ""> <<p, Rec1, v>, false> <<p, m>, 5>],
[<<c2, q, Out2, p, In2>, > <<c1, q, Out1, p, In1>, <P, true>>]

>
>
<
<
<p, Rec1, Rec1> <p, Rec2, Rec2b> <p, SendRec, SendRec0> <q, Com, Com3>,
[<<q, Com, s>, ""> <<p, SendRec, s>, ""> <<p, Rec1, v>, false> <<p, m>, 6>],
[<<c2, q, Out2, p, In2>, > <<c1, q, Out1, p, In1>, <P, true>>]

>,
<
<p, Rec1, Rec1> <p, Rec2, Rec2b> <p, SendRec, SendRec1> <q, Com, Com3>,
[<<q, Com, s>, ""> <<p, SendRec, s>, ""> <<p, Rec1, v>, false> <<p, m>, 6>],
[<<c2, q, Out2, p, In2>, > <<c1, q, Out1, p, In1>, <P, true>>]

>
>

Listing 5.2: Steps depicting the reception of a signal and the evaluation of an expression

5.2.1.2 LTS

The language LTS is a simple language for representing labeled transition systems as
a list of states and a list of transitions. A state can be marked to indicate that it is
an initial state, a final state, or a deadlock. Each transition is described as a pair of
states, the source and the target state, and an optional label. Listing 5.3 shows the LTS
description of a tiny labeled transition system with four states and three transitions.
State 0 is declared as an initial state, state 1 is a deadlock, and state 3 is a final state.
There are three transitions, one of which has label a. The most notable feature of LTS
in comparison to existing languages for the description of labeled transition systems is
that LTS distinguishes between successful termination and deadlock. Reaching a final
state and thus terminating successfully is considered desirable behavior, but reaching a
deadlock is not.

states
initial 0
deadlock 1
2
final 3

transitions
0 1
0 "a" 2
2 3

Listing 5.3: A small labeled transition system represented in the language LTS

66 Prototyping the Semantics of a Domain-Specific Modeling Language

5.2.2 Tools for Transformation
Now that the languages used to prototype SLCO are in place, we describe two of the
tools that perform transformations related to these languages. The first tool produces
CS representations from simplified SLCO models, and the second tool produces labeled
transition systems represented in LTS from CS representations. The tools that perform
the transformation from LTS to Dot and the transformation from CS to Dot are discussed
in Section 5.3, and the simplification of SLCO is discussed in Section 3.7.

The aforementioned tools are implemented in the ASF+SDF Meta-Environment [20],
which is described in Appendix A. The main benefits of using the ASF+SDF Meta-
Environment for this task are that it offers an IDE for the convenient development of
transformations as well as automatic generation of command-line tools. These command-
line tools are fast and make efficient use of memory, which is important when generating
CS and LTS representations of large state spaces.

5.2.2.1 SLCO2CS

An SLCO model is translated into CS in three phases. First, the initial configuration of
the model is constructed. The list of active states of this configuration consists of the
initial states of each of the state machines of the objects in the model, the valuation maps
all variables to their initial values, and the buffers corresponding to all asynchronous
channels are empty. Second, the set of all reachable configurations is generated. This
phase is described in more detail below. Third, the list of configurations is traversed to
find the configurations containing only active states that are final and those that have no
outgoing steps. The configurations containing only final active states are marked as final,
and the configurations that have no outgoing steps are marked as deadlocks, unless they
are already marked as final.

In the second phase, first all configurations that are reachable from the initial configu-
ration are created, as well as all the steps to these configurations. Then, all configurations
that are reachable from these new configurations and the corresponding steps are created,
and so on, until no new configuration is found. The configurations that are reachable from
a source configuration are computed based on the active states of this source configuration.
The ASF+SDF functions discussed next are selected from the set of all functions that
together implement the generation of configurations and steps within the second phase of
the transformation.

Listing 5.4 shows one of the conditional rewrite rules that implement the func-
tion takeStepsFromConfiguration. In this rule and all other ASF rules shown in this
chapter, variable names start with a dollar sign. Furthermore, variable names that contain
a multiplication symbol ($X*) represent lists of terms of a sort, variable names that con-
tain a plus symbol ($X+) represent non-empty lists of terms of a sort, and variable names
that end with a question mark ($X?) represent an optional term that can be omitted. The
rule in Listing 5.4 shows that the computation of possible steps from a given configuration
is split into two parts. First, function takeTimeStepsFromConfiguration computes a step
that represents the passing of a certain amount of time, if such a step is possible from the
given configuration. This computation deals with transitions with delay statements only.
Then, function takeStepsActiveStates inspects all outgoing transitions of the active states
of the source configuration to compute the rest of the reachable configurations.

The ASF rule in Listing 5.5 shows how a step representing the passing of time is
computed. The function getSmallestTimeStepFromConfiguration inspects all outgoing
transitions of the active states of the given configuration and returns a natural number.

5.2. Prototyping Semantics 67

<$Configuration*0, $Step*0> :=
takeTimeStepsFromConfiguration($Model, $Configuration),

$ActiveState* := activeStates($Configuration),
<$Configuration*1, $Step*1> :=

takeStepsActiveStates($Model, $Configuration, $ActiveState*)
====>
takeStepsFromConfiguration($Model, $Configuration) =
<$Configuration*0 $Configuration*1, $Step*0 $Step*1>

Listing 5.4: ASF rule that computes reachable configuration and the corresponding steps

This number is computed from the time stamps of time-stamped active states and the
outgoing transitions of these active states. By construction, all active states that have
an outgoing transition with a delay statement also have a time stamp. For each of the
time-stamped active states, function getSmallestTimeStepFromConfiguration uses their
time stamp to compute the smallest amount of time that must pass for one of the delay
statements of the related outgoing transitions to become unblocked. After this amount of
time is computed, the resulting configuration and step are constructed by updating the
time stamps of all time-stamped active states.

canTakeTimeStepFromConfiguration($Model, $Configuration) == true,
$NatCon := getSmallestTimeStepFromConfiguration($Model, $Configuration),
$Configuration0 := updateTimeStamps($Model, $Configuration, $NatCon),
$StrCon := natCon2StrCon($NatCon) || " ms",
$Step := <$Configuration, $StrCon, $Configuration0>
====>
takeTimeStepsFromConfiguration($Model, $Configuration) =
<$Configuration0, $Step>

Listing 5.5: ASF rule that computes a step representing the passing of time

Figure 5.2 and Listing 5.6 illustrate the computation performed by the ASF rule in
Listing 5.5. In the initial configuration, the leftmost state machine in Figure 5.2 is in
state A0 , and the rightmost state machine is in state B0 . Both states have a time stamp
equal to 0. The smallest amount of time that must pass for one of the delay statements
to become unblocked is 1 ms. The first step in Listing 5.6 corresponds to the passing of
this amount of time. In the resulting configuration, the smallest amount of time that
must pass for one of the remaining delay statements to become unblocked is 2 ms, which
is represented by the second step in Listing 5.6. In the resulting configuration, both
delay statements of the leftmost state machine are unblocked, which is indicated by the
keyword passed in the time-stamped active state 〈passed, a, A,A0〉. Finally, for the
remaining delay statement to become unblocked, 3 ms must pass, as shown in the third
step in Listing 5.6.

After constructing the reachable configurations and the corresponding steps related
to time, all other configurations that are reachable from the source configuration are
computed by the function takeStepsActiveStates, as mentioned above. For each active
state in a configuration, the outgoing transitions are inspected. Whether a transition is
enabled depends on the valuation of the variables, the contents of the buffers, and the
values of the optional time stamps. The valuation of the variables is used to determine
whether the expressions of transitions hold, the content of the buffers to determine

68 Prototyping the Semantics of a Domain-Specific Modeling Language

Figure 5.2: Two state machines with delay statements

<
<<0, a, A, A0> <0, b, B, B0>, [], []>,
"1 ms",
<<1, a, A, A0> <1, b, B, B0>, [], []>
>
<
<<1, a, A, A0> <1, b, B, B0>, [], []>,
"2 ms",
<<passed, a, A, A0> <3, b, B, B0>, [], []>
>
<
<<passed, a, A, A0> <3, b, B, B0>, [], []>,
"3 ms",
<<passed, a, A, A0> <passed, b, B, B0>, [], []>
>

Listing 5.6: Steps representing the passing of time

whether any signal receptions are possible, and the time stamps to determine which delay
statements are no longer blocked.

$ActiveState0 := getNextState($Model, $ActiveState, $Transition),
$IdCon0 := getObjectId($ActiveState),
$IdCon1 := getStateMachineId($ActiveState),
$AssignmentStatement := getStatement($Transition),
<$Configuration0, $Step0> := processAssignmentStatement(
$AssignmentStatement, $ActiveState, $ActiveState0, $Configuration,
$IdCon0, $IdCon1

)
====>
takeStepTransition($Model, $Configuration, $ActiveState, $Transition) =
<$Configuration0, $Step0>

Listing 5.7: Computing the configuration that is reached after executing an assignment

Listing 5.7 shows one of the conditional rewrite rules that implements the func-
tion takeStepTransition. This function is used by the function takeStepsActiveStates
to construct the reachable configurations and the corresponding steps for each of the
enabled outgoing transitions of a certain configuration. The rule in Listing 5.7 applies
to transitions with an assignment statement. First, the function getNextState is used to
compute the active state that results from taking the transition at hand from the original
active state. Then, the function processAssignmentStatement is applied, which produces

5.3. Visualization 69

the configuration reachable from the source configuration and the corresponding step.
The configuration is an updated version of the configuration provided as input, in which
the active state $ActiveState is replaced by $ActiveState0 and the valuation is adapted
according to the assignment statement. The step consists of the original configuration
and the updated configuration.

$IdCon2 := $Expression := $AssignmentStatement,
$ConstantExpression :=

evaluateExpression($Configuration, $Expression, $IdCon0, $IdCon1),
$Value := constantExpression2Value($ConstantExpression),
$Configuration0 :=

updateActiveState($Configuration, $ActiveState0, $ActiveState1),
$Configuration1 :=

updateNameValue($Configuration0, $IdCon0, $IdCon1, $IdCon2, $Value),
$StrCon0 := idCon2StrCon($IdCon2),
$StrCon1 := value2StrCon($Value),
$StrCon2 := $StrCon0 || " := " || $StrCon1,
$Step := <$Configuration, $StrCon2, $Configuration1>
====>
processAssignmentStatement(

$AssignmentStatement, $ActiveState0, $ActiveState1, $Configuration, $IdCon0,
$IdCon1

) = <$Configuration1, $Step>

Listing 5.8: Processing an assignment statement

The ASF rule that implements the function processAssignmentStatement is shown in
Listing 5.8. The listing shows how the expression that is part of the assignment statement
is evaluated using the configuration provided as input. After a new configuration is
constructed by updating the active states and the valuation of the variables, a label is
generated that reflects the assignment that is carried out.

The details of the rules that handle the other types of statements offered by SLCO
differ from those described above, but the general idea is the same for all rules.

5.2.2.2 CS2LTS

The tool CS2LTS translates lists of configurations and steps from CS to LTS, as shown in
Figure 5.1. Each configuration is mapped to a unique natural number and an optional
status. The status indicates whether a state is an initial state, a deadlock, or a final state,
and it is equal to the status of the corresponding configuration. Each step is transformed
to a pair of natural numbers representing its configurations, possibly decorated by an
optional label. The label of a transition is equal to the label of the corresponding step.

5.3 Visualization
We use Dot, which is described in Appendix A, to visualize the state spaces of SLCO
models by translating LTS representations to graphs in the format of the Dot language.
State spaces represented in LTS are transformed to Dot graphs by translating all states
to nodes and all transitions to edges, and specifying how initial states, final states, and
normal states should be visualized.

Figure 5.3 shows the labeled transition system that represents the state space of the
model in Figure 3.5, 3.6, and 3.22, visualized using Dot. In the visual representation, the

70 Prototyping the Semantics of a Domain-Specific Modeling Language

Figure 5.3: A state space visualized using Dot

transition labels are placed above the corresponding transition. The unlabeled transitions
in the state space of Figure 5.3 correspond to transitions with expressions in the SLCO
model whose behavior is described by the state space.

Figure 5.4: A more detailed visualization for debugging

CS representations of configurations and steps, such as the ones in Listings 5.2 and 5.6,
list all reachable configurations and steps for a given SLCO model. Therefore, design
decisions can be evaluated by inspecting the CS representations of a number of models
while developing the executable prototype of the semantics of SLCO. However, visual
representations of the same information, such as the state space in Figure 5.3, provide a
more convenient way of checking whether the semantics implemented by means of the
various transformation tools coincides with the intended semantics. Using the visual
representation, it is often easier to spot unintended behavior.

Once unintended behavior is encountered, more information about the configurations
can help to locate and repair the parts of the tools that cause this behavior. The desire
for more detailed information lead to the implementation of the tool CS2Dot, which
translates CS representations directly to more elaborate Dot graphs. In Figure 5.4, the
four leftmost states of the state space in Figure 5.3 are shown in this elaborate graphical
representation, along with a number of the related transitions.

Figure 5.5: State spaces before and after refinement

The various textual and graphical representations of the behavior of SLCO models
described above have also been used during the development of model transformations. By

5.4. Verification 71

generating the state space of both the source and target model for a given transformation
and comparing these state spaces, the effect of the transformation can be studied. For
instance, Figure 5.5 shows the state space of a small SLCO model before and after
applying transformation Targ , which is described in Section 3.5.1.7. The figure clearly
shows that the transformation has no unwanted side effects. Because of its complexity,
we used this approach to develop transformation TGas described in Section 3.5.1.1.

5.4 Verification
For small state spaces, like the one in Figure 5.3, it is easy to verify properties manually by
inspecting the graph. In case of larger state spaces, reduction techniques can be applied to
first reduce the labeled transition system that represents the state space before verifying
properties manually. The tool ltsconvert, which is part of the mCRL2 toolset [49], takes
a labeled transition system in various formats as input and converts it to an equivalent
labeled transition system in another format. One of the formats that ltsconvert is able to
process is the Dot format. The tool is also capable of reducing labeled transition systems
by means of an equivalence relation. It supports several of these equivalence relations.

Figure 5.6: A reduced LTS visualized using Dot

Figure 5.6 shows the state space obtained after reduction has been applied to the
state space in Figure 5.3. In this case, branching bisimilarity [47] was used as equivalence
relation. The labeled transition system has been reduced by, first, turning all labels
except S (‘a’) and T (‘a’) to internal, unobservable labels and then removing all redundant
states and transitions using ltsconvert. A similar procedure can be applied for the other
reductions that are supported by this tool.

A number of the transformations described in Section 3.5.1 transform SLCO models
into other SLCO models with equivalent observable behavior. By producing a labeled
transition system representing the state space of the input and output model of such a
transformation and reducing both labeled transition systems using the technique described
above, the correctness of this transformation for the given input model can be verified by
comparing the reduced labeled transition systems. If both reductions lead to the same
labeled transition system, the transformation has indeed preserved the observable behavior.
We used this approach to assess the correctness of the transformations described in
Sections 3.5.1.1, 3.5.1.2, and 3.5.1.6 by applying these transformations to a number of
models and comparing the state spaces of these models before and after transformation.

When labeled transition systems get too large for reduction and manual inspection,
other tools can be used for verification. One approach is converting labeled transition
systems to the BCG and AUT file formats that are used by the CADP toolset [42]
to represent labeled transition systems. The CADP toolset offers tools that take a
labeled transition system and a temporal logic property as input and perform on-the-fly
verification of the property on the labeled transition system. Alternatively, the previously
mentioned mCRL2 toolset can be used for verification too. This toolset includes a tool
that can transform labeled transition systems to the proprietary format of the toolset
as well as tools that can be used to analyze, simulate, manipulate, and visualize models
described using this format. These two example toolsets clearly show the added benefit

72 Prototyping the Semantics of a Domain-Specific Modeling Language

of producing labeled transition systems from SLCO models. Transforming models to this
common description format makes it possible to verify properties of models using existing
tools, without additional effort.

5.5 Related Work
Hooman and Van der Zwaag [56] used the interactive theorem prover PVS to define the
semantics of a subset of the UML. In this subset, the behavior of objects is specified using
state machines that communicate with each other both synchronously and asynchronously.
Proving properties of models in this approach is done manually using PVS. This is
a complex task that requires expertise in PVS, which can be simplified using certain
predefined strategies. A disadvantage of this approach is that is does not offer the
reusability of other existing tools that our approach offers. An advantage of this approach
is that it does not suffer from the state-space explosion problem, because the complete
state space of models does not have to be generated for property verification.

Di Ruscio [33] et al. define the semantics of a DSML for the development of telephony
services using Abstract State Machines (ASMs). Because ASMs can be executed, this
definition can be used to simulate models specified in their DSML. The approach is meant
for the specification of the behavioral semantics of the DSML only and does not offer
verification of models. Proving properties for all models in general or any specific model is
not investigated. In theory, however, properties of models could be verified in the domain
of ASMs.

Sadilek and Wachsmuth [99] propose a technique for defining the semantics of DSMLs
that uses model instances as configurations and QVT relations to define steps between
configurations. Configurations, representing model instances, can be visualized using the
same editors used to create models. By reusing the existing editors, visual interpreters
and visual debuggers can be created with relatively little effort. Although this technique
is suited for simulation of models, it is not efficient enough for state-space generation.
Because each configuration is represented by a model, a lot of memory is needed to store
all possible configurations.

A number of approaches use Maude to specify the operational semantics of DSMLs [97,
98]. Given the operational semantics of a DSML in Maude, other techniques can be
applied to verify properties of models specified in such a DSML. Both an LTL model
checker [37] and a µ-calculus model checker [112] are available for rewrite systems specified
in Maude. Although it is clear that model checking techniques can be implemented in
Maude and applied to specifications of the semantics of DSMLs, not all techniques
applicable to labeled transition systems that we aim to exploit, such as reduction and
visualization, have been implemented in Maude. It might be the case, therefore, that a
given technique must first be implemented in Maude before it can be used in combination
with a specification of the semantics of a DSML. With our approach, we can connect to
various tools and apply existing techniques only by adapting the representation of labeled
transition systems, if needed.

5.6 Conclusions and Future Work
In this chapter, we addressed research question RQ3 by implementing an executable
prototype of the semantics of SLCO using ASF+SDF. We defined the semantics of SLCO
by implementing a number of tools that transform SLCO models to representations of

5.6. Conclusions and Future Work 73

labeled transition systems, which has a number of advantages. First, various existing tools
for visualization of state spaces and verification can be reused because labeled transition
systems are commonly used as input by such tools. This provides the opportunity to
apply these tools to verify and visualize SLCO models, which aids the development of
SLCO itself as well as the related model transformations. Furthermore, based on the
work described in this chapter, we defined a formal semantics of SLCO, which is described
in Appendix B. The prototype of the semantics of SLCO and its implementation as
presented here provided a solid foundation for this work, as we got better understanding
of the semantics of our DSML and were able to investigate a number of design decisions.

We implemented the transformation tools presented in this chapter using the ASF+SDF
Meta-Environment. In this way, we investigated its suitability for the purpose of imple-
menting an executable prototype of the semantics of a DSML. The biggest advantages of
using the ASF+SDF Meta-Environment for this implementation are ATerms [21], used
for representing terms, and the command-line tools that can be automatically generated.
The use of ATerms guarantees efficient use of memory, and the command-line tools offer
efficient execution of rewrite rules, without any additional effort during the implementa-
tion. Both execution speed and efficient use of memory are important in this case because
the state spaces of models represented by labeled transition systems are typically very
large. Unfortunately, active development of ASF+SDF has stopped.

As mentioned above, a formal semantics of SLCO has been developed, which is based
on the prototype described in this chapter. However, the notion of time is not yet
incorporated in the formal semantics of SLCO as presented in Appendix B. Extending the
formal semantics by including time is left as future research. Additionally, we consider to
apply the approach taken in this chapter to other DSMLs. The approach lends itself well
for the creation of state-space generators based on the operational semantics of a given
DSML and prototyping the semantics of languages with informal or incompletely defined
operational semantics.

Chapter 6

Reusability and Correctness of Endogenous Model
Transformations

Correctness of model transformations is a prerequisite for generating correct implementa-
tions from models. Given refining model transformations that preserve desirable properties,
models can be transformed into correct-by-construction implementations. However, proving
that model transformations preserve properties is far from trivial. Therefore, we aim for
simple correctness proofs by designing sequences of model transformations for automated
code generation that are as fine-grained as possible. Furthermore, we advocate the reuse
of model transformations to reduce the number of proofs. For a simple domain-specific
modeling language, SLCO, we define a formal framework to reason about the correctness,
reusability, and composition of the model transformations used to transform a given model
to three target languages: NQC, Promela, and POOSL. The correctness criterion induces
that the systems specified by the original model and the resulting model obtained after a
proper sequence of transformations have the same observable behavior.

6.1 Introduction
When generating executable code from models by applying (sequences of) model trans-
formations, the properties modeled initially in the source model have to be propagated
to the target implementation. In general, the target implementation is more complex,
due to added implementation details, which makes its analysis more difficult, more time
consuming, and in some cases even impossible, as described in Chapter 4. The source
model, however, is relatively small, so its properties can be inspected and validated. To
check preservation of properties, one can analyze all or some of the intermediate models,
but this means that a large portion of the analysis has to be duplicated. In addition,
this procedure has to be repeated for every new model, even if only small changes to the
model have been made.

The efficient and general solution to this problem is to prove property preservation per
transformation and to localize the proof only on the changes induced by the transformation.

76 Reusability and Correctness of Endogenous Model Transformations

In this chapter, we address research question RQ4 by presenting an approach that provides
such a solution.

RQ4: Can we show that the model transformations that we implemented to
refine SLCO models preserve certain desirable properties of such models?

Our approach is demonstrated on SLCO, the small but non-trivial domain-specific
modeling language (DSML) introduced in Chapter 3. SLCO is a DSML for the specification
of systems consisting of objects that operate in parallel and communicate with each other.
In SLCO, such systems can be specified on various levels of abstraction. From a given
SLCO model on a high level of abstraction, different compositions of model transformations
are used to generate NQC [13] models for execution on Lego Mindstorms controllers,
POOSL [108] models for simulation, and Promela models for formal verification using
the model checker SPIN [55]. The transformations from SLCO to these languages are
described in Section 3.5.2. The part of SLCO used for the specification of high-level
models and the three target languages have different properties, and therefore, several
semantic gaps need to be bridged [8], which are described in Section 3.4. Each of these
gaps is bridged by one or more model transformations that add implementation details
to the original SLCO model, resulting in a refined SLCO model that is closer to one of
the target languages. To improve the reusability of these transformations and to deal
with only one language for the majority of the correctness proofs, we only use endogenous
transformations for the refinement of models, instead of exogenous ones [79]. These
endogenous transformations are described in Section 3.5.1. To be able to use endogenous
transformations for refinement, we extended SLCO with constructs to specify systems on
a lower level of abstraction too.

MSLCO
1 MSLCO

3

MPOOSL MPromela MSLCO
M

MSLCO
N

MNQC
1

MNQC
2

TNQC

TNQCTPromelaTPOOSL

MSLCO
2

MSLCO
4

Figure 6.1: Sequences of transformations for three target languages

Figure 6.1 schematically depicts a number of composed model transformations that
transform an SLCO model to various target languages. The arrows inside the dashed shape
depict endogenous transformations that transform SLCO models into more refined SLCO
models. Each of the endogenous transformations leads to a model with observationally
equivalent behavior. The arrows across the border of the dashed shape depict exogenous
transformations. Because the semantic gaps between SLCO and the target languages are
bridged completely by the endogenous transformations, these exogenous transformations
are straightforward translations of SLCO constructs into equivalent constructs in the
target languages. By developing sequences of endogenous transformations that are as
fine-grained as possible, we improve the reusability of the individual transformations
within sequences and reduce the number of complicated proofs.

In this chapter, we discuss how the transformations of SLCO models to the three
target languages are decomposed into sequences of transformations, and the way these
transformations are composed and reused within the sequences. Furthermore, we describe a
formal framework for SLCO used to reason about the correctness of model transformations.
First, the formal structural operational semantics (SOS) [93] of SLCO is defined, which

6.2. Model Transformations for SLCO 77

generates a labeled transition system (LTS) representation of the dynamics of an SLCO
model. The semantics described in this chapter are based on our experience with the
executable prototype described in Chapter 5 and describe the behavior of an SLCO model
in terms of the behavior of the individual transitions of state machines in the model.
Second, for each transformation, a (behavioral) equivalence relation is established between
the behavior of an SLCO model before and after transformation. Finally, a proof of the
correctness of a transformation is given by showing that the transformation preserves the
corresponding equivalence relation.

The benefits of this approach are manifold. The correctness of the aforementioned
model transformations is proven in general, not only for particular model instances.
The use of SOS and the behavioral equivalence relations allows us to focus only on the
part of a model affected by a transformation when reasoning about the correctness of
this transformation. Furthermore, the constraints on input models required for some
of the transformations, detected earlier during experimental work, can now be formally
shown necessary for the correctness of the transformations. This proves that a sequence
of transformations is well-composed if each of the intermediate models satisfies the
constraints that must hold for the transformation that is applied next.

The remainder of this chapter is structured as follows. In Section 6.2, the model
transformations related to SLCO and the way they are reused are described. The
correctness criterion and a proof of one of the transformations are given in Section 6.3.
This section also describes the formal semantics of SLCO, which is required for the proof.
Section 6.4 discusses the related work, and Section 6.5 concludes this chapter.

6.2 Model Transformations for SLCO
DMSLs allow designers to reason at a high level of abstraction, and therefore, DSML
models do not include many implementation details. The main goal of refining model
transformations is to add more details to the model, thus bringing it closer to its
implementation. To generate code (such as an NQC executable) from an SLCO model,
a number of endogenous model transformations have been designed and implemented.
By design, each model transformation transforms only a specific small part of the input
model, because small transformations can be easily applied, composed, implemented, and
analyzed. We have composed sequences of transformations for several target languages.
Our correctness criterion guarantees that every intermediate model, including the last
model in the sequence, has the same properties as the source model. Furthermore, the
transformations are designed and composed such that the very last SLCO model in the
chain contains all implementation details.

6.2.1 Reusability of Model Transformations
Table 6.1 lists eleven of thirteen endogenous model transformations that are defined to
refine SLCO models. The other two transformations deal with time and are not discussed
in this chapter. A detailed discussion of all these transformation is given in Section 3.5.1.

There are two ways in which these transformations can be reused. First, a model
transformation can be applied multiple times within the same sequence of transformations,
as indicated in the second column of Table 6.1. In practice, the most reused model
transformations are the Clone Classes transformation, which can be used to clone certain
classes, and the Remove Classes transformation, which can be used to remove all classes

78 Reusability and Correctness of Endogenous Model Transformations

that have no instances. They ensure that models adhere to the constraints imposed by
most of the other transformations and are therefore crucial for the successful composition
of transformations. Second, a model transformation can be applied in multiple sequences
leading to different target languages, as indicated in the third column. This type of reuse
is less common, but supporting other target languages with similar semantic gaps would
automatically lead to more reuse. The fourth column is discussed in Section 6.3. It shows
the number of proof obligations that must be handled to prove the correctness of each
transformation.

Reused within Reused for different Number of proofTransformation sequences target languages obligations
Bidirectional to no yes 1Unidirectional
Clone Classes yes yes 1
Exclusive Channels yes no 1
Identify Channels no no 1
Lossless to Lossy no no 74
Merge Channels no no 1
Merge Objects yes no 13
Names to Arguments no no 1
Remove Classes yes yes 1
Strings to Integer yes no 1
Synchronous to no no 4 and 34Asynchronous

Table 6.1: Endogenous model transformations

Because of their size and complexity, it is not possible to consider all transformations
from Table 6.1. Instead, we select the two variants of the Synchronous to Asynchronous
transformation to illustrate our approach. The difference in complexity of these two
variants illustrates that more generic transformations employ more involved communication
protocols for handling the introduced changes. One should search for the strongest possible
constraints on the input models for such a transformation [6]. These constraints shall
be realized in separate transformation steps that precede the more complex one in the
transformation chain. This way, many unnecessary details are removed from the core
part of the transformation. The simple variant of the Synchronous to Asynchronous
transformation also described below, although simple, is still complex enough to illustrate
all the details of our approach.

6.2.2 Refining Synchronous Communication
Synchronous communication is a typical example of a construct at a high level of abstrac-
tion that is often present in formal modeling languages. General-purpose programming
languages, however, do not offer this concept. While SLCO allows for synchronous
communication, the communication between controllers on the Lego Mindstorms platform
is asynchronous. Therefore, synchronization should be realized with asynchronous inter-
action, introduced by correctly defined model transformations built around a properly
defined communication protocol.

6.2. Model Transformations for SLCO 79

We defined two different transformations, TSas and TGas , to replace one of the synchronous
channels in a model by an asynchronous channel. To keep the observable behavior of the
modeled system intact, this change requires and triggers further changes of the related
classes, state machines, and transitions. Transformation TSas applies to a restricted subset
of models, but is simple and does not greatly increase the complexity of the produced
model. In contrast, transformation TGas can be applied to any SLCO model, but as a more
complex protocol is introduced by the transformation, it adds more complexity to the
produced model.

Both transformations require the following two constraints to hold for their input.
First, the objects that communicate via the synchronous channel must be the only
instances of their classes. Second, only a single pair of state machines from the two classes
may communicate over the channel. We stress, however, that this does not limit their
applicability. By means of the Exclusive Channels and Clone Classes transformations,
any SLCO model can be transformed into a model with equivalent behavior that meets
these constraints. Thus, instead of having more complicated transformations that first
change models to meet these constraints and then replace synchronous communication by
asynchronous communication, we opt for sequences of simpler transformations that have
the same effect. The fact that the constraints hold can be used in the correctness proof
of TSas and TGas , which greatly simplifies these proofs.

In the remainder of this section, we provide a short description of the aforementioned
transformations. An informal description is given in Section 3.5.1.1, and a more detailed
description is given in Appendix C. For the rest of the section, we assume that in the
model m, the synchronous channel chs = chn() sync from on1 .pn1 to on2 .pn2 is to
be replaced with an asynchronous one. Let object oi with name oni be an instance of
class cli with name cni in model m, for i = 1, 2. We also assume, as explained above, that
object oi is the only instance of class cli and that state machine smi with name smni is
the only state machine in cli that uses channel chs , for i = 1, 2. Furthermore, we use
trs = tns from ss1 to ss2 send sgn() to pn1 to denote a transition of sm1 of cl1 that
sends signals over chs and trr = tnr from sr1 to sr2 receive sgn() from pn2 to denote
a transition of sm2 of cl2 that receives signals over chs . Due to the uniqueness of the
channel name and the aforementioned constraints, the transformation of the channel chs

induces a transformation of the classes cl1 and cl2 only. We show only the transformation
of signals without arguments, but an extension to general signals is straightforward. In
the remainder of this chapter, we deal with simplified SLCO models, as described in
Section 3.7.

6.2.2.1 Simple Transformation

Transformation TSas modifies state machines by replacing some of their transitions. No
essential changes are made to the other structures of a model. It is only applicable if, for
every transition trs , there is no other transition with the same source state. For every
transition trs of sm1 and for every transition trr in sm2 , we define

TSas(trs , pn1) = 〈
ssnw ,
tn1

s from ss1 to ssnw send ssgn() to pn1

tn2
s from ssnw to ss2 receive asgn() from pn1

〉

80 Reusability and Correctness of Endogenous Model Transformations

TSas(trr , pn2) = 〈
srnw ,
tn1

r from sr1 to srnw receive ssgn() from pn2

tn2
r from srnw to sr2 send asgn() to pn2

〉,

where ssnw and srnw are fresh state names, tn1
s , tn2

s , tn1
r , and tn2

r are fresh transition
names, ssgn ≡ “s_” + sgn, and asgn ≡ “a_” + sgn. In the transformed model, the
new states are added to the appropriate state machines, and the transitions trs and trr
are replaced by the newly generated transitions. For ease of reference, a graphical
representation of the states and transitions in the definition above is given in Figure 6.2.

Figure 6.2: Partial state machines that illustrate TSas

6.2.2.2 General Transformation

Transformation TGas is more general than TSas , due to which it adds more complexity to
the produced model. In this case, also classes are transformed, and new state machines
are created. The restrictions we had on TSas are removed, which means that TGas can be
applied to any trs of sm1 and any trr of sm2 as defined above. Transformation TGas on
transitions is defined as

TGas(trs , pn1 , vc1) = 〈
ss3 ss4 ss5 ss6 ss7 ,
ts1 from ss1 to ss3 vc1 == 0
ts2 from ss3 to ss4 send sgn(1) to pn1

ts3 from ss4 to ss5 vc1 == 2
ts4 from ss5 to ss6 send sgn(3) to pn1

ts5 from ss6 to ss2 vc1 == 0
ts6 from ss7 to ss1 send sgn(4) to pn1

ts7 from ss4 to ss7 vc1 := 2
〉

6.2. Model Transformations for SLCO 81

TGas(trr , pn2 , vc2) = 〈
sr3 sr4 sr5 sr6 sr7 ,
tr1 from sr1 to sr3 vc2 == 1
tr2 from sr3 to sr4 send sgn(2) to pn2

tr3 from sr4 to sr5 vc2 == 3
tr4 from sr5 to sr2 send sgn(0) to pn2

tr5 from sr4 to sr1 vc2 == 4
tr6 from sr7 to sr1 send sgn(0) to pn2

tr7 from sr6 to sr7 vc2 := 3
tr8 from sr1 to sr6 vc2 == 4
〉,

where ssj and srj , and tsj and trk are fresh state and transition names, for j = 3, . . . , 7
and k = 3, . . . , 8. Variables vc1 and vc2 are discussed below. A graphical representation
of the states and transitions in the definition above is depicted by the two partial state
machines on the left of Figure 6.3.

Figure 6.3: Partial state machines that illustrate TGas

In the transformed model, the new states are added to the appropriate state machines,
and transitions trs and trr are replaced by the new transitions. Additionally, a fresh
integer variable vci and a state machine readeri are added to the classes cli , for i = 1, 2.
Let TrG

i be the sets of all trs and trr -like transitions of smi, for i = 1, 2, Sgn1 the set of
all signal names occurring in the sending statements of transitions in TrG

1 , and Sgn2 the
set of all signal names occurring in the reception statements of transitions in TrG

2 . State

82 Reusability and Correctness of Endogenous Model Transformations

machine readeri is a result of applying function Rsm, defined as

Rsm(pni , vci ,Sgni) = readeri initial initi

[tsgni from initi to initi receive sgn(vci) from pni | sgn ∈ Sgni],

where readeri is a fresh state machine name, initi is a fresh state name, and tsgn ≡
“t_” + sgn. As defined, state machine readeri has a transition for every signal name sgn
from Sgni . On the right of Figure 6.3, an example of such a state machine is shown.

6.3 Correctness of Model Transformations
To reason about the correctness of a model transformation, we need a description of
the behavior of models, a definition of the transformation, the possibility to check the
correctness criteria, for instance by comparing the behavior of models, and the possibility
to reason at the general language level rather than at the level of model instances. To
cover all these aspects, a sufficiently expressive and flexible formalism has to be used.
We decided to use labeled transition systems (LTSs) [93] as the underlying formalism
to reason about the SLCO model transformations for several reasons. First, the LTS
formalism is well-established and often used to describe the dynamic behavior of systems.
Second, different equivalence relations between LTSs have been defined and used for the
comparison of behavior. In Section 6.3.2, we use such an equivalence relation to relate
the behavior of original and transformed models. Third, in our earlier work described
in Chapter 5, an executable prototype of the semantics of SLCO is used to describe the
behavior of models as LTSs. To utilize the experience gained by developing this prototype,
we use the same formalism for the formal semantics of SLCO.

To generate an LTS representation of the behavior of a given model, we first formally
define the dynamic semantics of SLCO in the form of structural operational seman-
tics (SOS) [93]. Then, reasoning at the level of LTS representations of the behavior of
models, we define our criterion for correctness of model transformations. In the following
section, an overview of the formal semantics of SLCO required for the correctness proofs
is given. A more detailed description is presented in Appendix B.

In contrast to the aforementioned prototype, the formal semantics does not take time
and successful termination into account. We decided not to use the prototype itself as a
definition of the semantics of SLCO, to abstract from the details of its implementation.
Although the executable prototype and the formal semantics assign equivalent LTSs to a
given SLCO model without delay statements and final states, the rules that define the
formal semantics of SLCO do not correspond directly to the rules used to implement
the prototype. This is caused by the fact that the formal semantics define the possible
behavior of a transition in any context, whereas the executable prototype defines the
behavior of transitions in relation to other transitions.

In the sequel, we use the following conventions and notation. If lt is a sequence, we
abuse the notation and write lt for the set of elements of lt. Thus, we write elt ∈ lt for
“there is an element elt in sequence lt”. A number of functions are defined and used. The
update of function f such that f(x) = a is denoted by f [a/x].

6.3. Correctness of Model Transformations 83

6.3.1 Operational Semantics of SLCO
For an arbitrary model m, the SOS rules that define the semantics of SLCO generate the
complete behavior of the model in the form of an LTS. An LTS is a tuple (S,Λ,→, i),
where S is a set of configuration, Λ is a set of labels, →⊆ S × Λ× S is a ternary relation
of labeled transitions, and i ∈ S is the initial configuration. In our case, for an SLCO
model m = mn obj ∗ class∗ chan∗, with VN the set of all variable names occurring in
m, SMN the set of all state machine names of m, SN the set of all state names of these
state machines, and CE the set of all constant expressions, the configurations of the
LTS generated for m are tuples 〈m, ssms , vglob , vloc , b〉, where ssms : ON 7→ (SMN 7→ SN)
is a function that indicates current states of the state machines of the objects in m,
vglob : ON 7→ (VN 7→ CE) is an evaluation function that assigns values to the (global)
variables of the objects in m, vloc : ON 7→ (SMN 7→ (VN 7→ CE)) is an evaluation
function that assigns concrete values to the (local) variables of the state machines of the
objects of model m, and b : (CHN ×ON ×ON) 7→ (SGN × SEQ(CE))∪{nil} represents
the content of the one-place buffers corresponding to the asynchronous channels in m.
The content of a buffer can be nil, denoting an empty buffer, or a tuple consisting of a
signal name and a sequence of constant expressions. Two buffers are associated to each
bidirectional, asynchronous channel, one for each direction.

For the LTS of m, LTS (m) in short, the initial configuration conforms to the following
constraints. First, all the buffers assigned to asynchronous channels are initialized to nil.
Second, all the state machines are in their initial state. Third, all variables are initialized
to values respecting their types.

The transitions of LTS (m) are obtained as the least relation deduced from the SOS
rules. A transition can be labeled ε, vn : = ce, sgn(ce∗), send sgn(ce∗), receive sgn(ce∗),
or lost sgn(ce∗), where vn denotes a variable name, ce a constant expression, sgn ∈ SGN
a signal name, and ce∗ a sequence of constant expressions. Transitions labeled ε correspond
to transitions in SLCO models without a statement or transitions that have a blocking
statement represented by a Boolean expression. Transitions labeled vn : = ce represent
assignments. The label sgn(ce∗) represents synchronous communication between two
objects, whereas the labels send sgn(ce∗), receive sgn(ce∗), and lost sgn(ce∗) denote
sending, receiving, and losing signals during asynchronous communication.

The overall behavior of a model is defined by the behavior of its composite elements,
the objects and the channels. The statements that the objects can execute and the way
they interact via the channels determine the dynamics of the model. The contributed
activities of an object are deduced from the specification of its class, and the activities of
a class are deduced from the specifications of its state machines. At the most elementary
level of the structure, the behavior of each state machine is derived from its transitions.

〈e∗, vvars , v ′vars〉 =⇒EXPS ce∗

〈tn from sn to sn′ send sign(e∗) to pn, sn, vvars , v
′
vars〉

send sgn(ce∗) to pn−−−−−−−−−−−−−−→TRANS 〈sn′, vvars , v ′vars〉

〈ce∗, vn∗, vvars , v ′vars〉 =⇒SUB 〈v ′′vars , v
′′′
vars〉, 〈e, v ′′vars , v

′′′
vars〉 =⇒EXP true

〈tn from sn to sn′ receive sgn(vn∗ | e) from pn, sn, vvars , v
′
vars〉

receive sgn(ce∗) from pn−−−−−−−−−−−−−−−−−−→TRANS 〈sn′, v ′′vars , v
′′′
vars〉

Figure 6.4: A subset of all deduction rules for transitions

84 Reusability and Correctness of Endogenous Model Transformations

Figure 6.4 shows some of the SOS rules that relate a single transition in an SLCO
model to a transition on the LTS level. If an expression e evaluates to constant ex-
pression ce with respect to evaluation functions v1 and v2, we write 〈e, v1, v2〉 =⇒EXP ce.
Similarly, we write 〈e∗, v1, v2〉 =⇒EXPS ce∗ for a sequence of expressions e∗. Finally,
we use 〈ce∗, vn∗, v1 , v2 〉 =⇒SUB 〈v ′1 , v ′2 〉 to denote the update of evaluation functions v1

and v2 to v′1 and v′2, such that variables vn∗ are mapped to the values ce∗. The first rule
in Figure 6.4 deals with statements that send signals. The evaluation functions vvars
and v′vars map values to variables and are used to evaluate the expressions that form
the arguments of the signal. The second rule in Figure 6.4 deals with conditional signal
reception. The rule specifies that the expression that forms the condition is evaluated
using the possibly updated evaluation functions. If the condition evaluates to true, the
transition is enabled.

trans ∈ trans∗,

〈trans, ssms(smn), vvars , vsms(smn)〉 l−→TRANS 〈sn, v ′vars , v
′′
vars〉,

s′sms = ssms [sn/smn], v ′sms = vsms [v
′′
vars/smn]

〈smn var∗ states trans∗, ssms , vvars , vsms〉
l−→SM 〈s′sms , v

′
vars , v

′
sms〉

Figure 6.5: Deduction rule for state machines

The behavior of state machines is defined in terms of the behavior of their transitions, as
shown in Figure 6.5. The rule defines that if one of the transitions of state machine sm can
perform an action represented by l, then the state machine can perform the same action.

sm ∈ sm∗, 〈sm, ssms , vvars , vsms〉
l−→SM 〈s′sms , v

′
vars , v

′
sms〉

〈cn var∗ port∗ sm∗, ssms , vvars , vsms〉
l−→CLASS 〈s′sms , v

′
vars , v

′
sms〉

Figure 6.6: Deduction rule for classes

The rule in Figure 6.6 shows how the enabled transitions, derived from the SOS rules
for state machines, are lifted up to the level of a class. It also shows implicitly that all
state machines of a considered class are inspected. The symbolic function ssms keeps
track of the current states of the state machines, while vsms maps (local) variables to
their value for the state machines of each object, and vvars maps the (global) variables at
the level of the objects to their values.

Objects behave as specified by their class. In a composition, objects participate and
interact as described by the SOS rules for compositions of objects, some of which are
given in Figure 6.7. Every non-synchronizing transition of one of the objects enabled
for execution in the current configuration is executed by the composition of the objects,
and the functions are updated accordingly. A non-synchronizing transition that receives
signals over an asynchronous lossless channel is captured by the first rule in Figure 6.7.
The second rule describes synchronization of two objects via a synchronous channel.

Finally, the rule in Figure 6.8 defines the behavior of a model in terms of its objects,
classes, and channels. Each transition from one configuration to another is derived from
the rules discussed above.

6.3. Correctness of Model Transformations 85

on1 : cn1 ∈ obj∗, cn1 var∗1 pn∗1 sm∗1 ∈ class∗,

chn(type∗) async lossless from on1 .pn1 to on2 .pn2 ∈ chan∗,

〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉
send sgn(ce∗) to pn1−−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,

s′objs = sobjs [ssms/on1], b(〈chn, on1 , on2 〉) = nil, b′ = b[〈sgn, ce∗〉/〈chn, on1 , on2 〉]

〈obj∗, class∗, chan∗, sobjs , vglob , vloc , b〉
send sgn(ce∗)−−−−−−−−−−→OBJS 〈s′objs , vglob , vloc , b

′〉

on1 : cn1 ∈ obj∗, on2 : cn2 ∈ obj∗,

cn1 var∗1 pn∗1 sm∗1 ∈ class∗, cn2 var∗2 pn∗2 sm∗2 ∈ class∗,

chn(type∗) sync from on1 .pn1 to on2 .pn2 ∈ chan∗,

〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉
send sgn(ce∗) to pn1−−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,

〈cn2 var∗2 pn∗2 sm∗2 , sobjs(on2), vglob(on2), vloc(on2)〉
receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−→CLASS 〈s′sms , v

′
vars , v

′
sms〉,

s′objs = sobjs [ssms/on1][s′sms/on2], v ′glob = vglob [v ′vars/on2], v ′loc = vloc [v ′sms/on2]

〈obj∗, class∗, chan∗, sobjs , vglob , vloc , b〉
sn(ce∗)−−−−−→OBJS 〈s′objs , v

′
glob , v

′
loc , b〉

Figure 6.7: A subset of all deduction rules for compositions of objects

m ≡ mn obj∗ class∗ chan∗,

〈obj∗, class∗, chan∗, sobjs , vglob , vloc , b〉
l−→OBJS 〈s′objs , v

′
glob , v

′
loc , b

′〉

〈m, sobjs , vglob , vloc , b〉
l−→MODEL 〈m, s′objs , v

′
glob , v

′
loc , b

′〉

Figure 6.8: Deduction rule for models

6.3.2 Correctness of the T Sas transformation
The operational semantics of SLCO generates an LTS representation of the model
dynamics, for a given model and its initialization. Thus, to reason about the correctness
of and property preservation by a model transformation, we need to compare the behaviors
of two models, one before and one after the transformation, represented as LTSs.

A wide range of equivalence relations on LTSs have been proposed [45]. Some of
them, such as strong bisimilarity, are appropriate for concrete behavior, when every
action of the system is observable. For some of the defined SLCO transformations, this is
indeed sufficient. However, these relations are often too fine when part of the behavior
is preferred to be abstracted away and considered unobservable. Some of the SLCO
model transformations, as explained in the previous sections, add more detail to the
behavior and therefore, some parts of the behavior introduced by the transformation
need to be abstracted away to mimic the behavior before the transformation. In view
thereof, we choose branching bisimilarity [47] as the equivalence relation we use for the
correctness criterion. Branching bisimilarity is a relation between configurations of LTSs
for which some transitions are considered internal (or unobservable), which is represented
by labeling them with τ (τ /∈ Λ). Intuitively, two configurations are branching bisimilar
if every transition step that can be executed in one configuration can be mimicked in
the other, possibly after a finite number of internal steps. Branching bisimilarity can be
formally defined as follows.

86 Reusability and Correctness of Endogenous Model Transformations

Definition 1. For two LTSs L1 = (S1,Λ1,→1, i1), L2 = (S2,Λ2,→2, i2) a relation
R ⊆ S1 × S2 is called a branching bisimulation relation if the following conditions are
met, for all s ∈ S1 and t ∈ S2 such that R(s, t).

1. If s a−→ s′ in L1, then either

– a = τ and R(s′, t), or

– for some n ≥ 0, there exist t1, . . . , tn and t′ in S2 such that
t
τ−→ t1

τ−→ . . .
τ−→ tn

a−→ t′ in L2, R(s, tn) and R(s′, t′);

2. If t a−→ t′ in L2, then either

– a = τ and R(s, t′), or

– for some n ≥ 0, there exist s1, . . . , sn and s′ in S2 such that
s
τ−→ s1

τ−→ . . .
τ−→ sn

a−→ s′ in L1, R(sn, t) and R(s′, t′).

LTSs L1 and L2 are branching bisimilar if there exists a branching bisimulation relation R
for L1 and L2 such that R(i1, i2).

Branching bisimilarity possesses many useful properties, one of which is that related
models possess the same properties that can be expressed in the temporal logic CTL∗
without the next state modality [29]. In our case, this means that if a certain property
has been established for the source model, which is usually much smaller than its
implementations and thus easier to analyze, and if we apply a (well-composed) sequence
of model transformations for which our correctness criterion hold, then the generated
model inherits the property by construction. The same holds for all intermediate models.
Thus, our correctness criterion for model transformation provides effective and efficient
generation of implementations that are correct-by-construction.

Definition 2. Let T be an SLCO model transformation such that for any SLCO model
m to which T applies and for a given initialization of m, there is a renaming ρ of the
labels of the LTS (T (m)) such that LTS (m) and ρ(LTS (T (m))) are branching bisimilar.
Then, T is a correct model transformation.

The renaming function ρ in the definition above is needed to rename some labels
into τ , but also to unify, if needed, the labels of transitions that are supposed to mimic
each other. For example, when replacing a synchronous channel with an asynchronous
one, a small protocol is employed. On the LTS level, one of the labels that represent
the steps performed as part of this protocol corresponds to the label that represents the
synchronization in the original situation. The renaming function is used to ensure that
these labels are the same and to hide the labels that represent the other steps.

In the remainder of this section, we discuss the main lines of the correctness proof for
the simple variant of the Synchronous to Asynchronous transformation, TSas . We chose
this transformation because its proof has all the important aspects that need to be taken
into account, yet the established relation between configurations is simple enough to be
given completely. Besides transformation TSas , there are four more transformations that
require a substantial amount of cases to be considered for their correctness proof. The
fourth column of Table 6.1 in Section 6.2 lists the number of proof obligations for each
transformation. The last row lists two numbers, one for each version of the Synchronous
to Asynchronous transformation. Fortunately, the correctness proofs of the majority
of transformations involve a single proof obligation only, relating each configuration for

6.3. Correctness of Model Transformations 87

input models to exactly one equivalent configuration for output models. This is a clear
benefit of designing sequences of transformations that are as fine-grained as possible.

Referring back to the definition of TSas in Section 6.2.2, let Sgn be the set of all signal
names used in the sending and receiving statements of all trs and trr-like transitions. We
define a label-renaming function ρ as follows, for every ssgn ≡ “s_” + sgn and asgn ≡
“a_” + sgn such that sgn ∈ Sgn.

– ρ(send ssgn()) = τ
– ρ(receive ssgn()) = sgn()
– ρ(send asgn()) = τ
– ρ(receive asgn()) = τ

Renaming ρ is straightforwardly extended on LTS (TS
as(m, chn)). By renaming the

label receive ssgn() to sgn(), we indicate that these two labels represent successful
communication. The other labels are renamed to τ because they represent the implicit
synchronization in the source model and should result in unobservable behavior of the
target model.

Theorem 1. For a given SLCO model m = mn class∗ obj ∗ chan∗ and a channel
chs = chn() sync from on1 .pn1 to on2 .pn2 ∈ chan∗, TSas(m, chn) is a correct model
transformation.

Proof. We need to show that LTS (m) and ρ(LTS (TS
as(m, chn))) are branching bisimilar.

As usual, the main difficulty of the proof lies in properly relating the configurations from
LTS (m) and those from ρ(LTS (TS

as(m, chn))). Before we define the relation, it is worth
noticing that each configuration of LTS (m) is also a configuration of ρ(LTS (TS

as(m, chn))),
but for the latter the buffer function is extended over the triples 〈chn, on1 , on2 〉 and
〈chn, on2 , on1 〉.

Let configuration cf = 〈m, sobjs , vglob , vloc , b〉 be a configuration of LTS (m) and
let cf ′ = 〈TS

as(m, chn), s ′objs , v
′
glob , v

′
loc , b

′〉 be a configuration of ρ(LTS(TSas(m, chn))).
We define a relation R between the configurations as follows: (cf , cf ′) ∈ R if and only if
vglob = v′glob , vloc = v′loc and

1. sobjs = s′objs , b
′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = nil, and b′ = b

otherwise, or

2. sobjs(on1)(smn1) = ss1 , s′objs(on1)(smn1) = ssnw , sobjs = s′objs otherwise,
b′(〈chn, on1 , on2 〉) = (ssgn, ε), b′(〈chn, on2 , on1 〉) = nil, and b′ = b otherwise, only
if there is a trs -like transition from ss1 with signal name sgn(), or

3. sobjs(on1)(smn1) = ss2 , sobjs(on2)(smn2) = sr2 , s′objs(on1)(smn1) = ssnw ,
s′objs(on2)(smn2) = srnw , sobjs = s′objs otherwise, b′(〈chn, on1 , on2 〉) = nil,
b′(〈chn, on2 , on1 〉) = nil, and b′ = b otherwise, only if there is a trs -like transition
in sm1 to ss2, and there is a trr -like transition in sm2 to sr2, or

4. sobjs(on1)(smn1) = ss2 , s′objs(on1)(smn1) = ssnw , sobjs = s′objs otherwise,
b′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = (asgn, ε), and b′ = b otherwise, if
there is a trs -like transition to ss2 with signal sgn().

Next, for each pair of configurations, we have to show that they can mimic each other,
using the SOS rules. For example, let us consider case 2. If cf l−→MODEL cf1 , for some
label l and a configuration cf1 of LTS (m), then either l 6≡ sgn() or l ≡ sgn(). In the first

88 Reusability and Correctness of Endogenous Model Transformations

case, this transition certainly does not involve state machine sm1 of object o1 , since it can
only synchronize in this configuration. In this case, the same state machine(s) of the same
object(s) can induce the same transition cf ′ l−→MODEL cf ′1 , and since the updates of the
functions do not change sobjs(o1)(sm1) and s′objs(o1)(sm1), it follows that (cf1 , cf ′1) ∈ R.

If l ≡ sgn(), then sm2 has to be in a state sr1 for some trr -like transition, according to
the SOS rule concerning synchronous communication in Figure 6.7. According to the SOS
rule for an asynchronous signal reception in the same figure, cf ′ sgn()−−→MODEL cf ′1 , where
the label sgn() in ρ(LTS (TS

as(m, chn))) is the result of renaming the label receive ssgn()
of LTS (TS

as(m, chn)). Furthermore, in cf1 , sm1 is in state ss2 and sm2 is in state sr2 .
In cf ′1 , sm1 is in state ssnw and sm2 is in state srnw . According to 3., (cf1 , cf ′1) ∈ R.
Lifting the constraint on sm1 and allowing it to have other transitions besides the one
that sends a synchronous signal in state ss1 breaks bisimilarity of R.

For each transition cf ′ l−→MODEL cf ′1 that is enabled in configuration cf ′ we can show
in a similar way that it is either also enabled in configuration cf or that it is mimicked
by a transition cf sgn()−−→MODEL cf1 . By a careful inspection of transitions generated by the
SOS rules for the other three cases of pairs of R-related configurations, we can prove that
R is indeed a branching bisimulation that relates LTS (m) and ρ(LTS (TS

as(m, chn))).

A more detailed description of this proof is given in Appendix D.

6.4 Related work
Various aspects of the correctness of model transformations have been considered, and
different approaches have been proposed. Giese et al. relate input and output models
during the specification of a transformation and then use a theorem prover to show
semantic equivalence between the input and output of this transformation [44]. The
source and target language discussed are relatively small, leading to a more straightforward
transformation compared to the sequences of transformations we consider. However, the
use of a theorem prover to automate parts of the correctness proofs has clear advantages
over manual proofs. The approach of Schätz also uses a theorem prover for assistance
with correctness proofs [101]. In this case, properties that are proved for the given
model transformation are more of a structural nature. It is interesting that here the
author advocates the advantages of having a single homogenous formalism for description
of transformations, which we also see advantageous in our approach. The framework
proposed by Varró allows for defining a set of graph transformation rules to describe the
operational semantics of a DSML, which is used, similar to our approach, to generate
an LTS representation of models in the DSML, which then can be model checked [109].
However, the translation framework works only on a particular given model instance of
the language, while we aim at general results at the level of the entire language.

Instance-based verification of model transformations is described also by Karsai and
Narayanan [65]. Their approach entails generating a certificate for each model that is
transformed. These certificates are used to show that the model transformation preserves
certain properties for the given input model, but cannot be used to show that properties
are preserved for arbitrary input models.

The approaches described by Ehrig and Ermel [36], and Hülsbusch et al. [57] are
most closely related to the work presented in this chapter. Ehrig and Ermel consider
preservation of behavior by model transformations [36]. Besides the models in the source
language, also the language semantics is transformed, and the result is compared with
the semantics of the target language. The paper states conditions that input models

6.5. Conclusions and Future Work 89

and model transformations should fulfill to preserve the semantics. Hülsbusch et al. [57]
consider the correctness of model transformations stated in terms of a bisimulation relation.
Here, the languages are first given operational semantics in terms of graph-transformation
rules. Although our approach to the correctness of transformations is similar to this one,
the two languages considered in their work are simpler than the language we used to
demonstrate our approach.

6.5 Conclusions and Future Work
To address research question RQ4, we defined a formal framework for reasoning about the
correctness of the endogenous model transformations related to SLCO, which is illustrated
in this chapter. Using this framework, we can assess whether sequences of transformations
are well-composed, and whether individual transformations are provably correct. By
designing sequences of transformations that are as fine-grained as possible, we improved
the reusability of these transformations, both between sequences of transformations
and within such sequences. Furthermore, this design decision increased the number of
transformations with straightforward correctness proofs and reduced the number of proof
obligations for the proofs of the larger transformation steps.

Given the large number of straightforward proofs, we consider investigating the
application of automated theorem proving to be a promising direction for future research.
Furthermore, the work presented in this chapter does not take successful termination and
time into account. These problems also provide opportunities for future research. Finally,
we want to investigate the generalization of the approach to other DSMLs.

Chapter 7

Evolution of a Domain-Specific Modeling Language

In this chapter, we describe the evolution of the Simple Language of Communicating
Objects (SLCO) and the corresponding model transformations. These transformations
were developed one at the time, simultaneously with the language itself, while preserving the
validity of the previously developed ones. The simultaneous development of the language
and the transformations has led to an iterative evolution of SLCO. Furthermore, the
description of the semantics of SLCO changed from a transformational definition to a
definition based on an executable state-space generator. Afterwards, a formal definition of
its semantics was given. Switching from one form of defining the semantics to another
also led to adaptations of the language. In this chapter, we describe our development
process and the causes for the evolution of the language and its transformations.

7.1 Introduction
The Simple Language of Communicating Objects (SLCO) gradually evolved from a
slightly modified subset of the UML suited for performance analysis to a domain-specific
modeling language (DSML) that offers simulation, verification, and execution of models.
In this chapter, we describe our experiences with the process of developing this DSML
and the corresponding model transformations. By studying the development of a small
and easily changeable language and documenting its evolution, we started to investigate
the feasibility of a development process for DSMLs in which changes to one artifact have
less influence on other artifacts.

The literature provides guidelines for developing domain-specific languages (DSLs) [31,
32,80] and tools that support DSL evolution [43,105]. There have been numerous reports
on evolution of DSLs. For example, the changes to the SDF language, a DSL used for
syntax definition, are described by Visser [110]. Van Beek et al. describe the evolution
of Chi, a language for modeling and simulating hybrid systems [15]. The evolution of a
language used for interchanging models of hybrid systems is described by Van Beek et
al. [14]. In most of these publications, however, only the changes themselves are described,
and the reasons for these changes are only hinted upon. On the underlying reasons

92 Evolution of a Domain-Specific Modeling Language

for DSL evolution literature is scarce and conclusions are scattered. Additionally, most
analysis of DSL evolution provide an a posteriori report only. In this chapter, we discuss
our experiences with an evolving DSML during its iterative design and address research
question RQ5.

RQ5: What are the main influences on the design of a DSML and the
corresponding model transformations?

As described in Chapter 3, we designed a DSML for modeling systems consisting of
concurrent, communicating objects. The structure of a system is modeled using classes,
and their behavior is modeled by state machines. Simultaneously to the development of
the DSML, we implemented a number of model transformation to different formalisms: one
for simulation, one for execution, and one for verification. These model transformations
were developed consecutively. Each time a transformation to a new target platform was
added, the functionality offered by the existing transformations remained intact.

Furthermore, the way in which the semantics of SLCO were defined changed over time,
which also had its influence on the rest of the definition of the language and its transforma-
tions. At first, the semantics of SLCO were defined by means of a transformation to the
Parallel Object-Oriented Specification Language (POOSL) [108]. This transformational
description was then replaced with another transformational description based on labeled
transition systems. Later, a formal definition of the operational semantics of SLCO was
given, to enable formal reasoning about the correctness of the model transformations.

We describe the development process and indicate how our DSML has evolved during
this process. We focus on language evolution only and not on the co-evolution of models
specified in the DSML such as described in [24]. Even though our DSML is small in terms
of the provided number of modeling constructs, we expect that the lessons learned are
applicable to projects involving larger DSMLs as well. In our discussion of related work
in Section 7.4, we show that the conclusions drawn by others overlap with our own.

The remainder of this chapter is structured as follows. In Section 7.2, we describe
the development process of our DSML and the accompanying model transformations.
Section 7.3 describes the evolution the language has undergone. Related work is discussed
in Section 7.4. In Section 7.5, we draw conclusions and give directions for further research.

7.2 Development Process
The language and the sequences of model transformations described in Chapter 3 originate
from research aimed at performance analysis of UML models. The goal of this research was
to be able to simulate and analyze UML models, developed using an intuitive, graphical
syntax, without the need for modelers to learn the syntax and semantics of a formal
language for simulation. Because only a small subset of the UML was used, and some
additions and other changes were needed, we decided to create a new DSML once the
original research project was finished. This way, we no longer had to deal with UML’s very
large metamodel. The new DSML was named the Simple Language of Communicating
Objects (SLCO). Once it was defined, a model transformation was implemented to enable
simulation of its models using POOSL [108], which is described in Section 3.5.2.1. By
means of this transformation, SLCO models could be simulated, and the performance
of the systems they describe could be analyzed. Second, a model transformation was
implemented to enable execution of the models on the Lego Mindstorms platform1, which

1http://mindstorms.lego.com/

http://mindstorms.lego.com/

7.3. Evolution 93

is described in Section 3.5.2.2. Executing the code generated from certain models revealed
bugs in these models that originated from unforeseen interleavings of concurrent objects.
These bugs were not encountered during simulation. To detect this kind of problems, a
third model transformation was implemented to enable verification of the models using
Spin [55], which is described in Section 3.5.2.3.

At first, the transformation from SLCO to POOSL, a language whose semantics is
formally defined, served as a transformational definition of SLCO’s semantics. However,
to reason about the correctness of the model transformations related to SLCO, a formal
and more concise definition of its semantics was needed. Thus, as a starting point for
a formal operational semantics for SLCO, an executable prototype of the semantics
was implemented, which is described in Chapter 5. This prototype made it possible
to experiment with various alternative design decisions. Once the prototype reached a
stable state, we defined the formal semantics of SLCO based on the prototype, which is
described in Appendix B.

Adding new target platforms to an existing DSML and changing the way its semantics
are defined led to changes in the DSML itself. In the remainder of this chapter, we
describe these changes and indicate their causes.

7.3 Evolution
Van Deursen et al. identify three phases in the development of a DSL: the analysis phase,
the implementation phase, and the phase in which the DSL is used [32]. Mernik et al.
split the analysis phase into an analysis and a design phase [80]. Because the development
of our language is an iterative process, the phases are revisited each time the language is
extended. The evolution of the language and the transformations has been influenced
by a number of roles, each of which is responsible for performing certain activities that
belong to the four phases in the development of a DSL mentioned above. We describe the
evolution of our DSML and the accompanying transformations in terms of the activities
performed during these four phases. The remainder of this section starts with a description
of the roles and the activities that belong to these roles. After these descriptions, the
major changes made in both the language and the transformations are listed. At the end
of this section, we cluster these changes and distinguish four types of causes for evolution.

7.3.1 Roles and Activities
The design of our DSML has been influenced by a number of roles. Table 7.1 shows in
which phases of the development each of the roles participate. Although every role has its
own separate tasks, these tasks greatly depend on each other, which leads to interaction
between the roles. In the evolution of our DSML, language designers, platform experts,
modelers, and software developers have played a role.

Development phases Roles

Analysis Language designer
Platform expert

Design Language designer
Implementation Software developer
Use Modeler

Table 7.1: Development phases and the corresponding roles

94 Evolution of a Domain-Specific Modeling Language

Table 7.2 shows how the aforementioned roles are related to activities and the number
of persons that fulfilled the roles. The actual number of modelers is larger than shown in
the table. SLCO has been used in a number of student assignments in which students
had to create models. However, little to no feedback was acquired from the students.
Because their influence on the evolution of SLCO is negligible, they are not explicitly
mentioned in the table. Below, we describe how the roles and activities relate.

In our development process, language designers are involved in two activities. First,
they perform a domain analysis to investigate which aspects of the problem domain need
to be incorporated in the language. After the domain analysis is completed and all the
concepts that need to be incorporated in the DSML have been identified, the language
designers are responsible for defining the syntax and semantics of the language.

Role Persons Activities

Language designer 4 Domain analysis
Defining the language

Platform expert 4
Domain analysis
Defining the mapping from SLCO to a platform
Interpreting models

Modeler 3
Creating models
Applying transformations
Interpreting models

Software developer 2 Implementing the mappings
Implementing editors for SLCO models

Table 7.2: Roles and the corresponding activities

SLCO models are transformed to a number of platforms. Support for these target
platforms was added one at a time, and in some cases, adding a new platform changed
the application domain of the language. This is caused by our decision to extend the
language whenever necessary such that it is suited for modeling on both high and low
levels of abstraction. For example, to be able to use SLCO to model systems on the
level of abstraction offered by NQC, the concept of asynchronous communication was
added to the language. Each time changes like this have to be made, the platform expert
performs an additional analysis of the domain of the language. Platform experts are
also responsible for the mapping from SLCO to new target platforms. This mapping
defines how constructs of the DSML are mapped onto constructs available for the target
platform. In some cases, not all constructs need to have an equivalent counterpart in the
target platform. The language and tools offered by the target platform have a certain
purpose, and some constructs of SLCO may be irrelevant for the purpose of the target
platform. Lastly, platform experts may be involved in the interpretation of models. For
example, a Spin expert was asked to analyze a number of SLCO models that suffered from
state-space explosion after translating them to Promela and processing them with Spin.
Based on the advice of this expert, both the language and the model transformations
were changed. In our case, a POOSL expert, Spin experts, and NQC experts participated
in the development of the language.

The modeler is the end-user of a DSML. Besides creating models and generating
new models by applying transformations, the modeler analyzes and interprets models.
To simulate an SLCO model, for example, the modeler can transform this model to
an equivalent POOSL model. This POOSL model can then be simulated, after which
the results of the simulation have to be interpreted to determine their relevance for the

7.3. Evolution 95

original SLCO model.
Given a mapping from SLCO to a target platform designed by a platform expert,

software developers are responsible for the translation of the conceptual mapping to
an actual implementation of the transformation. Furthermore, the software developers
implement the editors required for creating and editing models.

7.3.2 Evolution of the Language
While performing the activities described in Section 7.3.1, various features were identified
and added to the language. Table 7.3 shows how the activities are related to these features.
Each of the features is discussed in the remainder of this section.

Activity Language features

Domain analysis

Concurrent, communicating objects
Simple imperative constructs
Delays
Asynchronous signals
Lossy channels

Defining the language
UML-like syntax
Synchronous signals
Subset for formal semantics

Interpreting models

Conditional signal reception
Combination of trigger and guard
Local variables
Structure diagrams
Additional operators and types
Incoming transitions for initial states
Outgoing transitions for final states
Fine-grained sequences of transformations

Creating models

Initial values of variables
Identifying signals by name
Textual syntax
Generalization of statements, triggers, and guards

Implementing the mappings Explicit channel types
Restricted form of conditional signal reception

Table 7.3: Desired language features identified during each of the activities

From an abstract point of view, the problem domain for which SLCO was designed
consists of concurrent, communicating objects. The most important requirement for our
DSML is therefore that it can describe such objects at an appropriate level of abstrac-
tion. The initial application area of SLCO was performance analysis of interoperating
software components implemented with an imperative programming language. Besides
communicating with each other, these components perform simple calculations. To be
able to express the calculations performed by the components, a small number of basic
imperative constructs were added to the language. Furthermore, to enable performance
analysis, time needed to be incorporated into the language, which was achieved by adding
delay statements. All of these aspects of the language were identified during the initial
analysis of the problem domain. At a later stage, the aspiration to execute SLCO models
on the Lego Mindstorms platform gave rise to a second analysis of the problem domain.
Communication between RCXs, the controllers of the Lego Mindstorms platform, occurs

96 Evolution of a Domain-Specific Modeling Language

using infrared signals. These signals are asynchronous, and the channel used for this type
of communication is unreliable. Initially, communication in SLCO could only occur using
synchronous channels over reliable channels, as explained below. To enable a straight-
forward mapping from SLCO to NQC, the characteristics of both languages should be
aligned. Therefore, SLCO was extended with asynchronous signals and lossy channels as
a result of the additional domain analysis.

Figure 7.1: Syntax that distinguishes triggers, guards, and statements

One purpose of SLCO is using the language for documentation. For this reason, a
graphical syntax resembling the well-known syntax of the UML was chosen while defining
the language. Another design decision we made for this reason is offering communication
via synchronous signals. This form of communication leads to concise models, which
increases the understandability of models and thus increases their value as documentation.
In Figure 7.1, two state machines are shown using the graphical syntax that was inspired
by the UML. Over time, this syntax has changed a little, as is explained below. Finally,
to simplify the definition of SLCO’s formal semantics, a sublanguage has been identified,
which is described in Section 3.7. Because each of the constructs that are missing from
this sublanguage can be expressed in terms of its other constructs, SLCO’s semantics can
be defined completely by defining the semantics of this sublanguage only.

Figure 7.2: Evolution of conditional signal reception

Many of the changes to the language were inspired by problems encountered during
the interpretation of models. During the interpretation of Promela models, for example,
we noticed that the state space generated as part of the model-checking process could be
reduced by adapting the language. Because reducing the state space improves verification
performance, we adapted SLCO by introducing conditional signal reception as a language
construct. Conditional signal reception can be used to specify that a signal can only
be received if its arguments adhere to a certain condition. The leftmost transition from
state Old to itself in Figure 7.2, for example, will only be taken when a signal T (a, b,
c) is received for which the condition a == b + 1 holds. The original syntax used for
this construct was again inspired by the UML. The fact that the variables used in the
guard a == b+ 1 refer to the values received as arguments of signal T proved to be a

7.3. Evolution 97

source of confusion that was addressed at a later stage. The condition was incorporated
into the language construct for signal reception, as shown on the right of Figure 7.2.

During the interpretation of SLCO models, we noticed that some variables were used
only locally in the state machines, but were defined globally as variables of the class
containing the state machines. To improve the readability of the models, we introduced
the concept of local variables. However, this increase in readability is accompanied by a
decrease in modifiability when using the standard tree view editor provided by the Eclipse
Modeling Framework (EMF) [106] for editing models. When referring to a variable in
this tree view editor, the container of a variable is not shown in the list of variables that
can be referred to. This makes it hard to distinguish between two variables with the same
name but with a different container. The readability of models was also improved by
extending the graphical syntax with structure diagrams. These diagrams make it possible
to visualize all aspects of an SLCO model. They provide information about models that
was missing from the communication and behavior diagrams, such as the scope and initial
value of variables. Another improvement in terms of readability and modifiability we
made after interpreting SLCO models is adding new operators and types to the language.

Once the state spaces of SLCO models could be visualized with the executable
prototype of SLCO’s semantics presented in Chapter 5, the fact that initial states were
not allowed to have incoming transitions and final states were not allowed to have outgoing
transition showed to clutter the graphs that represented the state spaces. Therefore,
we removed these restrictions and changed the way initial and final states are shown
in behavior diagrams. Previously, both the solid black circles as well as the rounded
rectangles in behavior diagrams, such as the ones shown in Figure 7.2, represented
states. After the aforementioned restrictions were removed, a solid black circle no longer
represents a separate state. Instead, the black circle is now only used to indicate which
of the rounded rectangles represents an initial state. The way final states are displayed
changed similarly. Table 7.3 also indicates that the transformations have changed as a
result of problems that occurred while interpreting models. These changes are discussed
in Section 7.3.3.

The activity of creating models inspired four changes. While creating models, we
noticed that it was tedious to initialize variables explicitly as part of a state machine
describing the behavior of a class. For this reason, we made it possible to specify the initial
value of a variable as part of its declaration. Another design decision that was tedious to
deal with while creating models by hand was the existence of a metaclass for signals. In
the current version of SLCO, this metaclass is replaced with a simple attribute of type
String that denotes the name of a signal. Additionally, the textual syntax for SLCO was
introduced because of difficulties encountered while creating models. Besides offering a
more convenient way to create and edit models, the textual representation was also a
prerequisite for the work presented in Chapter 5. Finally, the distinction between guards,
triggers, and statements was removed. Early versions of SLCO distinguish between guards,
triggers, and statements, as is the case for the UML. Furthermore, each transition has at
most one guard, at most one trigger, and can have any number of statements. Allowing
at most one trigger and guard per transition can lead to models with a large number
of states. To reduce the number of states, the distinction between guards, triggers, and
statements was removed. Figure 3.20 shows the state machines of Figure 7.1 using the
new syntax.

Implementing the mappings from SLCO to its target platforms led to two changes.
In SLCO, the arguments of all signals sent over a channel must have the same type. A
channel in SLCO is characterized by these types, its directionality, its reliability, and its

98 Evolution of a Domain-Specific Modeling Language

Figure 7.3: Restricted form of conditional signal reception

suitability for either synchronous or asynchronous communication. Initially, the allowed
types of the arguments and the directionality of a channel were left implicit. However,
the types of the arguments of the signals sent over a channel must be specified explicitly
in Promela. When transforming SLCO to Promela, the characteristics of a channel had
to be derived from the statements that use the channel for sending and receiving signals.
To avoid this, we decided to make all the characteristics of channels explicit, which led to
smaller transformations that were easier to understand and modify. Furthermore, while
investigating different forms of conditional signal reception and their mapping to the
target platforms, we noticed that only some of these forms could be translated to Promela.
The signal reception with the condition a == b + 1 shown in Figure 7.3, for instance,
has no counterpart in Promela that matches the semantics of SLCO. To simplify the
implementation of the mapping from SLCO to Promela, we introduced a restricted form
of conditional signal reception, which corresponds directly with Promela’s construct for
conditional signal reception. The statement receive S([[a]]) from P in Figure 7.3, for
example, can be translated to Promela straightforwardly.

Defining the mappings from SLCO to the various target platforms and implementing
the editors for SLCO models did not lead to any modifications of the language. However,
as stated before, additional domain analysis was performed by the platform experts before
defining the mappings to the target platforms. The straightforwardness of these mappings
is caused by the extension of SLCO that resulted from the additional domain analysis.

7.3.3 Evolution of the Transformations
The transformations from SLCO to the various platforms have also evolved. One reason for
this evolution was the decision to divide each transformation into steps that either modify
existing elements of a model or add elements to a model. We chose this approach because
it clarifies the relation between two consecutive steps of a sequence of transformation. It
is now easier to see what has changed after applying a single transformation.

M1 2M 3M

cMM1 aM dM eMbM

4M

specification implementation

5M

fM

Figure 7.4: A coarse-grained and a fine-grained sequence of transformations

Another reason for splitting up some of the transformations into smaller steps is

7.4. Related Work 99

to enable verification of intermediate models that are closer to the implementation.
This is schematically depicted in Figure 7.4. Before splitting the transformations into
smaller parts, models M1 , M2 , and M3 could be verified using model checking. Verifying
modelM4 was already impossible due to the state-space explosion problem. After splitting,
verification up to model Md is possible. This model is much closer to the implementation
than model M3 . Splitting the transformations increased the usability of the models.

7.3.4 Generalization
Looking more closely at the evolution of our language and transformations, we noticed
that the design choices and changes can be divided into four categories. We consider
these categories to characterize the main influences on the evolution of our DSML and
transformations.

The choice of defining a language for the specification of systems consisting of con-
current objects is made to effectively describe problems in the problem domain. The
influence of the problem domain on the evolution of a DSML is to be expected, since the
language is focused on that domain.

In our case, the target platforms also have an impact on the evolution, since our
language does not have its own execution platform, nor is it embedded in another
language. If a transformation to, for example, an execution platform is impossible due
to language mismatches, it is impossible to execute a model created using the DSML.
Therefore, our DSML has evolved to eliminate unresolvable mismatches with the target
platforms. The introduction of conditional signal reception and the division of the
transformations into smaller steps are enforced by the target platforms.

A large number of design decisions have been made to increase the quality of models,
in particular their understandability and modifiability. Defining a graphical syntax
for the language, adding synchronous communication, introducing local variables, and
allowing variables to have an initial value have been done to increase the understandability.
Referring to signals based on their name has increased the modifiability of models. The
many changes required for increasing the understandability and modifiability of our DSML
can be partially explained by our lack of experience in designing DSLs. We found that it is
hard to predict which language features will improve understandability and modifiability
without actually using the language. These are, however, important quality attributes
that should be taken into account to enhance the chance for acceptance of the language in
practice. We expect that there are more quality attributes [18] that influence the evolution
of a language, which will become apparent when the language is used more extensively.

Enhancing the quality of the transformations also had its effect on the language. To
increase the understandability and modifiability of the transformations, certain implicit
language features have been made explicit, such as the directionality of channels and the
argument types of the signals sent over channels.

7.4 Related Work
Freeman and Pryce describe their experiences with the evolution of a DSL [41]. Their
language has evolved from a library on top of Java to an embedded language. We observed
that our DSL has evolved because new target platforms were added. Their language is
an embedded language that does not need target platforms. Because the language is
embedded, it is highly influenced by the host language, Java in this case. One of the

100 Evolution of a Domain-Specific Modeling Language

reasons for the evolution of their language is to improve user-friendliness. This is related
to our observation that language evolution is influenced by model quality.

The evolution of a visual programming language for writing real-time control programs
for distributed environments and supporting tools is described by Karaila [63]. The
main goal of this language is to make programs understandable. The author shows that
Lehman’s eight laws [75] for characterizing the way software systems tend to evolve are
not restricted to software systems, but apply to language evolution as well. The main
difference between this language and SLCO is the scale. The language studied by the
author has been under development since 1988 and the last major development step dates
from 2003. Also the approach of the study is different. Karaila tries to fit his experiences
within a framework, whereas we try to distill general lessons from our own experience.

An analysis of over twenty cases where domain-specific languages were designed to
implement a model-driven engineering approach is presented by Luoma et al. [77]. The
data for the analysis was gathered by means of interviews and discussions with people
involved in constructing the DSLs. They identified and categorized four influences on
defining DSLs: domain concepts, generated output, look and feel of the system built, and
expression of variability. One of the differences with our work is, again, the scope of the
study. They studied the definition of over twenty languages, of which some have been
used for several years already. We defined only one language, but our focus is on the
evolution of the language. Another important difference is that in their case the target
platform for the applications developed with the DSL was already chosen, whereas we
added multiple target platforms on the fly.

A domain-specific visual language that aims at expressing the evolution of domain-
specific visual languages is developed by Sprinkle and Karsai [105]. This language and
accompanying tools assist in the co-evolution of domain, DSL and models created using
the DSL. They claim that what sets the evolution of domain-specific languages apart is
that its primary aim is not backward compatibility but domain specificity. This is in line
with our observation that the evolution of a domain-specific language is influenced by
the evolution of the problem domain. They focus on tools for supporting DSL evolution,
rather than researching the causes for language evolution as we do.

Another framework aimed at supporting DSL evolution is described by De Geest [43].
The primary influence on DSL evolution mentioned by the author is use of the DSL. He
claims that by using a DSL, more domain knowledge is gathered, which requires adaptation
of the DSL. Also, new features may be requested to ease the modeling process. This is in
line with our observation that evolution of a language is influenced by model quality.

Van Deursen and Klint discuss experiences from industrial practice regarding the devel-
opment of domain-specific languages [31]. The focus of the article is on the development of
a DSL for describing financial products. They provide guidelines and considerations that
should be taken into account when developing a DSL. Issues as maintainability factors
and risks involved in the use of DSLs are also addressed. The DSL they developed has
been used for a few years and during those years it has been concluded that the language
needed some changes to increase user friendliness. This is in line with our observation
that evolution of a language is influenced by model quality.

Karsai et al. provide 26 design guidelines for domain-specific languages [64]. During
the development of SLCO, we noticed that the guideline that advocates the reuse of
existing language definitions can be in conflict with the guideline that advocates simplicity.
Reusing a part of the graphical syntax of the UML and adopting the corresponding
distinction between guards, triggers, and statements hampered the understandability of
SLCO and complicated the definition of its semantics. Additionally, they advise against

7.5. Conclusions and Future Work 101

conceptual redundancy, whereas we introduced multiple versions of conditional signal
reception to simplify the definition of the semantics and some of the model transformations.

Paige et al. provide 9 principles for the design of modeling languages [88]. The principle
of uniqueness is related to the concept of conceptual redundancy mentioned above and also
advises to avoid duplication of features. This suggests that conditional signal reception
should be revisited during the next redesign of SLCO. Our experience concurs with the
provided principles, although seamlessness and reversibility are not applicable for our
language. Seamlessness is not applicable because of the variety of target platforms, and
reversibility is not applicable because modification of generated code is in conflict with
our approach to MDSE. We aim at generating implementations by refining models using
model transformations that are provably correct according to some correctness criterion.
Modifying the resulting code is not supported, because it could hamper its correctness.

7.5 Conclusions and Future Work
This chapter addresses research question RQ5 and identifies four main influences on the
evolution of our DSML: the problem domain, the target platforms, model quality, and
model transformation quality. The problem domain, model quality, and transformation
quality continuously influence the evolution of a language throughout the design process.
The problem domain should always be taken into consideration when adapting the language
to ensure that the abstractions provided by the language fit the domain. Opportunities to
adapt the language in order to improve the quality of models and transformations become
apparent as experience with the language grows, while designing and also while using the
language. Because quality is a subjective concept, quality attributes can be in conflict. In
our case, we added local variables to state machines to increase understandability, which
had a negative effect on modifiability.

If the purpose of a DSML changes, transformations to platforms that suit this purpose
may be required. However, there may be mismatches between the DSML and the target
platform that preclude straightforward transformation. In our experience, the restrictions
imposed by the target platform caused the DSML to change in two ways. First, to increase
the expressiveness of the language and simplify the definition of its semantics, general
forms of missing constructs are added to the language. These general constructs may not
have a counterpart on all of the target platforms. Second, to simplify the transformations,
additional constructs are added that are less expressive than the aforementioned general
constructs, but that have a direct counterpart on all target platforms. The general and
restricted form of conditional signal reception form an example of such a change. The
general form of conditional signal reception has a counterpart on all platforms except
for Spin, and its semantics can be defined straightforwardly. The restricted form of
conditional signal reception, however, can be transformed to all platforms, but expressing
its semantics is much less straightforward. To facilitate changes like these, SLCO has been
divided into two parts. The core of the language is used to concisely define its semantics,
whereas the extended version leads to simpler models and transformations.

The main threat to the validity of our research is the scale. The language provides
only a limited amount of modeling constructs and we implemented only a limited number
of model transformations. Since we find conclusions similar to our own in literature,
we expect that our conclusions will also hold for larger scale DSML projects. However,
researching the evolution of a more extensive DSML to experience whether different
evolution issues arise is relevant future work.

Chapter 8

Checking Property Preservation of Refining
Transformations

In model-driven software development, models and model transformations are used to
create software. To automatically generate correct software from abstract models by means
of model transformations, these transformations must preserve the desirable properties of
the initial models. In this chapter, we propose an incremental model checking technique
to determine whether model transformations are property preserving. We use labeled
transition systems (LTSs) to represent the individual components of models, and formalize
model transformations as transformations of LTSs. Checking whether a transformation
preserves certain properties involves checking bisimilarity between transformed and new
behavior only, instead of comparing the behavior of entire models before and after trans-
formation. Thus, it never requires exploring unchanged behavior twice. We describe our
approach and provide experimental results to show its usefulness.

8.1 Introduction
Model-driven software development (MDSD) [17] entails creating implementations on a
low level of abstraction from designs represented by models on a high level of abstraction.
Implementation details are added to these abstract models by means of refining model
transformations. By applying one or more of such transformations to a model that
represents the high-level design of a software system, a model on a low level of abstraction
can be generated that can be transformed to an implementation for this system straight-
forwardly. In case a sequence of transformations is applied, also a number of intermediate
models is produced. Usually, an implementation must satisfy a number of requirements
that can be expressed as properties of the model that forms its design. To ensure that
the implementation satisfies its requirements, these properties should also hold for the
models that result from model transformations. In other words, these transformations
should preserve properties. In this chapter, we address research question RQ6, where a
model transformation is considered to be correct if the desirable properties of the input

104 Checking Property Preservation of Refining Transformations

model are preserved in the refined model. We present a technique to automatically verify
the correctness of model transformations.

RQ6: Can we verify the correctness of model transformations automatically?

Here, we deal with a modeling formalism with a more restricted expressiveness in com-
parison to the formalism discussed in Chapter 6. Additionally, the model transformations
considered below are of a more abstract nature than those presented in Chapter 6.

Traditionally, model checking [26] is applied to verify whether models satisfy certain
properties. The models that form the design of a system are often relatively small, which
means that properties of such models can easily be verified using traditional techniques
such as explicit state-space exploration. Unfortunately, however, iteratively refining these
models by adding implementation details quickly results in models that suffer from the
state-space explosion problem. This makes it practically unfeasible to perform verification
on the resulting refined models by traversing their complete state space. To overcome
this problem, we introduce a model checking technique that can be used to determine
whether a transformation preserves properties. Using this technique, the fact that the
properties that hold for the initial model also hold for the refined model can be inferred
from the fact that the transformation is property preserving. In this way, only the initial
model needs to be model checked using the traditional technique.

TnTm+1Tm Mm+1 MnMmM2M1 T1

Figure 8.1: Avoiding rechecking intermediate models by checking transformations

The technique presented in this chapter can assert whether a transformation is property
preserving for all possible models provided as input. However, if a transformation cannot
be shown to preserve properties for all input models, it may still preserve some properties
for particular input. In such cases, verification of refined models using traditional
techniques may still show that the given properties hold for these models. Figure 8.1
illustrates the application of our technique. It sketches the refinement of model M1 ,
which is transformed to model Mn through a sequence of refinement steps. When a
property holds for a model, which is indicated by a black check mark, and this model is
transformed using a transformation that preserves this property, which is also indicated
by a black check mark, then the property is guaranteed to hold for the resulting model.
A white check mark is used to indicate that this is established without rechecking the
property for the new model. If a transformation is not guaranteed to preserve a property,
the property needs to be rechecked. Transformation Tm , for example, does not preserve
the property at hand. Therefore, the property needs to be checked again for model Mm .

In this chapter, labeled transition systems (LTSs) are used to represent individual
processes. By combining these processes with synchronization rules, networks of LTSs [71]
are obtained, which represent models. The synchronization rules define how the processes
in a network synchronize with each other. A model is refined by transforming its processes
using transformation rules and possibly adding additional synchronization rules. Each
transformation rule defines how a part of the behavior of a process should be refined. To
check whether a refinement step is property preserving, only the transformation rules,
a subset of the synchronization rules of the model provided as input, and the newly
introduced synchronization rules need to be examined. However, to be able to reason

8.2. Background 105

about property preservation of transformations, a number of reasonable conditions are
formulated that must hold for the networks and transformations under consideration.
The technique presented here is applicable to any modeling language whose semantics
can be expressed in terms of networks of LTSs.

Mateescu and Wijs [78] identified a fragment of the modal µ-calculus [68] that is
compatible with divergence-sensitive branching bisimilarity (DSBB) [46]. Because of this
compatibility, if a certain property expressed using this fragment of the modal µ-calculus
holds for a given model, it also holds for all bisimilar models. The identified fragment is
sufficiently expressive to capture the vast majority of practical safety, liveness, and fairness
properties. In the same paper, the technique of maximal hiding is introduced. Given
a property, maximal hiding enables automatically abstracting away from all behavior
that is not relevant for the property. We use both of these results for our preservation
check as follows. First, networks of transformation rules are constructed based on the
synchronization rules before and after the application of a transformation. Then, the
LTSs corresponding to these networks of transformation rules are computed. Each of
these networks leads to a pair of LTSs, where one LTS represents the relevant behavior
before transformation and the other the behavior after transformation. Finally, property
preservation is checked by applying maximal hiding to all the LTSs and checking whether
each pair of LTSs is divergence-sensitive branching bisimilar.

The remainder of this chapter is structured as follows. Section 8.2 introduces the
preliminaries. In Section 8.3, we formalize LTS transformation. Next, in Section 8.4,
we discuss our technique for determining whether transformations preserve properties.
Experimental results are given in Section 8.5. Section 8.6 discusses related work, and
Section 8.7 contains conclusions and pointers to future work.

8.2 Background
In this section, we introduce the basic concepts required to introduce our preservation
check. First, finite state LTSs are introduced, which we use to define the behavior of
individual processes as well as the behavior of models formed by interacting processes.
Then, we discuss networks of LTSs, which are used to specify models in terms of interacting
processes. Next, we give a definition of DSBB, an equivalence relation between LTSs.
Finally, a fragment of the modal µ-calculus [68] that is compatible with DSBB is discussed.

8.2.1 Labeled transition system
An LTS G is a tuple 〈SG ,AG , TG , IG〉, where SG is the (finite) set of states, AG is the set
of actions (including the invisible action τ), TG ⊆ SG ×AG ×SG is the transition relation,
and IG ⊆ SG the set of initial states. Usually, LTSs representing potential behavior of
concurrent systems have only one initial state, as defined in Section 6.3.1. Here, we
support multiple initial states to enable representing transformation rule patterns in
terms of LTSs, as described in Section 8.3. In all other cases, LTSs have a single initial
state. Actions in AG are denoted by a, b, c, etc. We use s1

a−→G s2 as a shorthand for
〈s1, a, s2〉 ∈ TG . If a transition s1

a−→G s2 is an element of TG , this means that the LTS G
can move from state s1 to state s2 by performing action a. The reflexive transitive closure
of τ−→G is denoted by =⇒ G .

106 Checking Property Preservation of Refining Transformations

8.2.2 Network of LTSs
We represent models consisting of a finite number of concurrent processes by a number of
LTSs and a set of rules that define how these LTSs interact. For this, we use the concept
of networks of LTSs [71]. Given an integer n > 0, 1..n is the set of integers ranging from 1
to n. A vector v of size n contains n elements indexed by 1..n. For i ∈ 1..n, v[i] denotes
element i in v.

Definition 3. A network of LTSsM of size n is a pair 〈Π,V〉, where

• Π is vector of n (process) LTSs. For each i ∈ 1..n, we write Π[i] = 〈Si,Ai, Ti, Ii〉,
and s1

b−→i s2 is shorthand for s1
b−→Π[i] s2;

• V is a finite set of synchronization rules. A synchronization rule is a tuple 〈t, a〉,
where a is an action label, and t is a vector of size n called a synchronization vector,
whose elements are action labels from

⋃
i∈1..nAi and a special symbol • that does

not occur as a label in the LTSs. If t[i] = • for some synchronization rule, then
process LTS i is not involved in this synchronization.

The potential behavior of a network of LTSs can be described as a single LTS. For a
networkM = 〈Π,V〉, combining the LTSs in Π according to the rules in V produces a
new LTS 〈SM,AM, TM, IM〉, where

• IM = {〈s1, . . . , sn〉 | ∀i ∈ 1..n.si ∈ Ii};

• AM = {a | 〈t, a〉 ∈ V};

• SM = S1 × . . .× Sn;

• TM is the smallest transition relation satisfying:

〈t, a〉 ∈ V∧∀i ∈ 1..n.(t[i] = •∧s′[i] = s[i])∨(t[i] 6= •∧s[i] t[i]−−→i s
′[i]) =⇒ s

a−→M s′.

In the remainder, we refer to such an LTS as a network LTS.

Figure 8.2: A network of LTSs and the corresponding network LTS

On the left of Figure 8.2, a network consisting of three process LTSs and four
synchronization rules is shown. The network LTS representing the behavior of this

8.2. Background 107

network is shown on the right of the figure. The figure demonstrates the expressiveness of
networks of LTSs. It shows, for example, that multi-party synchronization is offered, as
illustrated with the synchronization rule 〈〈f, f, f〉, f〉. This rule specifies that the action f
in the network LTS is the result of the synchronization of the actions f of the three
processes. Rule 〈〈b, d, •〉, e〉 specifies a synchronization between processes Π[1] and Π[2],
rule 〈〈a, •, •〉, a〉 specifies that action a of process Π[1] can be executed independently,
and rule 〈〈•, c, •〉, c〉 specifies the same for action c of process Π[2]. Synchronization rules
can also be used to introduce non-deterministic behavior, by specifying multiple rules
involving the same actions. For example, by adding the rule 〈〈a, c, •〉, g〉 to the network of
Figure 8.2, Π[1] and Π[2] can either synchronize or perform action a and c independently.

To abstract from certain actions, we define the hiding operator τH , which renames all
actions in H to τ . This operator can be extended to networks of LTSs.

Definition 4. Let A be a set of actions and H ⊆ A. The hiding of an action a ∈ A
w.r.t. H is defined as follows.

τH(a) =

{
a if a 6∈ H
τ if a ∈ H

The hiding of a networkM = 〈Π,V〉 w.r.t. H is defined as follows.

τH(〈Π,V〉) = 〈Π, {〈t, τH(a)〉 | 〈t, a〉 ∈ V}〉

8.2.3 Divergence-Sensitive Branching Bisimilarity
We use the equivalence relation DSBB [46] to relate LTSs, which preserves τ -cycles and
branching-time properties such as inevitable reachability.

Definition 5. For LTSs G1 = 〈SG1
,AG1

, TG1
, IG1
〉 and G2 = 〈SG2

,AG2
, TG2

, IG2
〉, a binary

relation B ⊆ SG1
× SG2

is a divergence-sensitive branching bisimulation if for all s ∈ SG1

and t ∈ SG2 such that s B t, the following conditions hold.

1. If s a−→G1
s′ then

• either a = τ with s′ B t;

• or t=⇒ G2 t̂
a−→G2 t

′ with s B t̂ and s′ B t′.

2. Symmetrically, if t a−→G2
t′ then

• either a = τ with s B t′;

• or s=⇒ G1 ŝ
a−→G1 s

′ with ŝ B t and s′ B t′.

3. If for all k ≥ 0 and s = s0, sk
τ−→G1

sk+1 then for all ` ≥ 0 and t = t0, t`
τ−→G2

t`+1

and sk B t`, for all k, `.

4. Symmetrically, if for all k ≥ 0 and t = t0, tk
τ−→G2

tk+1 then for all ` ≥ 0 and
s = s0, s`

τ−→G1 s`+1 and s` B tk, for all k, `.

Two states s and t are divergence-sensitive branching bisimilar, denoted by s ↔∆
b t, if

there is a divergence-sensitive branching bisimulation B with s B t.

108 Checking Property Preservation of Refining Transformations

Two LTSs G1 = 〈SG1 ,AG1 , TG1 , IG1〉 and G2 = 〈SG2 ,AG2 , TG2 , IG2〉 are divergence-
sensitive branching bisimilar, denoted by G1 ↔∆

b G2, iff ∀s1 ∈ IG1
.∃s2 ∈ IG2

.s1 ↔∆
b s2

and vice versa. Furthermore, a state s is diverging, denoted by s ↑, iff an infinite τ -path is
reachable from s. For finite LTSs, this means that a τ -cycle is reachable via τ -transitions.

If the constituting LTSs satisfy the following conditions related to τ -transitions, DSBB
is a congruence for networks of LTSs, which means that replacing a process LTS in a
network with a process LTS that is divergence-sensitive branching bisimilar leads to
a network for which the corresponding network LTS is divergence-sensitive branching
bisimilar with the network LTS that corresponds to the original network.

Definition 6. A networkM = 〈Π,V〉 is called admissible iff the following holds.

1. No synchronization and renaming:

∀〈t, a〉 ∈ V.t[i] = τ =⇒ Ac(t) = {i} ∧ a = τ ;

2. No cut: ∃s1, s2 ∈ Si.s1
τ−→i s2 =⇒ ∃〈t, τ〉 ∈ V.t[i] = τ ,

where the set Ac(t) of indices of processes active for a synchronization vector t is defined
as Ac(t) = {i | i ∈ 1..n ∧ t[i] 6= •}. The first condition states that a τ -action may not
synchronize with other actions and that it may not be renamed, and the second condition
states that there must exist synchronization rules that enable the τ -transitions of each
process. In the remainder of this chapter, only admissible networks are considered.

8.2.4 The modal µ-calculus Ldsbr
µ

Mateescu and Wijs [78] identified a fragment of the modal µ-calculus [68] that is fully
compatible with the maximal hiding technique [78] and DSBB. The fragment is called Ldsbr

µ

and is suitable for expressing safety, liveness, and fairness properties. In Ldsbr
µ , properties

are expressed in terms of action formulas, denoted by α, and state formulas, denoted
by ϕ and ψ. The syntax of these formulas and the semantics of the action formulas are
defined as follows.

α ::= a | false | ¬α1 | α1 ∨ α2

[[a]]A = {a}
[[false]]A = ∅
[[¬α1]]A = A \ [[α1]]A

[[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A

ϕ ::= false | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈(ϕ1?.αh)∗〉ψ | 〈ϕ1?.αh〉@ | X | µX.ϕ1

ψ ::= ϕ | 〈αv〉ϕ | ¬ψ1 | ψ1 ∨ ψ2,

where A is a set of actions, X is a set of propositional variables, τ ∈ [[αh]]A , and τ 6∈ [[αv]]A .
Interpretation [[α]]A of α on the set of actions A denotes the set of actions satisfying α.

An action a satisfies a formula α, denoted by a |=A α, iff a ∈ [[α]]A . Furthermore, a
transition s1

a−→G s2 with a |=AG α is called an α-transition.
We do not provide the formal semantics of the state formulas, as it is not essential for

understanding the current work. Compared to the standard modal µ-calculus, the frag-
ment Ldsbr

µ differs in two respects. First, it introduces the weak possibility modality and
the weak infinite looping operator. Informally, the weak possibility modality 〈(ϕ1?.αh)∗〉ψ

8.3. LTS Transformations 109

characterizes the states having an outgoing sequence of zero or more αh-transitions whose
intermediate states satisfy ϕ1 and whose terminal state satisfies ψ. The weak infinite
looping operator 〈ϕ1?.αh〉@ characterizes the states having an infinite outgoing sequence
of αh-transitions whose intermediate states satisfy ϕ1. In both cases, αh must capture τ .
Second, the occurrence of the strong modality 〈αv〉ϕ is restricted syntactically such that it
can appear only after a weak possibility modality, and the action formula αv must denote
visible actions only. For further details, we refer to the work of Mateescu and Wijs [78].

The fact that a state s of an LTS G satisfies a closed state formula ϕ is denoted
by s |=G ϕ. A formula is closed if all propositional variables are bound. Additionally, we
denote ∀s ∈ IG .s |=G ϕ by |=G ϕ.

When checking a state formula ϕ on an LTS, some actions can be hidden (renamed
to τ) without disturbing the interpretation of ϕ.

Definition 7. Let α be an action formula interpreted over a set of actions A. The hiding
set of α w.r.t. A is defined as follows.

hA(α) =

{
[[α]]A if τ |= α
A \ [[α]]A if τ 6|= α

The hiding set of a state formula ϕ w.r.t. A, denoted by hA(ϕ), is defined as the inter-
section of hA(α) for all action subformulas α of ϕ.

We denote maximal hiding in an LTS G = 〈SG ,AG , TG , IG〉 as τ̃ϕ(G) = τhAG (ϕ)(G).
Maximal hiding preserves Ldsbr

µ properties: |=G ϕ ⇐⇒ |=τ̃ϕ(G) ϕ. Furthermore, for
closed ϕ, Ldsbr

µ is compatible with the ↔∆
b relation. Let G = 〈SG ,AG , TG , IG〉 be an LTS

and let s1, s2 ∈ SG such that s1 ↔∆
b s2. Then, s1 |=G ϕ ⇐⇒ s2 |=G ϕ for any closed

state formula ϕ of Ldsbr
µ . This allows reducing an LTS (after maximal hiding) modulo

DSBB before verifying a closed Ldsbr
µ formula [78]. It also allows reasoning about LTSs

w.r.t. properties. Given a Ldsbr
µ formula ϕ and LTSs G1 and G2 with τ̃ϕ(G1)↔∆

b τ̃ϕ(G2),
then, if |=G1

ϕ, also |=G2
ϕ.

8.3 LTS Transformations
In this section, we formalize refinement steps as transformations of networks of LTSs. A
network is transformed by transforming the individual process LTSs that constitute it
and adding additional synchronization rules.

8.3.1 Transformation Rules
LTSs are transformed by applying transformation rules. These rules are defined as follows.

Definition 8. An LTS transformation rule r = 〈Lr,Rr〉 consists of a left pattern
LTS Lr = 〈SLr ,ALr , TLr , ILr 〉 and a right pattern LTS Rr = 〈SRr ,ARr , TRr , IRr 〉,
with ILr = IRr = (SLr ∩ SRr).

States SLr ∩ SRr , also referred to as the glue-states, are all initial and define how Rr
should replace Lr. All changes to an LTS are applied relative to these glue-states. We
call a rule r = 〈Lr,Rr〉 applicable on an LTS G iff there exists a match mr : SLr → SG
for which the following holds.

110 Checking Property Preservation of Refining Transformations

Definition 9. A transformation rule r = 〈Lr,Rr〉 has a match mr : SLr → SG on an
LTS G = 〈SG ,AG , TG , IG〉 iff mr is injective and

1. ∀s1
a−→Lr s2.mr(s1)

a−→G mr(s2);

2. ∀s1 ∈ SLr \ SRr , s2 ∈ SG :

• mr(s1)
a−→G s2 =⇒ ∃s ∈ SLr .s1

a−→ s ∧mr(s) = s2;

• s2
a−→G mr(s1) =⇒ ∃s ∈ SLr .s

a−→ s1 ∧mr(s) = s2.

The second condition of Definition 9 is related to what are often called dangling edges.
In graph transformation, dangling edges (transitions) are usually removed as part of a
transformation. Here, we decide to make a rule non-applicable in case dangling transitions
are present. Otherwise, the effect of a transformation would be hard to predict based
only on the rule itself, because it may cause states that are not present in the rule to
become unreachable.

Figure 8.3: Transformation rule matching

In the middle of Figure 8.3, a transformation rule is shown. All initial and glue-states
are colored black in this figure. The rule defines that any state matched on state ii of the
left pattern of the rule should be removed and replaced by a new state, which is labeled
iv in the rule. Therefore, the left pattern can be matched on states {0, 1, 2} of the LTS
on the left of the figure, but not on states {1, 2, 3}. The latter match would result in the
removal of state 2 and lead to a dangling transition.

If a rule r is applicable to an LTS G, then G can be transformed as follows.

Definition 10. The transformation of an LTS G = 〈SG ,AG , TG , IG〉 according to a
rule r = 〈Lr,Rr〉 and a given match mr : SLr → SG is defined as follows. Tmrr (G) =
〈Smrr ,Amrr , T mrr , IG〉, where

• Smrr = (SG \ {mr(s) | s ∈ (SLr \ SRr)}) ∪ (SRr \ SLr);

• T mrr = (TG \ {〈mr(s1), a,mr(s2)〉 | s1
a−→Lr s2}) ∪

{〈s1, a, s2〉 | s1, s2 ∈ (SRr \ SLr) ∧ s1
a−→Rr s2} ∪

{〈mr(s1), a, s2〉 | s1 ∈ (SLr ∩ SRr) ∧ s2 ∈ (SRr \ SLr) ∧ s1
a−→Rr s2} ∪

{〈s1, a,mr(s2)〉 | s1 ∈ (SRr \ SLr) ∧ s2 ∈ (SLr ∩ SRr) ∧ s1
a−→Rr s2} ∪

{〈mr(s1), a,mr(s2)〉 | s1, s2 ∈ (SLr ∩ SRr) ∧ s1
a−→Rr s2};

• Amrr = (AG \ ALr) ∪ ARr ∪ {τ}.

8.3. LTS Transformations 111

The new set of states Smrr consists of SG without the states that correspond to the
states in the left pattern that do not exist in the right pattern, the removed states, and
with the states in the right pattern that do not exist in the left pattern, the newly added
states. We assume that the latter states are fresh in Smrr . Furthermore, transitions T mrr

consist of TG without the transitions that correspond to the transitions in the left pattern
and with the transitions that correspond to those in the right pattern.

Figure 8.3 illustrates the application of a transformation rule. The LTS on the right
of the figure is the result of applying the rule in the middle to the LTS on the left.

8.3.2 Rule Systems
With transformation rules, a rule system Σ = 〈R, V̂〉 can be built, with R a set of
transformation rules and V̂ a set of synchronization rules. Contrary to related work on
graph transformation, rule systems are not used to describe the semantics of a system in
our setting. Instead, they define how a network of LTSs is transformed into a more refined
network. Therefore, we are not interested in all possible interleavings of applications of
the rules in a rule system. Let G VR G′ denote the fact that an LTS G′ can be obtained
by applying a rule r ∈ R on one match in LTS G, and let V∗R be the reflexive, transitive
closure of VR. Then, Σ = 〈R, V̂〉 is terminating iff VR is terminating, and Σ is confluent
iff the following holds.

Definition 11. Let Σ = 〈R, V̂〉 be a rule system and G be an LTS. Σ is confluent iff for all
LTSs G1 and G2 with G V∗R G1 and G V∗R G2, there exists an LTS G3 such that G1 V∗R G3

and G2 V∗R G3

In the remainder of this chapter, we assume that rule systems are terminating and
confluent. From graph theory, it is known that confluence is undecidable for general rule
systems, but it is decidable under certain conditions [70, 94]. Here, we ensure that a
rule system Σ = 〈R, V̂〉 is terminating and confluent for an LTS G by requiring that the
following two conditions hold.

1. No new matches: ∀r ∈ R.ARr ∩
⋃
r′∈RALr′ = ∅;

2. Remove single match:
⋂
r∈RALr = ∅,

The first condition ensures that the application of a transformation rule does not introduce
new matches, by requiring that all actions in the right-hand patterns of the rules do not
occur in any of the left-hand patterns. The second condition ensures that exactly one
match is removed, by requiring that none of the left-hand patterns contains an action that
also occurs in another left-hand pattern. Both conditions can be checked straightforwardly
by inspecting the rule system only.

For terminating, confluent Σ, applying all r ∈ R as often as possible results in a
particular LTS, independent of the order of rule application. We refer to that LTS
as T+

R (G). Finally, we define the transformation of a network of LTSs.

Definition 12. Given a network M = 〈Π,V〉 and a rule system Σ = 〈R, V̂〉, the
transformed network is defined as follows, for n = |Π|.

TΣ(M) = 〈〈T+
R (Π[1]), . . . , T+

R (Π[n])〉,V ∪ V̂〉

112 Checking Property Preservation of Refining Transformations

8.4 Checking Property Preservation
In this section, we show how property preservation of transformations can be checked
by generating networks from rule systems and comparing the LTSs of these networks.
Figure 8.4 gives an overview of the approach.

Figure 8.4: Checking property preservation by comparing LTSs

First, networks are generated based on the left and right-hand sides of transformation
rules. Then, the network LTSs corresponding to these networks are generated, while
applying maximal hiding regarding the property at hand. Finally, property preservation is
checked by comparing the network LTSs generated from left-hand sides of transformation
rules with the network LTSs of the corresponding right-hand sides. If all pairs of LTSs are
divergence-sensitive branching bisimilar, the rule system preserves the property at hand.

More formally, a terminating, confluent rule system Σ is ϕ-preserving for a property ϕ ∈
Ldsbr
µ iff |=M ϕ ⇐⇒ |=TΣ(M) ϕ for all networksM. Thus, if Σ is ϕ-preserving and |=M ϕ,

we can conclude that |=TΣ(M) ϕ without rechecking property ϕ for network TΣ(M). Since
Ldsbr
µ is compatible with maximal hiding and DSBB, as discussed in Section 8.2.4, Σ is

ϕ-preserving if τ̃ϕ(M)↔∆
b τ̃ϕ(TΣ(M)). In this section, we discuss under which conditions

a rule system implies the bisimilarity of τ̃ϕ(M) and τ̃ϕ(TΣ(M)). The most important
condition roughly boils down to checking whether, after some appropriate rewriting, the
left and right patterns of the transformation rules are divergence-sensitive branching
bisimilar after maximal hiding. If this is the case, then applying the rules does not result
in a network with structurally different behavior.

Without loss of generality, for each networkM = 〈Π,V〉 and rule system Σ = 〈R, V̂〉,
we assume that each r ∈ R has exactly one match to some Π[i] and that each Π[i] is
matched on by exactly one r. This is expressed by indexing the r ∈ R such that rule ri
is matched on Π[i]. If R contains only one rule, we omit its index. Since Σ is confluent,
the results of this section can be lifted to the more general case where rules may have an
arbitrary number of matches. With this assumption, it can also safely be assumed that all
the Ai are disjoint. If this is not the case, some renaming of actions and a corresponding
modification of the synchronization rules can resolve this.

8.4.1 Extended Transformation Rules
To show that a rule system Σ preserves a property ϕ for every networkM, we show that a
divergence-sensitive branching bisimulation between the states of τ̃ϕ(M) and τ̃ϕ(TΣ(M))
can be constructed based on the divergence-sensitive branching bisimulations between
networks constructed from the transformation rules. To construct these networks from the
transformation rules, we extend the transformation rules with self-loops on the glue-states.
The matches of the glue-states of a given transformation rule may be part of transitions
that are not present in the patterns of this rule. The transformation rules are extended

8.4. Checking Property Preservation 113

to make explicit that such transitions may exist. Each self-loop is labeled with an action
uniquely related to the corresponding state.

Definition 13. Given an LTS transformation rule r = 〈Lr,Rr〉, the corresponding
extended transformation rule is defined as rκ = 〈Lrκ,Rrκ〉, where

• Lrκ = 〈SLr ,ALr ∪ {κs | s ∈ SLr ∩ SRr}, TLr ∪ {〈s, κs, s〉 | s ∈ SLr ∩ SRr}, ILr 〉;

• Rrκ = 〈SRr ,ARr ∪ {κs | s ∈ SLr ∩ SRr}, TRr ∪ {〈s, κs, s〉 | s ∈ SLr ∩ SRr}, IRr 〉.

We assume that the κ-actions are not originally in ALr . Without these loops, a DSBB
check of patterns could consider two deadlock states to be bisimilar, while they are
actually different glue-states that are possibly matched on states with different outgoing
transitions not present in the patterns. For example, without the dashed κ-loops, states ii
and iii in Figure 8.5 would be related if a, b ∈ hA(ϕ). With the κ-loops, however, they are
not related, as indicated by the cross. Thus, the extra transitions ensure that Lrκ ↔∆

b Rrκ
iff there exists a divergence-sensitive branching bisimulation that relates all the glue-states
to themselves. A glue-state s in Lrκ (or Rrκ) with self-loop s κs−→ s must at least be related
to itself in Rrκ (or Lrκ) since it is the only state where a κs-transition is enabled.

i

iii ii

κ0

κ1κ2

i

iii κ2

κ0

ii κ1

a bb a

Figure 8.5: An extended transformation rule

8.4.2 Synchronizing Behavior
If a rule system consists of multiple transformation rules, then multiple LTS transfor-
mations can be applied in a single transformation step. To check ϕ-preservation of such
rule systems, we need to take possible synchronization between different rule patterns
into account.

Figure 8.6: A network and the corresponding network LTS

In Figure 8.6, a network involving synchronization and the corresponding network
LTS are shown. The network LTS is obtained after hiding the actions in h, shown in the
middle of the figure, which is the hiding set for some property ϕ. The rule system shown
on the left of Figure 8.7 can be applied to the network of Figure 8.6. Individually, the

114 Checking Property Preservation of Refining Transformations

rules seem to fundamentally change the behavior of the process LTSs, as shown in the
middle of Figure 8.7. However, since the rule system also adds the new synchronization
rules 〈〈c1, e1〉, c1e1〉 and 〈〈c2, •〉, c2〉, and the actions c1e1 and c2 can be hidden, the
final network LTS, as shown on the right of the figure, is bisimilar to the one before
transformation. To incorporate such possible dependencies between rule patterns, we
developed a ϕ-preservation check involving networks of rule patterns.

Figure 8.7: A rule system and an example of its application

In general, when considering transformation rules that affect synchronizing actions
and thus involve multiple process LTSs, it cannot be determined whether a given rule
system Σ = 〈R, V̂〉 involving such rules is ϕ-preserving by just analyzing the Lri and
Rri of all ri ∈ R. However, this can be done if Σ has a number of properties regarding
synchronizing behavior of a networkM, which we together call synchronization uniformity.

Before we can give a definition of synchronization uniformity, we need a number of
auxiliary definitions. The set of actions involved in synchronization vector t is A(t) = {a |
∃i ∈ 1..n.t[i] = a ∧ a 6= •}, and the set of actions involved in synchronization rules in V
with multiple processes is As(V) = {a | ∃〈t, a′〉 ∈ V.a ∈ A(t) ∧ |Ac(t)| > 1}. The set of
indices of process LTSs that can potentially synchronize with behavior in Lri according
to a synchronization rule in V is dep(Lri ,V) =

⋃
{Ac(t) | 〈t, a〉 ∈ V ∧ t[i] ∈ ALri}. This

definition states that j is in dep(Lri ,V) iff there exists a synchronization rule 〈t, a〉 in
V such that both i 6= • and j 6= •, i.e. both i and j are active for that rule, and the
behavior in Π[i] is matched on by transformation rule ri = 〈Lri ,Rri〉. The set of actions
of process j on which the actions in Lri depend according to the synchronization rules
in V is AL

ri

dep(j,V) = {t[j] | 〈t, a〉 ∈ V ∧ t[i] ∈ ALri ∧ t[j] 6= •}. In other words, the set
of all actions

⋃
t∈F {t[j]} \ {•} constitutes AL

ri

dep(j,V), where F represents the set of all
synchronization rules applicable on Lri . Sets dep(Rri ,V) and AR

ri

dep (j,V) are defined
similarly. Now, synchronization uniformity can be defined.

Definition 14. We say that rule system Σ = 〈R, V̂〉 is synchronization uniform w.r.t.
networkM = 〈Π,V〉 iff the following holds.

1. ∀a ∈ As(V).(∃ri ∈ R.a ∈ ALri) =⇒ ∀s1
a−→i s2.s1, s2 ∈ mri(SLri);

2. ∀ri ∈ R, j ∈ dep(Lri ,V).AL
ri

dep(j,V) ⊆ ALrj ;

3. ∀〈t, a〉 ∈ V̂, i ∈ 1..n.t[i] = • ∨ t[i] ∈ ARri .

8.4. Checking Property Preservation 115

The first condition states that if a transformation rule is applicable to a synchronizing
transition, then it is applicable to all synchronizing transitions with the same label
inM. If this is not guaranteed, it becomes very hard to reason about the model after
transformation because it is difficult to determine a priori exactly which transitions in
different process LTSs will be able to synchronize in the network. Therefore, predicting
the effect of rewriting, for example, a-transitions in some places while keeping other
a-transitions the same is as difficult. Checking this condition requires inspecting the
process LTSs of a network, unless we impose an additional restriction on rule systems.
If we require that all left-hand patterns of rules that modify synchronizing transitions
consist of a single transition, the first condition holds, regardless of the structure of the
process LTSs ofM. The second condition states that all actions that can synchronize
with Lri are also transformed by Σ. If this does not hold, it becomes hard to analyze the
synchronizing behavior as appearing in transformation patterns. In such cases, some of
the behavior that is relevant for this analysis is not present in any of the patterns, which
makes analysis based only on the rule system impossible. Finally, the third condition
states that each new synchronization rule 〈t, a〉 ∈ V̂ involves actions from the Rri of the
corresponding rule ri only. It is crucial to rule out the possibility of transforming merely
by introducing synchronization rules, because this also prevents analysis solely based on
rule systems. For example, if we define a new synchronization rule involving existing
actions a and b, and these actions were previously not allowed to synchronize, then we
clearly change the model without actually transforming anything.

In the remainder of this chapter, we only consider rule systems that are synchronization
uniform regarding a given model. This may seem a big assumption, but in practice,
one tends to transform synchronizing behavior in a uniform way. Usually, synchronizing
actions, say a and b, represent communication. If one wants to transform this behavior,
it is natural to do this consistently in all places where a and b occur, and to transform
the behavior of both communicating parties to keep them compatible with each other.

8.4.3 Networks of transformation rules
From a rule system, networks of transformation rules can be constructed.

Definition 15. For a modelM = 〈Π,V〉, rule system Σ = 〈R, V̂〉, and a rule ri ∈ R, the
vector ξri of transformation rules relevant for the behavior in Lri is defined as follows,
for all j ∈ 1..n.

ξri [j] =

{
∗ 7→ ∗ if j 6∈ dep(Lri ,V)
rj,κ if j ∈ dep(Lri ,V),

where ∗ is a dummy state. For a given vector ξri , ξriL is the vector of left patterns of
the extended transformation rules in ξri , and ξriR is the vector of right patterns. The
networks ΞriL = (ξriL ,V) and ΞriR = (ξriR ,V ∪ V̂) allow comparing synchronizing behavior in
rule patterns, before and after transformation according to Σ, in particular involving ri.

On the left of Figure 8.8, another example of a rule system is shown. In general, this
rule system is not ϕ-preserving. Applying this rule system to the network in Figure 8.6
results in the network shown in the middle of Figure 8.8. The corresponding network LTS
shown on the right of this figure is obtained after hiding the actions in h. The networks
of the left and right patterns of the two transformation rules in this figure are shown in
Figure 8.9b. Actions in h are hidden. The dotted lines in this figure illustrate that a
divergence-sensitive branching bisimulation exists for these two networks.

116 Checking Property Preservation of Refining Transformations

Figure 8.8: A non-preserving transformation and an example of its application

ii * κ1

i * κ0τ

ii * κ1

i *

iii *

κ0

τ

(a)

i iv

iii iv

ii v

κ0 κ3

τ τ
κ3

τ

κ4κ1

i iv

ii v

τ

κ1 κ4

κ3κ0τ

(b)

* v κ4

* iv κ3 * iv κ3

* v κ4

(c)

Figure 8.9: Network LTSs of networks of transformation rules

Even though a divergence-sensitive branching bisimulation exists between the networks
of the left and right patterns of the transformation rules in Figure 8.8, the rule system
is not ϕ-preserving. This clearly shows that it is not sufficient to only take successful
synchronization in account. Instead, we also need to consider situations in which some
parties are able to perform a synchronizing action whereas at least one other party
involved in the synchronization is not. For example, the state labeled (1 3) in Figure 8.6
has a τ -loop that cannot be simulated by the network LTS in Figure 8.8. This τ -loop
is the result of hiding the b-loop of the leftmost process of Figure 8.6. This process
can perform action b independently. After transformation, however, a τ -cycle can only
result from interaction between the transformed process LTSs shown in the middle of
Figure 8.8. In situations where both processes are able to interact successfully, an infinite
number of τ -actions can be performed, as shown in Figure 8.9b. However, if the required
synchronization between processes is impossible, as is the case in the state labeled (1 3)
in Figure 8.8, only one τ -action can be performed.

To be able to consider such scenarios, we define a projection operator on networks of
transformation rules.

Definition 16. For each vector of transformation rules ξri and j ∈ 1..n, the projection
operator /I (I ⊆ 1..n) is defined as follows.

ξri/I[j] =

{
ξri [j] if j ∈ I
∗ 7→ ∗ otherwise

8.4. Checking Property Preservation 117

This operator can similarly be applied on the vectors of patterns ξriL and ξriR , and we say
that ΞriL /I = (ξriL /I,V) and ΞriR/I = (ξriR/I,V ∪ V̂), for a given modelM = 〈Π,V〉 and
rule system Σ = 〈R, V̂〉 such that ri ∈ R.

Figure 8.9a shows the left and right patterns of the rule network that contains only
the topmost transformation rule of Figure 8.8. The left pattern of this rule network is
constructed from the left pattern of this transformation rule, using the synchronization
rules and the hiding set of Figure 8.6. The right pattern of this rule network is constructed
from the right pattern of this transformation rule, using the synchronization rules and the
hiding set of Figure 8.8. Because these patterns are not divergence-sensitive branching
bisimilar, as indicated by the cross, this rule system is not ϕ-preserving. The remaining
patterns are shown in Figure 8.9c.

8.4.4 Constructing a Bisimulation Relation
The following theorem formalizes our ϕ-preservation check.

Theorem 2. Let M = 〈Π,V〉 be a model and ϕ ∈ Ldsbr
µ a temporal property such

that |=M ϕ. Then Σ = 〈R, V̂〉 is ϕ-preserving if the following holds, for all ri ∈ R,
I ⊆ dep(Lri ,V).

τ̃ϕ(ΞriL /I)↔∆
b τ̃ϕ(ΞriR/I) (8.1)

Proving this theorem for a rule system Σ and a property ϕ entails constructing a
relation between τ̃ϕ(M) and τ̃ϕ(TΣ(M)) based on the divergence-sensitive branching
bisimulations in equation 8.1, for some model M, and proving that this relation is a
divergence-sensitive branching bisimulation too. To describe the construction of this
relation, we need a number of auxiliary definitions.

First, a state in the network LTS of networkM is a vector s = 〈s[1], . . . , s[n]〉. An
arbitrary s ∈ SM can have up to n elements that are matched on by some transformation
rule. For an LTS G and a transformation rule r = 〈Lr,Rr〉, matching mr is extended
to sets of states such that mr(SLr) ⊆ SG refers to the set of states to which the states
in SLr are matched, and m̂r(SLr) = {s ∈ mr(SLr) | m−1

r (s) 6∈ SRr} refers to the states
in SG that relate to non-glue-states in Lr. By definition, the latter states are those that
are removed from G by rule r. We denote the set of indices of elements in s matched on
by the corresponding rule with M(s) = {i | s[i] ∈ mri(SLri)}. As indicated above, we
assume that if s[i] is matched on, then it is matched on by rule ri. Furthermore, for a rule
system Σ = 〈R, V̂〉 and a networkM, a simulation relation exists between the states inM
and those in the rule networks ΞriL /I as well as between the states in TΣ(M) and those
in ΞriR/I. This can be formalized as follows. For a state vector s∗ in a rule network ΞriL /I
and a state vector s in an LTS networkM, we say that s simulates s∗, denoted s∗ ` s, iff
∀i ∈ 1..n.s∗[i] 6= ∗ =⇒ s[i] = mri(s

∗[i]). In other words, besides the ∗-states, all process
states in s∗ are matched on the corresponding states in s. Now, first of all, if s∗ ` s, and
s∗

a−→ s∗′, then also s a−→ s′ and s∗′ ` s′. Second of all, in cases that s a−→ s′ and some
synchronization vector t enables transition s a−→ s′, with Ac(t) ⊆ I, Ac(t) ⊆ M(s), and
Ac(t) ⊆ M(s′), then the involved behavior of every active Π[i] (i ∈ Ac(t)) is matched
on by ri. The definition for ΞriR/I and TΣ(M) is similar. These simulation relations are
preserved after maximal hiding.

A relation between two networks representing a model before and after transformation
can be constructed by combining the bisimulations between pairs of rule networks with
the simulation relations between model networks and rule networks. In Figure 8.10,
the dashed lines connect some of the states in the LTSs of the rule networks with the

118 Checking Property Preservation of Refining Transformations

0 3

1 3

a

0 4

d

τ

1 4

d a

0 6

f

τ

1 6

f

7 5

τ a

τ

2 5

τ

0 3

1 3

a

0 4

d

τ

1 4

d a

0 6

f

τ

1 6

f

2 5

τ a

τ i iv

ii v

τ

κ2κ0

κ3κ1 τ

i iv

τ

iii v

κ2κ0

κ3κ1 ii v

i *κ0

ii *κ1

i *κ0

ii *κ1

Figure 8.10: Constructing a divergence-sensitive branching bisimulation

states in the LTSs of the models that simulate them. The dotted lines in the figure
denote the divergence-sensitive branching bisimulations between pairs of rule networks.
By combining these relations, states in the LTS on the left of the figure are related to
states in the LTS on the right. We refer to the relation formed by combining these
relations as D. To increase the readability of the figure, not all states that are related
according to D are connected. For states s of M and p of TΣ(M), we define s D′ p
iff ∀i 6∈ M(s).s[i] = p[i]. In words, D′ relates all state vectors with exactly the same
elements apart from those matched on by a transformation rule. In a sense, D′ is a strong
bisimulation for the behavior not subjected to transformation. As mentioned above, not
all states that are related according to D are connected in the figure. Only those states
of the LTS on the left of the figure are connected to states of the LTS on the right that
are also related according to D′. Thus, the dashed and dotted lines together illustrate
the relation (D ∩D′) by connecting some of the states that are related according to this
relation. Relation D′′ = {(s, s) | M(s) = ∅} relates all states that are not subjected to
transformation. The grey lines in Figure 8.10 connect the states that are related according
to D′′. Given these relations, a relation C = (D ∩D′) ∪D′′ can be constructed, which
relates τ̃ϕ(M) and τ̃ϕ(TΣ(M)). By considering the cases of Definition 5, it can be shown
that this relation is a divergence-sensitive branching bisimulation [40].

8.5 Experimental Results
Table 8.1 shows experimental results for five case studies with various rule systems. The
number of explored states and the runtime for full exploration are given for the initial
model and the transformed model. The applied rule systems have been analyzed using
the proposed technique. For the resulting checks, the maximum number of states of the
two LTSs involved in a check is given in the form “(size left pattern)+(size right pattern)”.
If a rule system is property preserving, this is denoted by 3 in the table. The result of an
unsuccessful preservation check is denoted by 7. Furthermore, the number of required
checks and the total runtime are reported. We report the time needed to perform a

8.6. Related Work 119

ACS 1394-fin wafer broadcast ABP
#states 4,764 188,569 78,919 161,051 161,051 759,375 759,375initial model time (sec.) 1.85 379.08 4.88 3.48 3.48 29.97 29.97

transformed #states 21,936 5,849,124 375,937 4,084,101 28,629,151 656,356,768 656,356,768
model time (sec.) 10.23 18,045.13 49.33 83.53 952.85 48,795.28 45,553.27

max. #st. 2+3 2+6 2+5 27+30 27+31 15+58 15+58
preservation #checks 1 1 1 7 7 63 63

checks result 3 3 3 7 3 7 3
time (sec.) 0.01 0.01 0.01 0.616 0.792 1.90 1.90

Table 8.1: Experimental results

complete state-space exploration because this provides an indication of the amount of
time required to (re)check any given property. The experiments have been performed
on a machine with two dual-core amd opteron (tm) processors 885 2.6 GHz, 126 GB
RAM, running Red Hat 4.3.2-7. For DSBB checking, we used the ltscompare tool of the
mCRL2 toolset [49]. The results clearly show that checking property preservation takes
much less time than exploration of the state space of transformed models.

The first three models are part of the distribution of mCRL2. We generated their LTSs
with the mCRL2 tools and manually transformed them to incorporate refined information
concerning internal steps. The applied transformation is similar to the one shown in
Figure 8.7. In the other two cases, synchronizing behavior was transformed, and the
network LTSs have been constructed from sets of process LTSs using Exp.Open [71]. The
case study named broadcast concerns a system of five sets of three processes communicating
via broadcast. The three processes in each set synchronize simultaneously. The rule
systems we applied break this down into a series of two-party synchronizations. We
defined two rule systems for this, and they could be applied fifty times using a proprietary
prototype tool. The first of these rule systems does not preserve properties, and the
second one does. The case study named ABP concerns a system in which communication
between two processes is refined to use the alternating bit protocol [12] in five different
places. The rule networks for the various checks were produced by our prototype. We
analyzed two versions of the rule system, one containing the subtle error that the receiver
of messages does not expect messages with the wrong bit. A more detailed description of
the case studies is available in Appendix E.

8.6 Related Work
The work presented in this chapter is related to incremental model checking. Early papers
on this subject propose techniques to reuse model checking results of safety properties
for a given LTS to determine whether it still satisfies the same property after some
alterations [104, 107]. This work focuses on particular models, whereas our technique
deals with property preservation of transformations in general. Large speedups are
reported compared to complete rechecking, but the memory requirements are at least
as high, since all states plus additional bookkeeping per state must reside in memory.
Our technique does not require such bookkeeping. Furthermore, we do not deal with
large, flat LTSs directly, but with networks and transformation rules that both consist of
relatively small LTSs. Finally, we do not recheck a property after transformation, but
check bisimilarity instead.

The work described in this chapter is also related to action refinement [48], which
provides a way to describe and study the top-down design of concurrent systems. Action
refinement allows specifying how a more concrete description of a concurrent system can

120 Checking Property Preservation of Refining Transformations

be obtained from an abstract description of this system by replacing certain actions by
more detailed behavior. Action refinement deals with replacing single actions, whereas
our work deals with replacing patterns that represent more involved behavior.

Saha presents an incremental algorithm for updating bisimulation relations based
on changes of a graph that is related to our work, although it is used in a different
context [100]. The goal of this work is efficiently maintaining a bisimulation, whereas the
goal of our work essentially is to assess whether a bisimulation exists.

Combemale et al. [27], Hülsbusch et al. [57], and Karsai and Narayanan [65, 83] check
semantics preservation of model transformations using either strong or weak bisimilarity.
They consider exogenous, horizontal transformations [79], which transform models from
one language to another without changing their level of abstraction. In contrast, our work
deals with endogenous, vertical transformations, which have the same input and output
language, and change the level of abstraction of models. The approach of Hülsbusch et
al. and our approach are transformation-dependent and input-independent [2], whereas
the work of Combemale et al. and the work of Karsai and Narayanan is transformation-
dependent and input-dependent.

Giese et al. relate input and output models when specifying a transformation and
use a theorem prover to show semantic equivalence between the input and output of the
transformation [44]. A downside of this approach is that it is not completely automated
and thus requires manual labor, whereas our approach is automated. Schätz verifies the
preservation of properties of a structural nature for model transformations [101], also using
a theorem prover. Both techniques are transformation-dependent and model-independent,
and deal with horizontal transformations. Giese et al. consider exogenous transformations,
and Schätz endogenous ones.

8.7 Conclusions and Future Work
In this chapter, we addressed research question RQ6 for restricted forms of models
and model transformations. We presented a technique to check whether refining model
transformations preserve properties. It is aimed at verifying the correctness of complex
models that are the result of iterative refinement through model transformation. Models
are formally represented by networks of LTSs and model transformations as rule systems.
We can check whether specific safety, liveness, and fairness properties are preserved by rule
systems that are terminating, confluent, and synchronization uniform. If a rule system
preserves a property that holds for a given input model, construction and exploration of
the LTS of a model obtained by transformation can be avoided. If, however, the proposed
technique cannot establish that a transformation preserves a property for all models, it
is still possible that this property is preserved for certain input models. In such cases,
traditional techniques for model checking can be employed to verify the property for
the transformed model. Checking multiple properties simply involves performing the
required checks for multiple hiding sets. Experiments have shown that checking whether
a transformation preserves a given property outperforms rechecking the property for
transformed models.

There are two main directions for future research, which are aimed at extending
the presented approach to more expressive formalism for the description of models and
model transformations. First, the concept of networks of LTSs could be extended to
support additional features such as asynchronous communication and variables for storing
information. Second, a more expressive formalism to describe model transformations

8.7. Conclusions and Future Work 121

could be introduced. Currently, for example, it is not possible to express the addition
or removal of processes, which is also not yet supported by the technique for checking
property preservation. By extending the expressiveness of the formalisms used to describe
models and model transformations, and extending the technique for checking property
preservation correspondingly, an automated alternative for manual correctness proofs
such as those described in Chapter 6 could be obtained.

Chapter 9

Conclusions

This chapter concludes this thesis by discussing the main contributions and directions for
future research. For each of the research questions stated in Chapter 1, we provide the
main results and conclusions. Additional details are available in the chapters that cover
the research questions.

9.1 Contributions
The main research question covered in this thesis is formulated as follows.

RQ: How can we improve the reliability of software that is automatically
generated from high-level descriptions?

This question is divided into six more specific research questions, and each of these
questions is addressed in one of the chapters of this thesis.

The first of these questions deals with the efficient creation of models that form
high-level descriptions of software systems and is formulated as follows.

RQ1: How can large models for existing modeling languages be created effi-
ciently using existing tools?

To address this question, we investigated two approaches for the integration of textual
and graphical modeling languages, as described in Chapter 2. As a case study, we
implemented a textual surface language as an alternative for the activity diagrams of the
UML. Tools that integrate this textual language with the UML have been implemented
using grammarware and modelware. The main advantage of the approach that uses
grammarware is the flexibility it offers while defining the grammar of the surface language.
However, because models containing fragments of surface language are transformed to
plain models by rewriting the XMI representations of these models, the main disadvantage
of this approach is its low level of abstraction. In contrast, the approach that uses
modelware poses more restrictions on the grammar of the surface language, but deals with

124 Conclusions

concepts related to models directly, instead of their XMI representations. A case study
showed that this surface language provides a convenient way of creating large, detailed
UML models. By replacing activity diagrams with fragments of surface language, the
number of diagrams used to describe all aspects of a given system could be significantly
reduced, without hampering the understandability of the resulting model.

Part of the work described in this thesis is aimed at generating software from models
on a high level of abstraction by refining these models. Each refinement step adds imple-
mentation details to a given model, and after applying a sequence of such transformations,
a model is obtained that is sufficiently detailed to be transformed to an implementation.
This refinement leads to a number of intermediate models. Research question RQ2 ad-
dresses the relation between the amount of detail added by model transformations and
the verifiability of intermediate models using traditional model checking techniques.

RQ2: How does the size and complexity of model transformations affect the
verifiability of intermediate models produced by sequences of refining model
transformations?

The research described in Chapter 4 compares iterative refinement of models using
coarse-grained and fine-grained sequences of model transformations. In comparison to
coarse-grained sequences of transformations, fine-grained sequences of transformations
add less implementation details in each refinement step. Because the models that form
the end result of such sequences must contain the same amount of detail to be able to
transform them to an implementation, fine-grained sequences of transformations lead to
a larger number of intermediate models. Therefore, the difference in abstraction level
between each pair of intermediate models produced by a sequence of transformations is
smaller if this sequence is fine-grained. Experiments showed that adding implementation
details to models with sequences of transformations that are too coarse-grained often
leads to models that suffer from state-space explosion, even when these sequences are
applied to small source models. When iteratively refining models with such coarse-grained
sequences of transformations, the intermediate models obtained after a few refinement
steps are too complex to be verified using explicit state-space exploration. As a result, the
models for which verification using traditional model checking techniques can be applied
describe systems on a much higher level of abstraction than that of the implementation
of these systems. With fine-grained sequences of transformations, it is possible to apply
model checking to models that are closer to the implementation. Additional advantages
of fine-grained sequences of transformations are that the transformations used to form
such sequences are more reusable than those used to form coarse-grained sequences and
that the size of these transformations makes it easier to locate defects. Their improved
composability makes it possible to combine these transformations into multiple sequences
leading to implementations with different characteristics based on the same input model.

To verify the correctness of the refining model transformations for SLCO, a formal
semantics of the language is required. Before defining the formal semantics, we imple-
mented an executable prototype to experiment with various design decisions, which is
described in Chapter 5. The following research question is related to this prototype.

RQ3: What are the advantages and disadvantages of implementing an ex-
ecutable prototype of the semantics of a domain-specific modeling language
using ASF+SDF?

We implemented a number of tools that together produce the state space of a given SLCO
model. Connecting these tools to existing tools for verification and visualization enabled

9.1. Contributions 125

experimenting with different variants of the semantics and facilitated the development of
model transformations. The biggest advantage of using the ASF+SDF Meta-Environment
for the implementation of these tools is its ability to automatically generate command-line
tools that offer fast execution of rewrite rules and efficient use of memory. Because
state spaces of models describing the behavior of concurrent systems are often very
large, generating them quickly using as little memory as possible is important. Although
the ASF+SDF Meta-Environment is still available and can be used without problems
on computers with a 32-bit architecture, its development has stopped. The fact that
64-bit architectures are not supported precludes using over 4 GB of memory, which is a
disadvantage for memory-intensive applications such as state-space generation.

To produce reliable software from models by means of model transformations, these
transformations must preserve certain desirable properties of the models. Research
question RQ4 addresses this issue.

RQ4: Can we show that the model transformations that we implemented to
refine SLCO models preserve certain desirable properties of such models?

In Chapter 6, we describe a formal framework for reasoning about the correctness of
the endogenous model transformations related to SLCO. This framework relies on the
formal semantics of SLCO, based on the previously mentioned prototype, and branching
bisimilarity. According to this framework, a transformation is considered to be correct if
the observable behavior of any input model is equivalent to the observable behavior of
the corresponding output model, after appropriate renaming and hiding of actions. By
developing sequences of transformations that are as fine-grained as possible, the number
of straightforward correctness proofs was increased, and the number of proof obligations
for the correctness proofs of larger transformations was reduced.

Research question RQ5 is concerned with the evolution of SLCO. Over time, various
target platforms were added and the way of defining the semantics of the language changed.
These changes in turn triggered other changes to the languages and its transformations.
To learn from our experiences and to be able to apply the lessons learned while developing
other DSMLs, Chapter 7 addresses the following research question.

RQ5: What are the main influences on the design of a DSML and the
corresponding model transformations?

We identified four main influences on the evolution of our DSML: the problem domain,
the target platforms, model quality, and model transformation quality. The language and
its transformations continuously changed as a result of adding new target platforms and
improving the quality of models and model transformations. In some cases, changes that
improve certain aspects of the language have a negative influence on other aspects. To
reduce the number of such conflicts, SLCO has been divided into two parts. The core of
the language facilitates the concise definition of its semantics, and the extended version,
whose semantics can be expressed in terms of constructs of the core language, facilitates
the creation of simple models and model transformations.

Verifying the correctness of models transformations as described in Chapter 6 requires
a significant amount of manual labor. Therefore, we formulated the following research
question.

RQ6: Can we verify the correctness of model transformations automatically?

126 Conclusions

In Chapter 8, a model transformation is considered to be correct if it preserves certain
desirable properties for all models provided as input. To automatically verify whether a
transformation is property preserving, we propose a technique that performs a number of
divergence-sensitive branching bisimilarity checks on labeled transition systems created
from the input and output patterns of transformation rules. Models are formalized as
networks of labeled transition systems, and model transformations are formalized as rule
systems containing the aforementioned transformation rules. If a rule system is property
preserving, then each model generated by applying this rule system to a given input
model satisfies the same properties as the input model. If a rule system does not preserve
a certain property for all models in general, however, it may still produce a valid output
model when applied to particular input models. In such cases, traditional techniques for
model checking can be employed to check the resulting models.

The techniques and approaches discussed in this thesis enable the generation of reliable
and correct software from concise, formal models specified on a high level of abstraction.
We developed a DSML with an intuitive graphical syntax for the creation of such models,
and a number of model transformations for the automated generation of executable code
from these models. As stated in Chapter 1, early validation of model transformations is
equally important as early validation of models when producing software using model
transformations. For the validation of models, we presented transformations to existing
formalisms for simulation and verification, and a custom tool for the generation of state
spaces. For the validation of model transformations, we presented two approaches to
determine whether these transformations are correct in the sense that they preserve
certain properties. By combining these techniques and approaches, we showed that an
implementation for a given system can be generated automatically from a design of this
system in the form of a model that satisfies certain desirable properties by applying model
transformations that preserve these properties.

9.2 Future Work
The integration of surface language fragments into the UML as described in Chapter 2
showed to be a useful way of reducing the number of graphical diagrams describing trivial
behavior without hampering the understandability of the involved models. However, both
of the approaches we describe that enable this integration have their disadvantages. An
interesting direction for future research would be to investigate whether the flexibility
offered by the language definition formalisms of the grammarware tools can be achieved
in the context of modelware.

We identified a number of differences between SLCO and its target languages, as
discussed in Chapters 3 and 4. For each of these differences, we developed one or more
endogenous model transformations, which are used to bridge the gaps between SLCO
and its target languages. However, there are additional differences between the languages,
which could be addressed by additional refining model transformations. For instance,
the number of state machines describing the behavior of the instances of a single class is
unlimited in SLCO, whereas NQC offers a limited amount of tasks per controller. Because
each state machine in SLCO is transformed into a task in NQC, this discrepancy could lead
to problems. Fortunately, these problems could be prevented with a transformation that
merges multiple state machines into a single state machine. This transformation might
also be reused by the transformation that merges objects, to replace the protocol that is
currently employed to simulate synchronous communication between state machines by

9.2. Future Work 127

means of shared variables. This change would reduce the number of possible interleavings
of actions performed by the objects, which in turn improves the verifiability of intermediate
models as discussed in Chapter 4.

In Chapter 6, we mention that a large number of the correctness proofs for the
transformations related to SLCO are relatively straightforward. Therefore, the application
of automated theorem proving to the work presented in this chapter is considered a
promising direction for future research. Additionally, successful termination and time are
not yet taken into account. Finding an appropriate equivalence relation that matches
the notion of time discussed in Chapter 5 and extending the formal semantics are two of
the challenges regarding the latter extension. Finally, we chose to extend SLCO with a
number of features related to asynchronous communication over unreliable channels, to
be able to refine models using endogenous transformations only, and to be able to limit
ourselves to dealing with the formal semantics of one language only for the correctness
proofs of these transformations. Alternatively, an approach could be taken that involves
a larger number of languages, where each of these languages is a variant of SLCO that
differs slightly from the others. In that way, a variant of SLCO in which objects can only
communicate synchronously would be transformed into an implementation in NQC via
a number of intermediate languages. In each of these languages, a particular language
feature is replaced by another feature, such that each consecutive language variant has
more features in common with the implementation language than the previous variant.
For this approach, a more modular way of defining semantics is needed [59,82], to avoid
repetition in the definitions of the semantics of these language variants. This is also
considered a valuable direction for future work.

The technique to check property preservation of model transformations discussed
in Chapter 8 can be extended in a number of ways. For example, the concept of
networks of LTSs could be extended to support features offered by modeling languages
such as SLCO. Currently, networks of LTSs offer no direct support for time, data, and
asynchronous communication. The model transformations described in Chapter 3 have
been implemented in Xtend and ATL. The relation between languages used in practice
for the implementation of model transformations, such as these two, and the formal
notion of rule systems needs further study. Some of the changes applied to models by
the transformations of Chapter 3 cannot be expressed in terms of a rule system. For
instance, adding and removing processes is not supported. Furthermore, the proposed
technique for checking property preservation is also not able to deal with this type of
modification. Therefore, enabling support for adding and removing processes is another
valuable direction for future research.

Bibliography

[1] J.-R. Abrial, M.K.O. Lee, D. Neilson, P.N. Scharbach, and I.H. Sørensen. The
B-Method. In Proceedings of the 4th International Symposium of VDM Europe,
1991. doi:10.1007/BFb0020001.

[2] M. Amrani, L. Lucio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. Le
Traon, and J.R. Cordy. A Tridimensional Approach for Studying the Formal
Verification of Model Transformations. In Proceedings of the 5th International
Conference on Software Testing, Verification and Validation, 2012. doi:10.1109/
ICST.2012.197.

[3] M.F. van Amstel. Assessing and Improving the Quality of Model Transformations.
PhD thesis, Eindhoven University of Technology, 2011.

[4] M.F. van Amstel, S. Andova, M.G.J. van den Brand, and L.J.P. Engelen. In Vitro
Design of a Domain-Specific Modeling Language. Submitted to Science of Computer
Programming, 2012.

[5] M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen. An Exercise in
Iterative Domain-Specific Language Design. In Proceedings of the Joint ERCIM
Workshop on Software Evolution and International Workshop on Principles of
Software Evolution, 2010. doi:10.1145/1862372.1862386.

[6] M.F. van Amstel, M.G.J. van den Brand, and L.J.P. Engelen. Using a DSL and Fine-
Grained Model Transformations to Explore the Boundaries of Model Verification.
In Proceedings of the 3rd Workshop on Model-Based Verification and Validation,
2011. doi:10.1109/SSIRI-C.2011.26.

[7] M.F. van Amstel, M.G.J. van den Brand, Z. Protić, and T. Verhoeff. Model-Driven
Software Engineering. In Automation in Warehouse Development. Springer, 2011.
doi:10.1007/978-0-85729-968-0_4.

[8] M.F. van Amstel, M.G.J. van den Brand, Z. Protić, and T. Verhoeff. Transforming
Process Algebra Models into UML State Machines: Bridging a Semantic Gap? In
Proceedings of the 1st International Conference on Model Transformation, 2008.
doi:10.1007/978-3-540-69927-9_5.

http://dx.doi.org/10.1007/BFb0020001
http://dx.doi.org/10.1109/ICST.2012.197
http://dx.doi.org/10.1109/ICST.2012.197
http://dx.doi.org/10.1145/1862372.1862386
http://dx.doi.org/10.1109/SSIRI-C.2011.26
http://dx.doi.org/10.1007/978-0-85729-968-0_4
http://dx.doi.org/10.1007/978-3-540-69927-9_5

130 Bibliography

[9] S. Andova, M.G.J. van den Brand, and L.J.P. Engelen. Prototyping the Semantics of
a DSL using ASF+SDF: Link to Formal Verification of DSL Models. In Proceedings
of the 2nd International Workshop on Algebraic Methods in Model-based Software
Engineering, 2011. doi:10.4204/EPTCS.56.5.

[10] S. Andova, M.G.J. van den Brand, and L.J.P. Engelen. Reusable and Correct En-
dogenous Model Transformations. In Proceedings of the 5th International Conference
on Model Transformation, 2012. doi:10.1007/978-3-642-30476-7_5.

[11] J. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.

[12] K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A Note on Reliable Full-
Duplex Transmission over Half-Duplex Links. Communications of the ACM, 1969.
doi:10.1145/362946.362970.

[13] D. Baum. NQC Programmer’s Guide, 2003. http://bricxcc.sourceforge.
net/nqc/doc/.

[14] D.A. van Beek, P. Collins, D.E. Nadales Agut, J.E. Rooda, and R.R.H. Schiffelers.
New Concepts in the Abstract Format of the Compositional Interchange Format. In
Proceedings of the 3rd IFAC Conference on Analysis and Design of Hybrid Systems,
2009. doi:10.3182/20090916-3-ES-3003.00044.

[15] D.A. van Beek, A.T. Hofkamp, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffel-
ers. Syntax and Formal Semantics of Chi 2.0. Technical report, Department of
Mechanical Engineering, Eindhoven University of Technology, 2008.

[16] J.A. Bergstra. Algebraic Specification, chapter 1. ACM, 1989.

[17] S. Beydeda, M. Book, and V. Gruhn. Model-Driven Software Development. Springer,
2005.

[18] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. Macleod, and M.J. Merrit.
Characteristics of Software Quality. North-Holland, 1978.

[19] M.G.J. van den Brand, L.J.P. Engelen, M. Hamilton, A. Levytskyy, and J.P.M.
Voeten. Embedded Systems Modeling, Analysis and Synthesis. In Ideals: Evolvability
of Software-Intensive High-Tech Systems. Embedded Systems Institute, 2007.

[20] M.G.J. van den Brand, J. Heering, H. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The
ASF+SDF Meta-Environment: a Component-Based Language Development Envi-
ronment. In Proceedings of the 10th International Conference on Compiler Con-
struction, 2001. doi:10.1007/3-540-45306-7_26.

[21] M.G.J. van den Brand and P. Klint. ATerms for Manipulation and Exchange of
Structured Data: It’s All About Sharing. Information and Software Technology,
2007. doi:10.1016/j.infsof.2006.08.009.

[22] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Strat-
ego/XT 0.17. A Language and Toolset for Program Transformation. Science of
Computer Programming, 2008. doi:http://dx.doi.org/10.1016/j.scico.
2007.11.003.

http://dx.doi.org/10.4204/EPTCS.56.5
http://dx.doi.org/10.1007/978-3-642-30476-7_5
http://dx.doi.org/10.1145/362946.362970
http://bricxcc.sourceforge.net/nqc/doc/
http://bricxcc.sourceforge.net/nqc/doc/
http://dx.doi.org/10.3182/20090916-3-ES-3003.00044
http://dx.doi.org/10.1007/3-540-45306-7_26
http://dx.doi.org/10.1016/j.infsof.2006.08.009
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.11.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.11.003

Bibliography 131

[23] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.
Reese. Model Checking Large Software Specifications. IEEE Transactions on
Software Engineering, 1998. doi:10.1109/32.708566.

[24] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-
Evolution in Model-Driven Engineering. In Proceedings of the 12th International
IEEE Enterprise Distributed Object Computing Conference, 2008. doi:10.1109/
EDOC.2008.44.

[25] E.M. Clarke, Jr., O. Grumberg, and D.E. Long. Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems, 1994. doi:10.1145/
186025.186051.

[26] E.M. Clarke, Jr., O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.

[27] B. Combemale, X. Crégut, P.-L. Garoche, and X. Thirioux. Essay On Semantics
Definition in MDE - An Instrumented Approach for Model Verification. Journal of
Software, 2009. doi:10.4304/jsw.4.9.943-958.

[28] J.R. Cordy. The TXL Source Transformation Language. Science of Computer
Programming, 2006. doi:10.1016/j.scico.2006.04.002.

[29] R. De Nicola and F.W. Vaandrager. Three Logics for Branching Bisimulation.
Journal of the ACM, 1995. doi:10.1145/201019.201032.

[30] A. van Deursen. An overview of ASF+SDF. In Language Prototyping: An Algebraic
Specification Approach. World Scientific Publishing Co., 1996.

[31] A. van Deursen and P. Klint. Little languages: Little maintenance? Journal of
Software Maintenance, 1998. doi:10.1002/(SICI)1096-908X(199803/04)
10:2<75::AID-SMR168>3.0.CO;2-5.

[32] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated
Bibliography. SIGPLAN Notices, 2000. doi:10.1145/352029.352035.

[33] D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. A Practical Ex-
periment to Give Dynamic Semantics to a DSL for Telephony Services Development.
Technical report, Laboratoire d’Informatique de Nantes-Atlantique, 2006.

[34] T. Dinh-Trong, S. Ghosh, and R. France. JAL: Java like Action Language. Technical
report, Department of Computer Science, Colorado State University, 2006.

[35] S. Efftinge and M. Völter. oAW xText: a Framework for Textual DSLs. In
Proceedings of the Modeling Symposium at Eclipse Summit, 2006.

[36] H. Ehrig and C. Ermel. Semantical Correctness and Completeness of Model
Transformations Using Graph and Rule Transformation. In Proceedings of the
4th International Conference on Graph Transformation, 2008. doi:10.1007/
978-3-540-87405-8_14.

[37] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker.
In Proceedings of the 4th International Workshop on Rewriting Logic and Its Appli-
cations, 2002. doi:10.1016/S1571-0661(05)82534-4.

http://dx.doi.org/10.1109/32.708566
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.4304/jsw.4.9.943-958
http://dx.doi.org/10.1016/j.scico.2006.04.002
http://dx.doi.org/10.1145/201019.201032
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
http://dx.doi.org/10.1002/(SICI)1096-908X(199803/04)10:2<75::AID-SMR168>3.0.CO;2-5
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1007/978-3-540-87405-8_14
http://dx.doi.org/10.1007/978-3-540-87405-8_14
http://dx.doi.org/10.1016/S1571-0661(05)82534-4

132 Bibliography

[38] J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz – Open
Source Graph Drawing Tools. In International Symposium on Graph Drawing, 2002.
doi:10.1007/3-540-45848-4_57.

[39] L.J.P. Engelen and M.G.J. van den Brand. Integrating Textual and Graphical
Modelling Languages. In Proceedings of the 9th Workshop on Language Descriptions,
Tools, and Applications, 2010. doi:10.1016/j.entcs.2010.08.035.

[40] L.J.P. Engelen and A.J. Wijs. Checking Property Preservation of Refining Trans-
formations for Model-Driven Development. Technical report, Department of Mathe-
matics and Computer Science, Eindhoven University of Technology, 2012.

[41] S. Freeman and N. Pryce. Evolving an Embedded Domain-Specific Language in
Java. In Companion to the 21st ACM SIGPLAN symposium on Object-Oriented Pro-
gramming Systems, Languages, and Applications, 2006. doi:10.1145/1176617.
1176735.

[42] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A Toolbox for
the Construction and Analysis of Distributed Processes. In Proceedings of the
17th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2011. doi:10.1007/978-3-642-19835-9_33.

[43] G. de Geest. Building a Framework to Support Domain-Specific Language Evolution.
Master’s thesis, Delft University of Technology, 2008.

[44] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner. Towards Verified
Model Transformations. In Proceedings of the 3rd International Workshop on Model
Development, Validation and Verification, 2006.

[45] R.J. van Glabbeek. The Linear Time–Branching Time Spectrum II: The Semantics
of Sequential Systems with Silent Moves. In Proceedings of the 4th International
Conference on Concurrency Theory, 1993. doi:10.1007/3-540-57208-2_6.

[46] R.J. van Glabbeek, B. Luttik, and N. Trčka. Branching Bisimilarity with Explicit
Divergence. Fundamenta Informaticae, 2009.

[47] R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisimu-
lation Semantics. Journal of the ACM, 1996. doi:10.1145/233551.233556.

[48] R. Gorrieri and A. Rensink. Action Refinement. In Handbook of Process Algebra.
Elsevier, 2001.

[49] J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink,
Y. Usenko, M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der
Wulp. The mCRL2 Toolset. In Proceedings of the 1st International Workshop on
Advanced Software Development Tools and Techniques, 2008.

[50] A. Haase, M. Völter, S. Efftinge, and B. Kolb. Introduction to openArchitectureWare
4.1.2. In Model-Driven Development Tool Implementers Forum (Co-Located with
TOOLS 2007), 2007.

[51] S. Haustein and J. Pleumann. OCL as Expression Language in an Action Semantics
Surface Language. In OCL and Model Driven Engineering, UML 2004 Conference
Workshop, 2004.

http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1016/j.entcs.2010.08.035
http://dx.doi.org/10.1145/1176617.1176735
http://dx.doi.org/10.1145/1176617.1176735
http://dx.doi.org/10.1007/978-3-642-19835-9_33
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1145/233551.233556

Bibliography 133

[52] M. Hennessy. The Semantics of Programming Languages. Wiley, 1990.

[53] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[54] G.J. Holzmann. State Compression in SPIN: Recursive Indexing and Compression
Training Runs. In Proceedings of the 3rd International Spin Workshop, 1997.

[55] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

[56] J. Hooman and M.B. van der Zwaag. A Semantics of Communicating Reactive
Objects with Timing. International Journal on Software Tools for Technology
Transfer, 2006. doi:10.1007/s10009-005-0207-8.

[57] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, and H. Wehrheim.
Showing Full Semantics Preservation in Model Transformation - A Comparison
of Techniques. In Proceedings of the 8th International Conference on Integrated
Formal Methods, 2010. doi:10.1007/978-3-642-16265-7_14.

[58] S.C. Johnson. YACC: Yet Another Compiler-Compiler. Technical report, AT & T
Bell Laboratories, 1975.

[59] A. Johnstone, P.D. Mosses, and E. Scott. An Agile Approach to Language Modelling
and Development. Innovations in Systems and Software Engineering, 2010. doi:
10.1007/s11334-009-0111-6.

[60] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like
Transformation Language. In Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications, 2006.
doi:10.1145/1176617.1176691.

[61] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the Specification of Textual
Concrete Syntaxes in Model Engineering. In Proceedings of the 5th International
Conference on Generative Programming and Component Engineering, 2006. doi:
10.1145/1173706.1173744.

[62] F. Jouault and I. Kurtev. Transforming Models with ATL. In MoDELS 2005
Satellite Events, 2005. doi:10.1007/11663430_14.

[63] M. Karaila. Evolution of a Domain Specific Language and its Engineering Environ-
ment – Lehman’s Laws Revisited. In Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling, 2009.

[64] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schneider, and S. Völkel. Design
Guidelines for Domain Specific Languages. In Proceedings of the 9th OOPSLA
Workshop on Domain-Specific Modeling, 2009.

[65] G. Karsai and A. Narayanan. On the Correctness of Model Transformations in the
Development of Embedded Systems. In Proceedings of the 2006 Monterey Workshop,
2007. doi:10.1007/978-3-540-77419-8_1.

[66] V. Kodaganallur. Incorporating Language Processing into Java Applications: a
JavaCC Tutorial. IEEE Software, 2004. doi:10.1109/MS.2004.16.

http://dx.doi.org/10.1007/s10009-005-0207-8
http://dx.doi.org/10.1007/978-3-642-16265-7_14
http://dx.doi.org/10.1007/s11334-009-0111-6
http://dx.doi.org/10.1007/s11334-009-0111-6
http://dx.doi.org/10.1145/1176617.1176691
http://dx.doi.org/10.1145/1173706.1173744
http://dx.doi.org/10.1145/1173706.1173744
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/978-3-540-77419-8_1
http://dx.doi.org/10.1109/MS.2004.16

134 Bibliography

[67] D.S. Kolovos, R.F. Paige, and F. Polack. The Epsilon Transformation Language.
In Proceedings of the 1st International Conference on Theory and Practice of Model
Transformations, 2008. doi:10.1007/978-3-540-69927-9_4.

[68] D. Kozen. Results on the Propositional µ-calculus. Theoretical Computer Science,
1983. doi:10.1016/0304-3975(82)90125-6.

[69] I. Kurtev, K. van den Berg, and M. Akşit. UML to XML-Schema Transformation:
a Case Study in Managing Alternative Model Transformations in MDA. In Forum
on Specification and Design Languages, 2003.

[70] L. Lambers, H. Ehrig, and F. Orejas. Efficient Detection of Conflicts in Graph-Based
Model Transformation. In Proceedings of the 1st International Workshop on Graph
and Model Transformation, 2006. doi:10.1016/j.entcs.2006.01.017.

[71] F. Lang. Exp.Open 2.0: A Flexible Tool Integrating Partial Order, Compositional,
and On-the-Fly Verification Methods. In Proceedings of the 5th International
Conference on Integrated Formal Methods, 2005. doi:10.1007/11589976_6.

[72] C.F.J. Lange. Improving the Quality of UML Models in Practice. In Proceedings of
the 28th International Conference on Software Engineering, 2006. doi:10.1145/
1134285.1134472.

[73] C.F.J. Lange and M.R.V. Chaudron. An Empirical Assessment of Completeness
in UML Designs. In Proceedings of the 8th International Conference on Empirical
Assessment in Software Engineering, 2004. doi:10.1049/ic:20040404.

[74] C.F.J. Lange, M.R.V. Chaudron, J. Muskens, L.J. Somers, and H.M. Dortmans.
An Empirical Investigation in Quantifying Inconsistency and Incompleteness of
UML Designs. In Proceedings of the 2nd Workshop on Consistency Problems in
UML-based Software Development, 2003.

[75] M.M. Lehman, J.F. Ramil, P. Wernick, D.E. Perry, and W.M. Turski. Metrics and
Laws of Software Evolution – The Nineties view. In Proceedings of the 4th IEEE
International Software Metrics Symposium, 1997. doi:10.1109/METRIC.1997.
637156.

[76] H. Liang and J. Dingel. A Practical Evaluation of Using TXL for Model Transfor-
mation. In Proceedings of the 1st International Conference on Software Language
Engineering, 2008. doi:10.1007/978-3-642-00434-6_16.

[77] J. Luoma, S. Kelly, and J.-P. Tolvanen. Defining Domain-Specific Modeling Lan-
guages: Collected Experiences. In Proceedings of the 4th OOPSLA Workshop on
Domain-Specific Modeling, 2004.

[78] R. Mateescu and A.J. Wijs. Property-Dependent Reductions for the Modal Mu-
Calculus. In Proceedings of the 18th International Workshop on Model Checking
Software, 2011. doi:10.1007/978-3-642-22306-8_2.

[79] T. Mens and P. van Gorp. A Taxonomy of Model Transformation. Electronic Notes
in Theoretical Computer Science, 2006. doi:10.1016/j.entcs.2005.10.021.

[80] M. Mernik, J. Heering, and A.M. Sloane. When and How to Develop Domain-Specific
Languages. ACM Computing Surveys, 2005. doi:10.1145/1118890.1118892.

http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1016/j.entcs.2006.01.017
http://dx.doi.org/10.1007/11589976_6
http://dx.doi.org/10.1145/1134285.1134472
http://dx.doi.org/10.1145/1134285.1134472
http://dx.doi.org/10.1049/ic:20040404
http://dx.doi.org/10.1109/METRIC.1997.637156
http://dx.doi.org/10.1109/METRIC.1997.637156
http://dx.doi.org/10.1007/978-3-642-00434-6_16
http://dx.doi.org/10.1007/978-3-642-22306-8_2
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1145/1118890.1118892

Bibliography 135

[81] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[82] P.D. Mosses. Component-Based Semantics. In Proceedings of the 8th International
Workshop on Specification and Verification of Component-Based Systems, 2009.
doi:10.1145/1596486.1596489.

[83] A. Narayanan and G. Karsai. Towards Verifying Model Transformations. In
Proceedings of the 5th International Workshop on Graph Transformation and Visual
Modeling Techniques, 2008. doi:10.1016/j.entcs.2008.04.041.

[84] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, Version 1.1, January 2011.

[85] Object Management Group. MOF 2 XMI Mapping, Version 2.4.1, August 2011.

[86] Object Management Group. Unified Modeling Language, Version 2.4.1, August
2011.

[87] Object Management Group. Object Constraint Language, Version 2.3.1, January
2012.

[88] R.F Paige, J.S Ostroff, and P.J Brooke. Principles for Modeling Language Design.
Information and Software Technology, 2000. doi:10.1016/S0950-5849(00)
00109-9.

[89] R.F. Paige and A. Radjenovic. Towards Model Transformation with TXL. In
Proceedings of the Workshop on Metamodelling for MDA, 2003.

[90] T.J. Parr and R.W. Quong. ANTLR: A Predicated-LL(k) Parser Generator. Software
— Practice and Experience, 1995. doi:10.1002/spe.4380250705.

[91] M. Petre. Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming. Communications of the ACM, 1995. doi:10.1145/203241.
203251.

[92] B. Ploeger. Analysis of ACS using mCRL2. Technical report, Department of
Mathematics and Computer Science, Eindhoven University of Technology, 2009.

[93] G.D. Plotkin. A Structural Approach to Operational Semantics. Journal of Logic
and Algebraic Programming, 2004. doi:10.1016/j.jlap.2004.05.001.

[94] D. Plump. Processes, Terms and Cycles: Steps on the Road to Infinity, chapter
Checking Graph-Transformation Systems for Confluence. Springer, 2005. doi:
10.1007/11601548_16.

[95] A. Pnueli. The Temporal Logic of Programs. In Proceedings fo the 18th Annual
Symposium on Foundations of Computer Science, 1977. doi:10.1109/SFCS.
1977.32.

[96] T. Reenskaug. Models - Views - Controllers. Technical report, Xerox Parc, 1979.

[97] J.E. Rivera, F. Durán, and A. Vallecillo. Formal Specification and Analysis
of Domain Specific Models Using Maude. Simulation, 2009. doi:10.1177/
0037549709341635.

http://dx.doi.org/10.1145/1596486.1596489
http://dx.doi.org/10.1016/j.entcs.2008.04.041
http://dx.doi.org/10.1016/S0950-5849(00)00109-9
http://dx.doi.org/10.1016/S0950-5849(00)00109-9
http://dx.doi.org/10.1002/spe.4380250705
http://dx.doi.org/10.1145/203241.203251
http://dx.doi.org/10.1145/203241.203251
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1007/11601548_16
http://dx.doi.org/10.1007/11601548_16
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1177/0037549709341635
http://dx.doi.org/10.1177/0037549709341635

136 Bibliography

[98] V. Rusu. Embedding Domain-Specific Modelling Languages in Maude Specifications.
SIGSOFT Software Engineering Notes, 2011. doi:10.1145/1921532.1921557.

[99] D.A. Sadilek and G. Wachsmuth. Prototyping Visual Interpreters and Debuggers for
Domain-Specific Modelling Languages. In Proceedings of the European Conference
on Model Driven Architecture: Foundations and Applications, 2008. doi:10.
1007/978-3-540-69100-6_5.

[100] D. Saha. An Incremental Bisimulation Algorithm. In Proceedings of the 27th
International Conference on Foundations of Software Technology and Theoretical
Computer Science, 2007. doi:10.1007/978-3-540-77050-3_17.

[101] B. Schätz. Verification of Model Transformations. Electronic Communications of
the EASST, 2010.

[102] M. Scheidgen. Textual Modelling Embedded into Graphical Modelling. In Pro-
ceedings of the 4th European Conference on Model Driven Architecture, 2008.
doi:10.1007/978-3-540-69100-6_11.

[103] D.C. Schmidt. Model-Driven Engineering. Computer, 2006. doi:10.1109/MC.
2006.58.

[104] O.V. Sokolsky and S.A. Smolka. Incremental Model Checking in the Modal Mu-
Calculus. In Proceedings of the 6th International Conference on Computer Aided
Verification, 1994. doi:10.1007/3-540-58179-0_67.

[105] J. Sprinkle and G. Karsai. A Domain-Specific Visual Language for Domain Model
Evolution. Journal of Visual Languages and Computing, 2004. doi:10.1016/j.
jvlc.2004.01.006.

[106] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, 2008.

[107] G.M. Swamy. Incremental Methods for Formal Verification and Logic Synthesis.
PhD thesis, University of California, 1996.

[108] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P.H.A. van der Putten, and
J.P.M. Voeten. Software/Hardware Engineering with the Parallel Object-Oriented
Specification Language. In Proceedings of IEEE/ACM International Conference on
Formal Methods and Models for Codesign, 2007. doi:10.1109/MEMCOD.2007.
371231.

[109] D. Varró. Automated Formal Verification of Visual Modeling Languages by Model
Checking. Journal of Software and System Modeling, 2004. doi:10.1007/
s10270-003-0050-x.

[110] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

[111] M. Völter. openArchitectureWare: a Flexible Open Source Platform for Model-
Driven Software Development. In Proceedings of the Eclipse Technology eXchange
Workshop at the ECOOP 2006 Conference, 2006.

http://dx.doi.org/10.1145/1921532.1921557
http://dx.doi.org/10.1007/978-3-540-69100-6_5
http://dx.doi.org/10.1007/978-3-540-69100-6_5
http://dx.doi.org/10.1007/978-3-540-77050-3_17
http://dx.doi.org/10.1007/978-3-540-69100-6_11
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1007/3-540-58179-0_67
http://dx.doi.org/10.1016/j.jvlc.2004.01.006
http://dx.doi.org/10.1016/j.jvlc.2004.01.006
http://dx.doi.org/10.1109/MEMCOD.2007.371231
http://dx.doi.org/10.1109/MEMCOD.2007.371231
http://dx.doi.org/10.1007/s10270-003-0050-x
http://dx.doi.org/10.1007/s10270-003-0050-x

Bibliography 137

[112] B.-Y. Wang. µ-Calculus Model Checking in Maude. In Proceedings of the 5th
International Workshop on Rewriting Logic and Its Applications, 2005. doi:10.
1016/j.entcs.2004.06.025.

[113] J.M. Wing and M. Vaziri-Farahani. Model Checking Software Systems: A Case Study.
SIGSOFT Software Engineering Notes, 1995. doi:10.1145/222132.222148.

http://dx.doi.org/10.1016/j.entcs.2004.06.025
http://dx.doi.org/10.1016/j.entcs.2004.06.025
http://dx.doi.org/10.1145/222132.222148

Appendix A

Software Tools

This appendix describes the software tools, languages, and platforms used to implement
the languages and model transformations discussed in this thesis. Below, only short
descriptions providing an overview of the most important features are given. The ways in
which these tools, languages, and platforms have been applied are discussed extensively
throughout the rest of this thesis.

A.1 ASF+SDF and the Meta-Environment
The language ASF+SDF [30] is a combination of the two formalisms ASF [16] and
SDF [110]. The Syntax Definition Formalism (SDF) is a formalism for the definition of
the syntax of context-free languages. The Algebraic Specification Formalism (ASF) is a
formalism for the definition of conditional rewrite rules. Given a syntax definition in SDF
of a source and target language, ASF can be used to define a transformation from the
source language to the target language. In ASF, conditional rewrite rules are specified
using the concrete syntax of the input and output languages.

Context-free languages are closed under union and, as a result of this, the SDF
definitions of two languages can be combined to form the definition of a new context-
free language, without altering the existing definitions. However, because ambiguities
may arise after combining syntax definitions, it might be necessary to add constructs for
disambiguation to a definition that combines existing languages. Using ASF in combination
with SDF to implement transformations guarantees syntax safety. A transformation is
syntax safe if it only accepts input that adheres to the syntax definition of the input
language and always produces output adhering to the definition of the output language.

The ASF+SDF Meta-Environment [20] is an integrated development environment
(IDE) for ASF+SDF. It has a graphical user interface that offers syntax-highlighting for
the specification of SDF and ASF definitions, and an interpreter and debugger for the
execution and debugging of ASF specifications. It can be used to create a command-line
tool that parses and rewrites input adhering to the syntax definition of the input language
and outputs the result. These command-line tools employ memoization, which ensures

140 Software Tools

that the result of a rewrite rule applied to a given term is computed only once. Both the
ASF+SDF Meta-Environment and the command-line tools it generates use Annotated
Terms (ATerms) [21] to represent terms internally. Because ATerms offer maximal subterm
sharing, the internal representation of terms uses as little space as possible.

1 sorts
2 BoolCon BoolExp
3 context-free syntax
4 "true" | "false" -> BoolCon
5 BoolCon -> BoolExp
6 BoolExp "xor" BoolExp -> BoolExp {right}
7 eval(BoolExp) -> BoolCon
8 variables
9 "$BoolCon"[0-9]* -> BoolCon

10 "$BoolExp"[0-9]* -> BoolExp

Listing A.1: Part of an SDF definition that defines simple Boolean expressions

Listing A.1 shows a part of an SDF definition that defines a syntax for simple Boolean
expressions. In ASF+SDF, each term conforms to a sort. On line 2, two such sorts
are introduced, whose syntax is defined in lines 4 to 7. Line 4 states that a term of
sort BoolCon is of the form “true” or “false”. A term of sort BoolCon is also a valid term
of sort BoolExp, as defined in line 5. Furthermore, line 6 specifies that two terms of
sort BoolCon joined by the right-associative operator “xor” form a term of sort BoolExp.
The signature of an evaluation function for Boolean expressions is specified on line 7. On
lines 9 and 10, variables that represent terms of the aforementioned sorts are introduced.

1 [rule0]
2 eval($BoolCon) = $BoolCon
3
4 [rule1]
5 eval($BoolCon xor $BoolCon) = false
6
7 [rule2]
8 $BoolCon1 != $BoolCon2
9 ====>

10 eval($BoolCon1 xor $BoolCon2) = true
11
12 [default-rule]
13 $BoolCon1 := eval($BoolExp1),
14 $BoolCon2 := eval($BoolExp2)
15 ====>
16 eval($BoolExp1 xor $BoolExp2) = eval($BoolCon1 xor $BoolCon2)

Listing A.2: ASF rule for the evaluation of simple Boolean expressions

Listing A.2 shows the (conditional) rewrite rules that define how the simple Boolean
expressions of Listing A.1 are evaluated. The first part of an ASF rule is optional and
consists of the conditions of the rule, which are separated from the rest of the rule by an
arrow (====>). Next, the left-hand side and right-hand side of the rule follow, separated
by an equality sign. If a rule has no conditions or all its conditions hold, its application to
a term results in replacing the left-hand side by the right-hand side. The rules described
in this thesis use two kinds of conditions: (in)equality conditions and matching conditions.

A.2. openArchitectureWare 141

An equality condition consists of a right-hand side and a left-hand side, separated by two
equal signs (==). The condition holds if both sides can be matched. The right-hand side
and left-hand side of an inequality condition are separated by an exclamation mark and
an equal sign (!=), and it holds if both sides cannot be matched. Similarly, a matching
condition consists of a right-hand side and a left-hand side, separated by a colon and an
equal sign (:=). Also this type of condition holds if both sides can be matched. In this
case, however, if both sides can be matched, the variables occurring at the left-hand side
are instantiated accordingly. In Listing A.2, the first two rules have no conditions. The
inequality condition of the third rule is shown on line 8, and the matching conditions of
the last rule are shown on lines 13 and 14. On lines 1, 4, 7, and 12, the identifiers of the
rules are shown. The last rule is only applied if non of the other rules are applicable,
which is indicated by the fact that its identifier starts with “default”.

A.2 openArchitectureWare
The openArchitectureWare platform offers a number of tools related to model transforma-
tion: Xpand is used for model-to-text transformations, Xtext [35] is used for text-to-model
transformations, and Xtend is used for model-to-model transformations. Here, the term
“model” refers to an instance of an explicit metamodel. Execution of model-to-text trans-
formations implemented with Xpand and model-to-model transformations implemented
with Xtend can be automated using scripts for the Modeling Workflow Engine for Eclipse.
Xpand and Xtend are based on the same type system and expression language. The
type system offers simple types, such as string, Boolean, and integer, collection types,
such as list and set, and the possibility to import metamodels. The expression language
offers a number of basic constructs that can be used to create expressions, such as literals,
operators, quantifiers, and switch expressions.

Currently, the platform no longer exists on its own and has become a part of the
Eclipse Modeling Project1 instead. It is implemented as a number of Eclipse plug-ins and
is based on the Eclipse Modeling Framework (EMF) [106].

A.2.1 Xpand
Xpand is a template-based language that generates text files given an EMF model. An
Xpand template takes a metaclass and a list of parameters as input and produces output
by executing a list of statements. There are a number of different types of statements,
including one that saves the output generated by its statements to a file and one that
triggers the execution of another template.

A.2.2 Xtext
Xtext is a tool that parses text and converts it to an equivalent model, given a grammar
describing the syntax of the input. Xtext uses ANTLR [90] to generate a parser that
parses the textual representations of models. An Xtext specification consists of rules
that define both a metamodel and a mapping from concrete syntax to this metamodel.
Given a grammar, Xtext also generates an editor that provides features such as syntax
highlighting and code completion.

1http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

142 Software Tools

A.2.3 Xtend
Xtend is a functional language for model transformation. It adds extensions to the basic
expression language, which take a number of parameters as input and return the result
of an expression. Because the extensions are not side-effect free, Xtend is not a pure
functional language. Transformations implemented in Xtend are unidirectional, which
means that they can only be used to transform models in a single direction. In other
words, a transformation for given source and target metamodels can transform models
conforming to the source metamodel into models conforming to the target metamodel, but
not the other way around. The language can be used for in-place transformations, which
modify a given model, as well as transformations that produce new models. Xtend is an
interpreted language. It is supported by an IDE offering syntax highlighting, debugging,
and code completion.

A.3 ATL Transformation Language
The ATL Transformation Language (ATL) [60], previously known as the ATLAS trans-
formation language, is another EMF based language for model transformation. Similarly
to Xtend, ATL is also a unidirectional transformations language that offers both in-place
transformations and creation of new models. The language provides both declarative and
imperative constructs for the definition of model transformations. In contrast to Xtend,
ATL does not have a native syntax for expressions, but uses the Object Constraint Lan-
guage (OCL) [87] instead. ATL is supported by an IDE that offers debugging and syntax
highlighting. A virtual machine is used to execute transformations after translating them
to byte code. The execution of ATL transformations can be automated using ant tasks,
which are small scripts that make it possible, for example, to compose transformations
with and without saving the intermediate models.

A.4 Dot and Graphviz
Dot is a language for graph visualization that is part of the Graphviz toolset [38]. Given
a description of a graph written in Dot, Graphviz can visualize this graph as an image in
various output formats. Graphviz employs layout algorithms to achieve optimal placement
of nodes and edges. A graph description in Dot is a list of nodes and edges from node to
node, combined with attributes that specify how particular nodes and edges should be
displayed. These attributes define, for example, the color, width, height, and the type of
lines used to draw these nodes and edges.

Although Dot is not designed specifically for applications in MDSE, we use it extensively
for the visualization of graphical diagrams representing models. Currently, EMF based
alternatives for graphical modeling do not provide the functionality required to create
such diagrams.

Appendix B

Operational Semantics of SLCO

This appendix discusses the formal operational semantics of SLCO and is based on the
work described in Chapter 5. However, successful termination and time are not taken
into account. A more concise description of the semantics presented in this appendix is
given in Section 6.3.1. We start with a description of the syntax of SLCO, followed by
a description of the rules that define its operational semantics. Finally, we discuss the
initialization of the evaluation functions that are used in these rules.

B.1 Syntax
In this section, we use a variant of EBNF to define the syntax of SLCO. Although the
use of quotation marks may suggest otherwise, the following syntax does not qualify as a
concrete syntax for the language, because it does not assign a unique parse tree to each
fragment of the language. Instead, the quotation marks are used to distinguish EBNF
symbols from symbols of SLCO. For each element e of a syntactic category, zero or more
occurrences of e are denoted by e∗, one or more occurrences are denoted by e+, and zero
or one occurrence is denoted by [e].

The syntax of models m ∈ Models, classes class ∈ Classes, objects obj ∈ Objects,
channels chan ∈ Channels, and variables var ∈ Variables is defined as follows.

m ::= mn class∗ obj ∗ chan∗

class ::= cn var∗ pn∗ sm∗

obj ::= on “ : ” cn
chan ::= chn “(” type∗ “)” chtype “from” on “.” pn “to” on ′ “.” pn ′

| chn “(” type∗ “)” chtype “between” on “.” pn “and” on ′ “.” pn ′

var ::= type vn [“ = ” ce]
type ::= “Boolean” | “Integer” | “String”
chtype ::= “sync” | “async lossless” | “async lossy”,

where the structure of model names mn ∈ MN , class names cn ∈ CN , object names on ∈
ON , channel names chn ∈ CHN , port names pn ∈ PN , variable names vn ∈ VN , and

144 Operational Semantics of SLCO

constant expressions ce ∈ CE is left unspecified. We use a standard syntax for these
concepts.

The syntax of state machines sm ∈ StateMachines , transitions trans ∈ Transitions, sig-
nal sending statements send ∈ Statements, signal reception statements rec ∈ Statements,
and assignment statements assign ∈ Statements is defined as follows.

sm ::= smn var∗ “initial” sn sn∗ trans∗

trans ::= tn “from” sn “to” sn ′ [send | rec | assign | e]
send ::= “send” sgn “(” e∗ “)” “to” pn
rec ::= “receive” sgn “(” vn∗ “|” e “)” “from” pn
assign ::= vn “ : = ” e,

where the structure of state machine names smn ∈ SMN , state names sn ∈ SN , transition
names tn ∈ TN , signal names sgn ∈ SGN , and expressions e ∈ Expressions is left
unspecified. Again, we use a standard syntax for these concepts. Because we do not
consider time and successful termination, the delay statement and the notion of final
states are left out of this syntax definition.

B.2 Semantics
We use a variant of structural operational semantics [52, 93] that relies heavily on val-
uation functions to define the semantics of SLCO. These valuation functions enable a
compositional definition of the semantics. The potential behavior of an SLCO model is
defined in terms of the potential behavior of the objects that constitute this model. In
turn, the potential behavior of the objects is defined in terms of the potential behavior of
their classes, which is defined in terms of the potential behavior of the state machines
that constitute the classes. Finally, the potential behavior of a state machine is defined
in terms of the potential behavior of the transitions of the state machine.

B.2.1 Transitions
The potential behavior of a transition is defined by the relation

−→TRANS ⊆ (Transitions × SN ×VVARS ×VVARS)× TL× (SN ×VVARS ×VVARS),

where each function vvars from the set of partial functions VVARS = VN 7→ CE maps
variable names to constant expressions, and the syntax of transition labels l ∈ TL is
defined as follows.

l ::= ε
| “send” sgn “(” ce∗ “)” “to” pn
| “receive” sgn “(” ce∗ “)” “from” pn
| “send” sgn “(” ce∗ “)”
| “receive” sgn “(” ce∗ “)”
| “lost” sgn “(” ce∗ “)”
| sgn “(” ce∗ “)”
| vn “ : = ” ce

The relation −→TRANS is the least relation satisfying the following rules.

〈tn from sn to sn ′, sn, vvars , v
′
vars〉

ε−→TRANS 〈sn ′, vvars , v
′
vars〉 (T1)

B.2. Semantics 145

〈e, vvars , v ′vars〉 =⇒EXP true

〈tn from sn to sn ′ e, sn, vvars , v
′
vars〉

ε−→TRANS 〈sn ′, vvars , v
′
vars〉

(T2)

〈assign, vvars , v
′
vars〉

l
=⇒ASSIGN 〈v ′′vars , v ′′′vars〉

〈tn from sn to sn ′ assign, sn, vvars , v
′
vars〉

l−→TRANS 〈sn ′, v ′′vars , v
′′′
vars〉

(T3)

〈e∗, vvars , v ′vars〉 =⇒EXPS ce∗

〈tn from sn to sn ′ send sign(e∗) to pn, sn, vvars , v
′
vars〉

send sgn(ce∗) to pn−−−−−−−−−−−−−−→TRANS 〈sn ′, vvars , v
′
vars〉

(T4)

〈ce∗, vn∗, vvars , v
′
vars〉 =⇒SUB 〈v ′′vars , v ′′′vars〉, 〈e, v ′′vars , v ′′′vars〉 =⇒EXP true

〈tn from sn to sn ′ receive sgn(vn∗ | e) from pn, sn, vvars , v
′
vars〉

receive sgn(ce∗) from pn−−−−−−−−−−−−−−−−−→TRANS 〈sn ′, v ′′vars , v
′′′
vars〉

(T5)

Rule (T1) defines that a transition specification tn from sn to sn ′ leads to a transition
from state sn to state sn ′, leaving the valuation functions vvars and v′vars unchanged.

Rule (T2) defines that such a transition is also possible given a transition specifi-
cation tn from sn to sn ′ e, provided that the expression e evaluates to true. This
rule refers to a relation =⇒EXP ⊆ (Expressions ×VVARS ×VVARS)× CE , which defines
how expressions e ∈ Expressions evaluate to constant expressions ce ∈ CE , given two
valuation functions vvars ∈ VVARS and v′vars ∈ VVARS . We do not specify the syntax of
expressions, as mentioned above, and leave their semantics unspecified as well. We use a
standard semantics for the evaluation of expressions, where two valuation functions are
used to distinguish between the local variables of state machines and the global variables
of objects. This distinction is discussed in further detail below.

Rule (T3) defines that the execution of an assignment statement as part of a transition
leads to an update of the valuation functions vvars and v′vars . The rule refers to the
relation =⇒ASSIGN ⊆ (Expressions ×VVARS ×VVARS)× TL× (VVARS ×VVARS), which
defines the details of this update. The relation =⇒ASSIGN is the least relation satisfying
the following rules.

〈e, vvars , v ′vars〉 =⇒EXP ce, vn ∈ dom(v ′vars), v ′′vars = v ′vars [ce/vn]

〈vn : = e, vvars , v
′
vars〉

vn := ce
=====⇒ASSIGN 〈vvars , v ′′vars〉

〈e, vvars , v ′vars〉 =⇒EXP ce,
vn /∈ dom(v ′vars), vn ∈ dom(vvars), v ′′vars = vvars [ce/vn]

〈vn : = e, vvars , v
′
vars〉

vn := ce
=====⇒ASSIGN 〈v ′′vars , v ′vars〉

In these rules, the distinction between local and global variables becomes apparent.
In both rules, valuation function vvars maps the global variables to their values, and
function v′vars maps the local variables to their values. If a local variable named vn exists,
denoted by vn ∈ dom(v ′vars), then the valuation function v′vars is updated by mapping vn
to ce. Otherwise, if a global variable named vn exists, the valuation function vvars is
updated. We use f [v/x] to denote the updated function f , where f [v/x](x) = v and
f [v/x](y) = f (y) for all y 6= x.

Rule (T4) defines the semantics of transitions with statements that send signals. It
refers to the relation =⇒EXPS ⊆ (SEQ(Expressions)×VVARS×VVARS)×SEQ(CE), which
defines how a sequence of expressions is evaluated to a sequence of constant expressions,

146 Operational Semantics of SLCO

given two valuation functions. The relation =⇒EXPS is the least relation that satisfies the
following rules.

〈ε, vvars , v′vars〉 =⇒EXPS ε

〈e, vvars , v ′vars〉 =⇒EXP ce, 〈e∗, vvars , v ′vars〉 =⇒EXPS ce∗

〈e e∗, vvars , v
′
vars〉 =⇒EXPS ce ce∗

Finally, an instance of rule (T5) exists for all ce∗ ∈ SEQ(CE). These instances
define the semantics of transitions with signal reception statements. It refers to the
relation =⇒SUB ⊆ (CE × VN × VVARS × VVARS) × (VVARS × VVARS), which defines
sequential updates of the values of a set of variables. The relation =⇒SUB is the least
relation satisfying the following rules.

〈ε, ε, vvars , v′vars〉 =⇒SUB 〈vvars , v′vars〉

vn ∈ dom(v ′vars), v ′′vars = v ′vars [ce/vn], 〈ce∗, vn∗, vvars , v
′′
vars〉 =⇒SUB 〈v ′′′vars , v ′′′′vars〉

〈ce ce∗, vn vn∗, vvars , v
′
vars〉 =⇒SUB 〈v ′′′vars , v ′′′′vars〉

vn /∈ dom(v ′vars), vn ∈ dom(vvars), v ′′vars = vvars [ce/vn],
〈ce∗, vn∗, v ′′vars , v

′
vars〉 =⇒SUB 〈v ′′′vars , v ′′′′vars〉

〈ce ce∗, vn vn∗, vvars , v
′
vars〉 =⇒SUB 〈v ′′′vars , v ′′′′vars〉

Each instance of rule (T5) specifies that a statement receive sgn(vn∗ | e) from pn is only
enabled if expression e evaluates to true after updating the values of the variables vn∗

to the constant expressions ce∗. This sequence of constant expressions represents the
possible values of the arguments of signals sent by other objects.

B.3 State Machines
The potential behavior of a state machine is defined by the relation

−→SM ⊆ (StateMachines × SSMS ×VVARS ×VSMS)× TL× (SSMS ×VVARS ×VSMS),

where each function ssms from the set of partial functions SSMS = SMN 7→ SN maps
state machine names to state names, and each function vsms from the set of partial
functions VSMS = SMN 7→ (VN 7→ CE) maps state machine names to functions that map
variable names to constant expression. The fact that state machine smn is in state sn is
encoded as ssms(smn) = sn using a function ssms ∈ SSMS . Furthermore, the fact that
variable vn of state machine smn has the value ce is encoded as vsms(smn)(vn) = ce using
a function vsms ∈ VSMS . The relation −→SM is the least relation satisfying the following
rule.

trans ∈ trans∗,

〈trans, ssms(smn), vvars , vsms(smn)〉 l−→TRANS 〈sn, v ′vars , v
′′
vars〉,

s′sms = ssms [sn/smn], v ′sms = vsms [v ′′vars/smn]

〈smn var∗ states trans∗, ssms , vvars , vsms〉
l−→SM 〈s ′sms , v

′
vars , v

′
sms〉

(SM)

We use e ∈ e∗ to denote ∃e′, e′′ . e∗ ≡ e′ e e′′, for each element e of a syntactic category.
Rule (SM) defines that if one of the transitions of a state machine can go from

state ssms(smn) to state sn while performing an action represented by l, then this state
machine can make a transition to the same state from state ssms(smn) while performing
the same action.

B.3. State Machines 147

B.3.1 Classes
The potential behavior of a class is defined by the relation

−→CLASS ⊆ (Classes × SSMS ×VVARS ×VSMS)× TL× (SSMS ×VVARS ×VSMS).

The relation −→CLASS is the least relation satisfying the following rule.

sm ∈ sm∗, 〈sm, ssms , vvars , vsms〉
l−→SM 〈s ′sms , v

′
vars , v

′
sms〉

〈cn var∗ port∗ sm∗, ssms , vvars , vsms〉
l−→CLASS 〈s ′sms , v

′
vars , v

′
sms〉

(C)

Rule (C) defines that the potential behavior of a class is derived from the potential
behavior of the state machines of that class.

B.3.2 Objects
The potential behavior of a set of objects is defined by the relation

−→OBJS ⊆ (Objects × Classes × Channels × SOBJS ×VGLOB ×VLOC × B)

× TL× (SOBJS ×VGLOB ×VLOC × B),

where each function vglob from the set of partial functions VGLOB = ON 7→ (VN 7→ CE)
maps object names to functions that map variable names to constant expressions, each
function vloc from the set of partial functions VLOC = ON 7→ (SMN 7→ (VN 7→
CE)) maps object names to functions that map state machine names to functions
that map variable names to constant expressions, each function sobjs from the set of
partial functions SOBJS = ON 7→ (SMN 7→ SN) maps object names to functions that
map state machine names to state names, and each function b from the set of partial
functions B = (CHN ×ON ×ON) 7→ (SGN ×SEQ(CE))∪{nil} maps tuples consisting of
a channel name and two object names to the constant nil or a tuple consisting of a signal
name and a sequence of constant expressions. The functions in VGLOB encode valuations
of global variables, and the functions in VLOC encode valuations of local variables. The set
of functions SOBJS is an extension of the set SSMS . The fact that state machine smn of
object on is in state sn is encoded as sobjs(on)(smn) = sn using a function sobjs ∈ SOBJS .
The functions in B are used to encode the content of a set of buffers. The fact that the
buffer corresponding to the channel chn that connects objects on1 and on2 is empty
is encoded as b(chn, on1 , on2) = nil using a function b ∈ B. In the remainder of this
section, we discuss a number of the rules that define this relation.

The following rule defines the part of the semantics of sequences of objects related to
assignment statements.

on : cn ∈ obj ∗, cn var∗ pn∗ sm∗ ∈ class∗,
〈cn var∗ pn∗ sm∗, sobjs(on), vglob(on), vloc(on)〉

vn := ce−−−−−→CLASS 〈ssms , vvars , vsms〉,
s′objs = sobjs [ssms/on], v ′glob = vglob [vvars/on], v ′loc = vloc [vsms/on]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
vn := ce−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc , b〉

(O1)

Rule (O1) specifies that a sequence of objects can perform an assignment vn : = ce if one
of the objects in the sequence is an instance of a class that can perform this assignment.

148 Operational Semantics of SLCO

The following rules defines the part of the semantics of sequences of objects related to
synchronous communication.

on1 : cn1 ∈ obj ∗, on2 : cn2 ∈ obj ∗,
cn1 var∗1 pn∗1 sm∗1 ∈ class∗, cn2 var∗2 pn∗2 sm∗2 ∈ class∗,

chn(type∗) sync from on1 .pn1 to on2 .pn2 ∈ chan∗,
〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉

send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,
〈cn2 var∗2 pn∗2 sm∗2 , sobjs(on2), vglob(on2), vloc(on2)〉
receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−→CLASS 〈s′sms , v

′
vars , v

′
sms〉,

s′objs = sobjs [ssms/on1][s ′sms/on2],

v′glob = vglob [v′vars/on2], v ′loc = vloc [v ′sms/on2]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
sn(ce∗)−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc , b〉

(O2)

on1 : cn1 ∈ obj ∗, on2 : cn2 ∈ obj ∗,
cn1 var∗1 pn∗1 sm∗1 ∈ class∗, cn2 var∗2 pn∗2 sm∗2 ∈ class∗,
chn(type∗) sync between on1 .pn1 and on2 .pn2 ∈ chan∗,
〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉

send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,
〈cn2 var∗2 pn∗2 sm∗2 , sobjs(on2), vglob(on2), vloc(on2)〉
receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−→CLASS 〈s′sms , v

′
vars , v

′
sms〉,

s′objs = sobjs [ssms/on1][s ′sms/on2],

v′glob = vglob [v′vars/on2], v ′loc = vloc [v ′sms/on2]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
sn(ce∗)−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc , b〉

(O3)

on1 : cn1 ∈ obj ∗, on2 : cn2 ∈ obj ∗,
cn1 var∗1 pn∗1 sm∗1 ∈ class∗, cn2 var∗2 pn∗2 sm∗2 ∈ class∗,
chn(type∗) sync between on2 .pn2 and on1 .pn1 ∈ chan∗,
〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉

send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,
〈cn2 var∗2 pn∗2 sm∗2 , sobjs(on2), vglob(on2), vloc(on2)〉
receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−→CLASS 〈s′sms , v

′
vars , v

′
sms〉,

s′objs = sobjs [ssms/on1][s ′sms/on2],

v′glob = vglob [v′vars/on2], v ′loc = vloc [v ′sms/on2]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
sn(ce∗)−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc , b〉

(O4)

Rule (O2) specifies synchronous communication between two objects over a unidirectional
channel, and Rules (O3) and (O4) specify synchronous communication over bidirectional
channels. Because sending a signal does not affect the valuation of variables, the updates
of vglob and vloc do not take object on1 into account.

B.3. State Machines 149

The following rules define asynchronous communication over a lossless channel.

on1 : cn1 ∈ obj ∗, cn1 var∗1 pn∗1 sm∗1 ∈ class∗,
chn(type∗) async lossless from on1 .pn1 to on2 .pn2 ∈ chan∗,

〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉
send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,

s′objs = sobjs [ssms/on1],

b(〈chn, on1 , on2 〉) = nil, b′ = b[〈sgn, ce∗〉/〈chn, on1 , on2 〉]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
send sgn(ce∗)−−−−−−−−−→OBJS 〈s ′objs , vglob , vloc , b′〉

(O5)

on2 : cn2 ∈ obj ∗, cn2 var∗2 pn∗2 sm∗2 ∈ class∗,
chn(type∗) async lossless from on1 .pn1 to on2 .pn2 ∈ chan∗,

〈cn2 var∗2 pn∗2 sm∗2 , sobjs(on2), vglob(on2), vloc(on2)〉
receive sgn(ce∗) from pn2−−−−−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,

s′objs = sobjs [ssms/on2],

v′glob = vglob [vvars/on2], v ′loc = vloc [vsms/on2],

b(〈chn, on1 , on2 〉) = 〈sgn, ce∗〉, b′ = b[nil/〈chn, on1 , on2 〉]
〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
receive sgn(ce∗)−−−−−−−−−−−→OBJS 〈s′objs , v′glob , v′loc , b′〉

(O6)

We only give the rules related to unidirectional channels. The rules for bidirectional
channels are similar, however, and can be derived from the rules given above.

Rule (O5) specifies that a signal is placed in the buffer that corresponds to an
asynchronous channel if an object sends this signal over the channel. This is only possible
if the buffer is empty when the statement is executed. Rule (O6) specifies that a signal is
removed from the buffer that corresponds to an asynchronous channel if an object that is
connected to this channel is able to receive this signal.

The following rules define how asynchronous communication over a lossy channel
differs from asynchronous communication over a lossless channel.

on1 : cn1 ∈ obj ∗, cn1 var∗1 pn∗1 sm∗1 ∈ class∗,
chn(type∗) async lossy from on1 .pn1 to on2 .pn2 ∈ chan∗,
〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉

send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,
s′objs = sobjs [ssms/on1]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc ,B〉
lost sgn(ce∗)−−−−−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc ,B〉

(O7)

on1 : cn1 ∈ obj ∗, cn1 var∗1 pn∗1 sm∗1 ∈ class∗,
chn(type∗) async lossy from on1 .pn1 to on2 .pn2 ∈ chan∗,
〈cn1 var∗1 pn∗1 sm∗1 , sobjs(on1), vglob(on1), vloc(on1)〉

send sgn(ce∗) to pn1−−−−−−−−−−−−−−→CLASS 〈ssms , vvars , vsms〉,
s′objs = sobjs [ssms/on1],

b(〈chn, on1 , on2 〉) = 〈sgn ′, ce∗′〉, b′ = b[〈sgn, ce∗〉/〈chn, on1 , on2 〉]

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
lost sgn′(ce∗′)−−−−−−−−−→OBJS 〈s ′objs , v ′glob , v ′loc , b′〉

(O8)

Besides the rules shown above, additional rules exist that complete the definition of
asynchronous communication over lossy channels. These rules are similar to the rules

150 Operational Semantics of SLCO

defining communication over asynchronous, lossless channels and can be derived from
those rules.

Rule (O7) specifies that a signal sent over a lossy channel may get lost. In this rule,
the function representing the buffer is unchanged. Rule (O8) specifies an alternative way
of losing signals. It shows that a signal sent over a lossy channel can be placed in the
corresponding buffer, even if this buffer already contains a signal. The new signal replaces
the existing signal, which means that the original signal is lost.

B.3.3 Models
Finally, the potential behavior of a model is defined by the relation

−→MODEL ⊆ (Models × SOBJS ×VGLOB ×VLOC × B)

× TL× (Models × SOBJS ×VGLOB ×VLOC × B),

which is the least relation satisfying the following rule.

m ≡ mn obj ∗ class∗ chan∗,

〈obj ∗, class∗, chan∗, sobjs , vglob , vloc , b〉
l−→OBJS 〈s ′objs , v ′glob , v ′loc , b′〉

〈m, sobjs , vglob , vloc , b〉
l−→MODEL 〈m, s ′objs , v

′
glob , v

′
loc , b

′〉
(M)

B.4 Initialization
By specifying which configurations 〈m, sobjs , vglob , vloc , b〉 and 〈m, s ′objs , v

′
glob , v

′
loc , b

′〉 are
related, Rule (M) defines the steps that can be taken according to model m. The initial
configuration is defined by choosing appropriate functions sobjs , vglob , vloc , and b. Below,
we define a number of functions that map SLCO models to the functions that define the
initial configurations of these models.

B.4.1 Initial States
The function SMOBJS : Models → (ON 7→ (SMN 7→ SN)) is defined as follows.

SMOBJS (mn class∗ obj ∗ chan∗) =
{(on,SC

SMS (cn var∗ pn∗ sm∗)) | cn var∗ pn∗ sm∗ ∈ class∗ ∧ on : cn ∈ obj ∗}

It maps models to functions from SOBJS , such that each name of a state machine
is mapped to its initial state as defined by the model. The definition refers to the
function SCSMS : Classes → (SMN 7→ SN), which is defined as follows.

SCSMS (cn var∗ pn∗ sm∗) = {(smn, sn) | smn initial sn sn∗ ∈ sm∗}

This function maps classes to functions from SSMS , such that each name of a state
machine is mapped to its initial state as defined by the class.

B.4.2 Initial Values of Variables
The function VMGLOB : Models → (ON 7→ (VN 7→ CE)) is defined as follows.

VMGLOB (mn class∗ obj ∗ chan∗) =
{(on,V V (var∗)) | cn var∗ pn∗ sm∗ ∈ class∗ ∧ on : cn ∈ obj ∗}

B.4. Initialization 151

It maps models to functions from VGLOB , such that each global variable is mapped
to its initial value as specified by the model. The definition refers to a function V V :
SEQ(Variables)→ (VN 7→ CE), which is defined as follows.

V V (var∗) =
{(vn, false) | Boolean vn ∈ var∗} ∪ {(vn, bc) | Boolean vn = bc ∈ var∗} ∪
{(vn, 0) | Integer vn ∈ var∗} ∪ {(vn, ic) | Integer vn = ic ∈ var∗} ∪
{(vn, “”) | String vn ∈ var∗} ∪ {(vn, sc) | String vn = sc ∈ var∗}

This function maps sequences of variable declarations to functions that map variable
names to the appropriate initial values as specified by the sequence of declarations.

Similar functions VMLOC : Models → (ON 7→ (SMN 7→ (VN 7→ CE))) and V C :
Classes → (SMN 7→ (VN 7→ CE)) exist that are related to the initial values of local
variables. These functions are defined as follows.

VMLOC (mn class∗ obj ∗ chan∗) =
{(on,V C (cn var∗ pn∗ sm∗)) | cn var∗ pn∗ sm∗ ∈ class∗ ∧ on : cn ∈ obj ∗}

V C(cn var∗ pn∗ sm∗) = {(smn,V V (var∗) | smn var∗ states trans∗ ∈ sm∗}

B.4.3 Buffers
The function BM : Models → ((CHN × ON × ON) 7→ (SGN × SEQ(CE)) ∪ {nil}) is
defined as follows.

BM (mn class∗ obj ∗ chan∗) = {(〈chn, on1 , on2 〉,nil) |
chn(type∗) async lossless from on1 .pn1 to on2 .pn2 ∈ chan∗ ∨
chn(type∗) async lossless between on1 .pn1 and on2 .pn2 ∈ chan∗ ∨
chn(type∗) async lossless between on2 .pn2 and on1 .pn1 ∈ chan∗ ∨
chn(type∗) async lossy from on1 .pn1 to on2 .pn2 ∈ chan∗ ∨
chn(type∗) async lossy between on1 .pn1 and on2 .pn2 ∈ chan∗ ∨
chn(type∗) async lossy between on2 .pn2 and on1 .pn1 ∈ chan∗

}

It maps models to functions from B, such that each buffer corresponding to a channel in
the model is empty.

Appendix C

Two Transformations for SLCO

This appendix provides a detailed description of the two versions of the transformation
that simulates synchronous communication over an asynchronous channel. An informal
description of both versions of this transformation is given in Section 3.5.1.1. Additionally,
Section 6.2 provides a concise discussion of the description presented in this appendix. We
use the syntax defined in Appendix B to describe the two versions of the transformation.

C.1 Simple Transformation
The transformation TSas takes a model and a channel name as input. If the channel is
used for synchronous communication, it is replaced by an asynchronous channel, and the
classes of the objects that are connected by the channel are adapted. It is defined as

TSas(mn class∗ obj ∗ chan∗, chn) =
mn TS

CS (class∗, cn1 , pn1 , cn2 , pn2) obj ∗

chan∗1 chn(type∗) async lossless between on1 . pn1 and on2 . pn2 chan∗2 ,

if chan∗ ≡ chan∗1 chn(type∗) sync from on1 . pn1 to on2 . pn2 chan∗2 , obj ∗ ≡ obj ∗1 on1 :
cn1 obj ∗2 , and obj ∗ ≡ obj ∗3 on2 : cn2 obj ∗4 , and it is defined as

TSas(mn class∗ obj ∗ chan∗, chn) = mn class∗ obj ∗ chan∗

otherwise.
The transformation TSCS defined below takes a sequence of classes, two class names,

and two port names as input. It returns a sequence of classes. The classes with the names
provided as input are modified, and all other classes remain intact. There are two cases
for this transformation. In one case, the class with name cn1 is first in the sequence of
classes. In the other case, the class with name cn2 is first.

TSCS (class∗, cn1 , pn1 , cn2 , pn2) =
class∗1 TS

C (class1 , pn1) class∗2 TS
C (class2 , pn2) class∗3 ,

154 Two Transformations for SLCO

if class∗ ≡ class∗1 class1 class∗2 class2 class∗3 , class1 ≡ cn1 pn∗1 var∗1 sm∗1 , and class2 ≡
cn2 pn∗2 var∗2 sm∗2 , and

TSCS (class∗, cn1 , pn1 , cn2 , pn2) =
class∗1 TS

C (class2 , pn2) class∗2 TS
C (class1 , pn1) class∗3 ,

if class∗ ≡ class∗1 class2 class∗2 class1 class∗3 , class1 ≡ cn1 pn∗1 var∗1 sm∗1 , and class2 ≡
cn2 pn∗2 var∗2 sm∗2 .

The transformation TSC defined below takes a class and a port name as input and
returns a class with modified state machines. Only the state machines that send or receive
signals over the given port are modified.

TSC (cn pn∗ var∗ sm∗, pn) = cn pn∗ var∗ TS
SMS (sm∗, pn)

The transformation TSSMS defined below takes a sequence of state machines and a
port name as input, and returns a modified sequence of state machines. Only the state
machines that send or receive signals over the given port are modified. There are two
cases for this transformation. One case deals with empty sequences of state machines and
one case with non-empty sequences of state machines.

TSSMS (ε, pn) = ε

TSSMS (sm sm∗, pn) = TSSM (sm, pn) TS
SMS (sm∗, pn)

The transformation TSSM defined below takes a state machine and a port name as
input, and returns a state machine with modified transitions and a number of additional
states. Only the transitions that send or receive signals over the given port are modified.
There are two cases for this transformation. One case deals with state machines without
final states, and the other with state machines with final states.

TSSM (smn var∗ initial sn sn∗ trans∗, pn) = smn var∗ initial sn sn∗ sn∗1 trans∗1 ,

where 〈sn∗1 , trans∗1 〉 = TS
TS (trans∗, pn), and

TSSM (smn var∗ initial sn sn∗ final sn+ trans∗, pn) =
smn var∗ initial sn sn∗ sn∗1 final sn+ trans∗1 ,

where 〈sn∗1 , trans∗1 〉 = TS
TS (trans∗, pn). The syntax definition given in Appendix B is

extended as follows to accommodate final states.

sm ::= smn var∗ “initial” sn sn∗ [“final” sn+] trans∗

The transformation TSTS defined below takes a sequence of transitions and a port
name as input, and returns a modified sequence of transitions and a set of new states.
Only the transitions that send or receive signals over the given port are modified. There
are two cases for this transformation. One case deals with empty sequences of transitions
and the other with non-empty sequences.

TSTS (ε, pn) = 〈ε, ε〉
TSTS (trans trans∗, pn) = 〈sn∗1 sn∗2 , trans∗1 trans∗2 〉,

where 〈sn∗1 , trans∗1 〉 = TS
T (trans, pn) and 〈sn∗2 , trans∗2 〉 = TS

TS (trans∗, pn).

C.2. General Transformation 155

The transformation TST defined below takes a transition and a port name as input,
and returns a set of states and a set of transitions. Only transitions that have a signal
reception trigger or a send signal statement are replaced by new transitions. All other
transitions are left unaltered. There are three cases for this transformation. One case
deals with transitions that send a signal, one case deals with transitions that receive
signals, and one case deals with all other transitions.

TST (tn from sn1 to sn2 send sgn() to pn, pn) = 〈
sn3 ,
tn1 from sn1 to sn3 send sgn1 () to pn
tn2 from sn3 to sn2 receive sgn2 () from pn
〉,

where sn3 is a fresh state name, tn1 and tn2 are fresh transition names, sgn1 ≡ “s_”+sgn,
and sgn2 ≡ “a_” + sgn,

TST (tn from sn1 to sn2 receive sgn() from pn, pn) = 〈
sn3 ,
tn1 from sn1 to sn3 receive sgn1 () from pn
tn2 from sn3 to sn2 send sgn2 () to pn
〉,

where sn3 is a fresh state name, tn1 and tn2 are fresh transition names, sgn1 ≡ “s_”+sgn,
and sgn2 ≡ “a_” + sgn, and

TST (trans, pn) = 〈ε, trans〉,

for all other transitions.

C.2 General Transformation
The transformation TGas takes a model and a channel name as input and returns a
modified model. If the channel name refers to a synchronous channel, it is replaced
by an asynchronous channel in the resulting model, and the classes of the objects that
communicate over this channel are modified accordingly. It is defined as

TGas(mn class∗ obj ∗ chan∗, chn) =
mn TG

CS (class∗, cn1 , pn1 , cn2 , pn2) obj ∗

chan∗1 chn(type∗) async lossless between on1 . pn1 and on2 . pn2 chan∗2 ,

if chan∗ ≡ chan∗1 chn(type∗) sync from on1 . pn1 to on2 . pn2 chan∗2 , obj ∗ ≡ obj ∗1 on1 :
cn1 obj ∗2 , and obj ∗ ≡ obj ∗3 on2 : cn2 obj ∗4 , and it is defined as

TGas(mn class∗ obj ∗ chan∗, chn) = mn class∗ obj ∗ chan∗

otherwise.
The transformation TGCS defined below takes a sequence of classes, two class names cn1

and cn2 , and two port names as input and returns a sequence of modified classes. Only
the classes named cn1 and cn2 are modified. This transformation has two cases. One case

156 Two Transformations for SLCO

is concerned with sequences of classes in which the sending class is first in the sequence,
and the other case is concerned with sequences of classes in which the other class is first.

TGCS (class∗, cn1 , pn1 , cn2 , pn2) =
class∗1 TSEND

C (class1 , pn1) class∗2 TREC
C (class2 , pn2) class∗3 ,

if class∗ ≡ class∗1 class1 class∗2 class2 class∗3 , class1 ≡ cn1 pn∗1 var∗1 sm∗1 , and class2 ≡
cn2 pn∗2 var∗2 sm∗2 , and

TGCS (class∗, cn1 , pn1 , cn2 , pn2) =
class∗1 TREC

C (class2 , pn2) class∗2 TSEND
C (class1 , pn1) class∗3 ,

if class∗ ≡ class∗1 class2 class∗2 class1 class∗3 , class1 ≡ cn1 pn∗1 var∗1 sm∗1 , and class2 ≡
cn2 pn∗2 var∗2 sm∗2 .

The transformation TSEND
C defined below takes a class and a port name pn as input

and returns a modified class. The modified class has an extra integer variable and an
extra state machine. The state machines that send signals via port pn are modified, and
the others are left intact.

TSEND
C (cn pn∗ var∗ sm∗, pn) =
cn pn∗ var∗ Integer vn = 0 TSEND

SMS (sm∗, pn, vn) TREADER
SM (pn, vn, sgn∗),

where vn is a fresh variable name and sgn∗ ≡ TNAMES
SMS (sm∗).

The transformation TSEND
SMS defined below takes a sequence of state machines, a port

name pn, and a variable name as input and modifies the state machines that send signals
over port pn.

TSEND
SMS (ε, pn, vn) = ε

TSEND
SMS (sm sm∗, pn, vn) = TSEND

SM (sm, pn, vn) TSEND
SMS (sm∗, pn, vn)

The transformation TSEND
SM defined below takes a state machine, a port name, and a

variable name as input and returns a modified state machine. This transformation has
two cases. One case is concerned with state machines with final states, and the other case
is concerned with state machines without final states.

TSEND
SM (smn var∗ initial sn sn∗ final sn+ trans∗, pn, vn) =
smn var∗ initial sn sn∗ sn∗1 final sn+ trans∗1 ,

where 〈sn∗1 , trans∗1 〉 = TSEND
TS (trans∗, pn, vn), and

TSEND
SM (smn var∗ initial sn sn∗ trans∗, pn, vn) =
smn var∗ initial sn sn∗ sn∗1 trans∗1 ,

where 〈sn∗1 , trans∗1 〉 = TSEND
TS (trans∗, pn, vn).

The transformation TSEND
TS defined below takes a sequence of transitions, a port name,

and a variable name as input and returns a set of states and transitions. The resulting
transitions are used to replace the transitions provided as input.

TSEND
TS (ε, pn, vn) = 〈ε, ε〉

TSEND
TS (trans trans∗, pn, vn) = 〈sn∗1 sn∗2 , trans∗1 trans∗2 〉,

where 〈sn∗1 , trans∗1 〉 = TSEND
T (trans, pn, vn) and 〈sn∗2 , trans∗2 〉 = TSEND

TS (trans∗, pn, vn).

C.2. General Transformation 157

The transformation TSEND
T defined below takes a transition, a port name, and a

variable name as input and returns a set of states and transitions.

TSEND
T (tn from sn1 to sn2 send sgn() to pn, pn, vn) = 〈
sn3 sn4 sn5 sn6 sn7 ,
tn1 from sn1 to sn3 vn == 0
tn2 from sn3 to sn4 send sgn(1) to pn
tn3 from sn4 to sn5 vn == 2
tn4 from sn5 to sn6 send sgn(3) to pn
tn5 from sn6 to sn2 vn == 0
tn6 from sn4 to sn7 vn := 2
tn7 from sn7 to sn1 send sgn(4) to pn
〉,

where sn3 , sn4 , sn5 , sn6 , and sn7 are fresh state names and tn1 , tn2 , tn3 , tn4 , tn5 , tn6 ,
and tn7 are fresh transition names, and

TSEND
T (trans, pn, vn) = 〈ε, trans〉

otherwise.
Similar to the transformations defined above, transformations TREC

C , TREC
SMS , TREC

SM ,
TREC
TS , and TREC

T exists, which modify the classes, state machines, and transitions that
receive signals from a given port. Transformation TREC

T is defined as follows.

TREC
T (tn from sn1 to sn2 receive sgn() from pn, pn, vn) = 〈
sn3 sn4 sn5 sn6 sn7 ,
tn1 from sn1 to sn3 vn == 1
tn2 from sn3 to sn4 send sgn(2) to pn
tn3 from sn4 to sn5 vn == 3
tn4 from sn5 to sn2 send sgn(0) to pn
tn5 from sn4 to sn1 vn == 4
tn6 from sn1 to sn6 vn == 4
tn7 from sn6 to sn7 vn := 3
tn8 from sn7 to sn1 send sgn(0) to pn
〉,

where sn3 , sn4 , sn5 , sn6 , and sn7 are fresh state names and tn1 , tn2 , tn3 , tn4 , tn5 , tn6 ,
tn7 , and tn8 are fresh transition names, and

TREC
T (trans, pn, vn) = 〈ε, trans〉

otherwise.

C.2.1 Auxiliary State Machine
The transformations TSEND

C and TREC
C introduce an auxiliary state machine, which is

generated by the transformation TREADER
SM defined below. This transformation takes a

port name, a variable name, and a sequence of signal names as input and returns a new
state machine. This state machine has a transition for each of the signal names provided
as input.

TREADER
SM (pn, vn, sgn∗) = smn initial sn TREADER

TS (pn, vn, sgn∗, sn),

158 Two Transformations for SLCO

where smn is a fresh state machine name and sn is a fresh state name.
The transformation TREADER

TS defined below takes a port name, a variable name, a
state name, and a sequence of signal names as input and returns a list of transitions.
There are two cases for this transformation. One case deals with empty sequences of
transitions and one with non-empty sequences.

TREADER
TS (pn, vn, sgn∗, sn) = ε

TREADER
TS (pn, vn, sgn sgn∗, sn) = TREADER

T (pn, vn, sgn, sn) TREADER
TS (pn, vn, sgn∗, sn)

The transformation TREADER
T defined below takes a port name, a variable name, a

signal name, and a state name as input and returns a transition. This transition has the
state sn as its source and target state, and receives signals named sgn via port pn.

TREADER
T (pn, vn, sgn, sn) = tn from sn to sn receive sgn(vn) from pn,

where tn is a fresh transition name.

C.2.2 Signal Names
The state machine generated by transformation TREADER

SM contains a transition for each
signal sent over the channel that is replaced by transformation TGas . The transforma-
tion TNAMES

SMS defined below takes a sequence of state machines and a port name pn as
input, and returns the signal names that are sent and received via port pn.

TNAMES
SMS (ε, pn) = ε

TNAMES
SMS (sm sm∗, pn) = TNAMES

SM (sm, pn,) TNAMES
SMS (sm∗, pn)

The transformation TNAMES
SM defined below takes a state machine and a port name pn

as input, and returns the signal names that are sent and received via port pn.

TNAMES
SM (smn var∗ states trans∗) = TNAMES

TS (trans∗, pn)

The transformation TNAMES
TS defined below takes a sequence of transitions and a port

name pn as input, and returns the signal names that are sent and received via port pn.

TNAMES
TS (ε, pn) = ε

TNAMES
TS (trans trans∗, pn) = TNAMES

T (trans, pn) TNAMES
TS (trans∗, pn)

The function TNAMES
T defined below takes a transition and a port name pn as input.

If the transition sends or receive a signal via port pn, the signal name is returned.

TNAMES
T (tn from sn1 to sn2 send sgn() to pn, pn) = sgn

TNAMES
T (tn from sn1 to sn2 receive sgn() from pn, pn) = sgn

and
TNAMES
T (trans, pn) = ε

for all other transitions.

Appendix D

Correctness of a Transformation

This appendix presents a correctness proof of the simple version of the transformation for
SLCO that replaces a synchronous channel with an asynchronous channel. We use the
operational semantics of SLCO presented in Appendix B and the formal description of
the transformation presented in Section C.1. A more concise description of this proof is
given in Section 6.3.2.

D.1 Correctness Proof
In this appendix, we reason about an SLCO model m = mn class∗ obj ∗ chan∗ and a
unidirectional, synchronous channel chan = chn() sync from on1 .pn1 to on2 .pn2 ∈
chan∗. As discussed in Chapter 6, transformation TSas is considered to be correct if LTS (m)
and ρ(LTS (TS

as(m, chn))) are branching bisimilar [47] for some appropriate label-renaming
function ρ, where LTS (m) refers to the labeled transition system (LTS) of model m as
defined by the operational semantics described in Appendix B. First, we discuss the
label-renaming function ρ that corresponds to transformation TSas . Second, we list the
conditions for model m that must hold to ensure that LTS (m) and ρ(LTS (TS

as(m, chn)))
are branching bisimilar. Finally, we show that a branching bisimulation between LTS (m)
and ρ(LTS (TS

as(m, chn))) exists by defining a relation R and showing that R is a branching
bisimulation according to the definition given in Section 6.3.2.

D.1.1 Label-Renaming Function
The definition of transformation TSas given in Appendix C.1 defines that all transitions in
model m that send or receive signals over channel chan are replaced by transitions that
send or receive signals with a modified name. Let Sgn ⊆ SGN be the set of all signal
names that are passed over channel chan in model m. Without loss of generality, we
assume that all other channels in model m are used to pass signals with names not in Sgn.
If this is not the case, the signals passed over these other channels can be renamed. After
applying transformation TSas to model m, the set of names of signals that are passed

160 Correctness of a Transformation

over the modified channel chan ′ is Sgn ′ ∪ Sgn ′′, where Sgn ′ = {“s_” + sgn | sgn ∈ Sgn}
and Sgn ′′ = {“a_”+sgn | sgn ∈ Sgn}. The label-renaming function ρ that corresponds to
transformation TSas is defined as follows, for every sgn ′ ≡ “s_”+sgn and sgn ′′ ≡ “a_”+sgn
such that sgn ∈ Sgn.

• ρ(send sgn ′()) = τ
• ρ(receive sgn ′()) = sgn()
• ρ(send sgn ′′()) = τ
• ρ(receive sgn ′′()) = τ

Renaming ρ is straightforwardly extended on LTSs. By renaming the labels receive sgn ′()
to sgn(), for every sgn ′ ≡ “s_” + sgn such that sgn ∈ Sgn, we indicate that these
labels represent successful communication. The other labels are renamed to τ because
they represent the implicit synchronization in the source model and should result in
unobservable behavior of the target model.

D.1.2 Applicability Conditions
To ensure that LTS (m) and ρ(LTS (TS

as(m, chn))) are branching bisimilar, a number of
conditions must hold for model m. As mentioned above, the synchronous channel chan
connects two objects obj1 and obj2 . Each object obji is named oni and is an instance
of class classi with name cni , for i = 1, 2. We require that the following conditions hold
for m.

1. Channel chan is unidirectional, as mentioned above.

2. At most one state machine sm1 of object obj1 sends signals over channel chan.

3. At most one state machine sm2 of object obj2 receives signals over channel chan.

4. Object obj1 is the only instance of class class1 .

5. Object obj2 is the only instance of class class2 .

A model can be adapted with the model transformations described in Section 3.5.1 if these
conditions are not met. If the first condition does not hold, transformation Tuni can be
applied to replace a bidirectional channel with two unidirectional channels. Furthermore,
transformation Tex can be applied if the second or third condition is not met. It ensures
that each pair of state machines communicates over a channel that is used by these two
state machines only. Finally, the transformation that clones classes can be applied if the
last two conditions are not met.

Since only the behavior of the instances of classes class1 and class2 are affected by
transformation TSas and objects obj1 and obj2 are the only instances of these classes, the
behavior of all other objects is unchanged. Furthermore, because state machines sm1

and sm2 are the only state machines that communicate over channel chan, the behavior of
all other state machines is also unchanged. Finally, because channel chan is unidirectional,
state machine sm1 can only send signals over this channel, and state machine sm2 can
only receive signals over this channel.

161

D.1.3 Bisimulation Relation
We use cf = 〈m, sobjs , vglob , vloc , b〉 to represent a configuration of LTS (m) and cf ′ =
〈TS

as(m), s ′objs , v
′
glob , v

′
loc , b

′〉 to represent a configuration of ρ(LTS(TSas(m, chn))). Ac-
cording to the definition of branching bisimilarity, LTS (m) and ρ(LTS(TSas(m, chn)))
are branching bisimilar if their initial configurations are branching bisimilar. For each
configuration cf = 〈m, sobjs , vglob , vloc , b〉, including the initial configuration, a coun-
terpart cf ′ = 〈TS

as(m), s ′objs , v
′
glob , v

′
loc , b

′〉 exists such that sobjs = s′objs , vglob = v′glob ,
vloc = v′loc, b

′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = nil, and b = b′ otherwise.
Transformation TSas does not modify the initial states and the variables of a model.
It does, however, replace a unidirectional, synchronous channel with a bidirectional,
asynchronous channel. Therefore, according to the definitions concerning initialization
provided in Section B.4, the initial configuration cf ′i of ρ(LTS(TSas(m, chn))) is the coun-
terpart of the initial configuration cfi of LTS (m) as discussed above. Thus, if we prove
that a branching bisimulation exists between each configuration cf and its counterpart cf ′,
we prove that LTS (m) and ρ(LTS(TSas(m, chn))) are branching bisimilar.

For each sgn ∈ Sgn, transformation TSas modifies state machine sm1 by replacing each
transition

transssgn = tn from sns
1 to sns

2 send sgn() to pn

with two transitions

tn1 from sns
1 to sns

sgn send sgn1 () to pn and

tn2 from sns
sgn to sns

2 receive sgn2 () from pn,

where tn1 and tn2 are fresh transition names, sns
sgn is a fresh state name, sgn1 ≡

“s_” + sgn, and sgn2 ≡ “a_” + sgn. Similarly, for each sgn ∈ Sgn, each transition

transrsgn = tn from snr
1 to snr

2 receive sgn() from pn

of state machine sm2 is replaced with two transitions

tn1 from snr
1 to snr

sgn receive sgn1 () from pn and
tn2 from snr

sgn to snr
2 send sgn2 () to pn,

where tn1 and tn2 are fresh transition names, snr
sgn is a fresh state name, sgn1 ≡

“s_” + sgn, and sgn2 ≡ “a_” + sgn.
We define a relation R between configurations as follows: (cf , cf ′) ∈ R if and only if

vglob = v′glob , vloc = v′loc , and one of the following four conditions holds.

1. (a) sobjs = s′objs ,
(b) b′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = nil, and b′ = b otherwise;

2. (a) sobjs(on1)(smn1) = sns
1 , s′objs(on1)(smn1) = sns

sgn , sobjs = s′objs otherwise,
(b) b′(〈chn, on1 , on2 〉) = (sgn1 , ε), b′(〈chn, on2 , on1 〉) = nil, and b′ = b otherwise,

if there is a transition transssgn from state sns
1 and sgn1 ≡ “s_” + sgn;

3. (a) sobjs(on1)(smn1) = sns
2 , sobjs(on2)(smn2) = snr

2 , s′objs(on1)(smn1) = sns
sgn ,

s′objs(on2)(smn2) = snr
sgn , sobjs = s′objs otherwise,

(b) b′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = nil, and b′ = b otherwise,

if there is a transition transssgn to state sns
2 and a transition transrsgn to state snr

2 ;

162 Correctness of a Transformation

4. (a) sobjs(on1)(smn1) = sns
2 , s′objs(on1)(smn1) = sns

sgn , sobjs = s′objs otherwise,
(b) b′(〈chn, on1 , on2 〉) = nil, b′(〈chn, on2 , on1 〉) = (sgn2 , ε), and b′ = b otherwise,
if there is a transition transssgn to state sns

2 and sgn2 ≡ “a_” + sgn.

We prove that R is a branching bisimulation by distinguishing two cases. First, we
consider the case in which (cf1 , cf ′1) ∈ R and cf1

l−→MODEL cf2 . We distinguish four cases.

1. We assume that (cf1 , cf ′1) ∈ R according to the first condition stated above and
distinguish between the cases l 6≡ sgn() and l ≡ sgn(), for any sgn ∈ Sgn.

• In the first case, the transition cf1
l−→MODEL cf2 cannot be the result of syn-

chronous communication between state machines sm1 and sm2 . Thus, the
transition cf1

l−→MODEL cf2 is the result of some of the transitions of these two
state machines that are unaffected by the transformation or one or more transi-
tions of some of the other state machines in the model, which are also unaffected
by the transformation. Because transition cf1

l−→MODEL cf2 is the result of
behavior that is unaffected by the transformation, a transition cf ′1

l−→MODEL cf ′2
can also be made from configuration cf ′1 , and (cf2 , cf ′2) ∈ R according to the
first condition.
• In the second case, the transition cf1

sgn()−−→MODEL cf2 is the result of synchronous
communication between state machines sm1 and sm2 . According to the SOS
rule for synchronous communication, state machine sm1 has to be in a state sns

1

with an outgoing transition transssgn , and state machine sm2 has to be in a
state snr

1 with an outgoing transition transrsgn . After transformation, according
to the SOS rules for asynchronous communication, state machine sm1 can
make a transition from such a state sns

1 to a state sns
sgn and send a signal

over channel chan ′. This results in a transition cf ′1
τ−→MODEL cf ′2 , where the

label τ is the result of renaming the label send sgn1 (), and sgn1 ≡ “s_”+ sgn.
Furthermore, (cf1 , cf ′2) ∈ R according to the second condition. Next, state
machine sm2 can make a transition to a state snr

sgn and receive the signal
sent by state machine sm1 . This results in a transition cf ′2

sgn()−−→MODEL cf ′3 ,
where the label sgn() is the result of renaming the label receive sgn1 (),
and sgn1 ≡ “s_”+sgn. In configuration cf ′3 , state machine sm1 is in state sns

sgn

and state machine sm2 is in state snr
sgn . Thus, (cf2 , cf ′3) ∈ R according to the

third condition.

2. We assume that (cf1 , cf ′1) ∈ R according to the second condition stated above and
distinguish between the cases l 6≡ sgn() and l ≡ sgn(), for any sgn ∈ Sgn.

• In the first case, the transition cf1
l−→MODEL cf2 cannot result from behavior of

state machine sm1 , because this state machine can only send a signal over the
synchronous channel chan in a state sns

1 with an outgoing transition transssgn .
Thus, the transition cf1

l−→MODEL cf2 must result from behavior of one or
more other state machines. If the transition is the result of behavior of
state machine sm2 , then it must be the result of one of the transitions of
this state machine that are unaffected by the transformation, because the
affected transitions can only lead to synchronous communication. Furthermore,
all other state machines are unaffected by the transformation. Thus, the
same behavior can be performed in the transformed model, leading to a
transition cf ′1

l−→MODEL cf ′2 . Furthermore, since the values of sobjs(on1)(smn1)
and s′objs(on1)(smn1) remain the same, (cf2 , cf ′2) ∈ R.

163

• In the second case, according to the SOS rule for synchronous communication,
state machine sm2 has to be in a state snr

1 with an outgoing transition transrsgn .
After transformation, according to the SOS rules for asynchronous commu-
nication, state machine sm2 is able to receive the signal in the buffer that
corresponds to channel chan ′. This leads to a transition cf ′1

sgn()−−→MODEL cf ′2 ,
where the label sgn() is the result of renaming the label receive sgn1 (),
and sgn1 ≡ “s_”+sgn. In configuration cf2 , state machine sm1 is in state sns

2

and state machine sm2 is in state snr
2 . Furthermore, in configuration cf ′2 , state

machine sm1 is in state sns
sgn and state machine sm2 is in state snr

sgn . Thus,
(cf2 , cf ′2) ∈ R according to the third condition.

3. We assume that (cf1 , cf ′1) ∈ R according to the third condition stated above. If
transition cf1

l−→MODEL cf2 is the result of behavior of state machines that are
unaffected by the transformation, then cf ′1

l−→MODEL cf ′2 and (cf2 , cf ′2) ∈ R. Oth-
erwise, according to the SOS rules for asynchronous communication, state ma-
chine sm2 can make a transition from a state snr

sgn to a state snr
2 and send a

signal over channel chan ′, resulting in a transition cf ′1
τ−→MODEL cf ′2 , where the

label τ is the result of renaming the label send sgn2 (), and sgn2 ≡ “a_” + sgn.
Furthermore, (cf1 , cf ′2) ∈ R according to the fourth condition. Next, state ma-
chine sm1 can make a transition from a state sns

sgn to a state sns
2 and receive

the signal sent over channel chan ′, resulting in a transition cf ′2
τ−→MODEL cf ′3 ,

where the label τ is the result of renaming the label receive sgn2 (), and sgn2 ≡
“a_” + sgn. According to the first condition, (cf1 , cf ′3) ∈ R. Following the rea-
soning for the first case, each transition cf1

l−→MODEL cf2 either corresponds to a
transition cf ′3

l−→MODEL cf ′4 with (cf2 , cf ′4) ∈ R or two transitions cf ′3
τ−→MODEL cf ′4

and cf ′4
l−→MODEL cf ′5 with (cf1 , cf ′4) ∈ R and (cf2 , cf ′5) ∈ R.

4. We assume that (cf1 , cf ′1) ∈ R according to the fourth condition stated above.
If transition cf1

l−→MODEL cf2 is the result of behavior of state machine sm2 or
state machines that are unaffected by the transformation, then cf ′1

l−→MODEL cf ′2
and (cf2 , cf ′2) ∈ R. Otherwise, according to the SOS rules for asynchronous
communication, state machine sm1 can make a transition from a state sns

sgn

to a state sns
2 and receive the signal sent over channel chan ′, resulting in a

transition cf ′1
τ−→MODEL cf ′2 , where the label τ is the result of renaming the la-

bel receive sgn2 (), and sgn2 ≡ “a_” + sgn. According to the first condition,
(cf1 , cf ′2) ∈ R. Following a similar reasoning as in the case discussed above, transi-
tion cf1

l−→MODEL cf2 can be mimicked from configuration cf ′2 .

Second, we consider the case in which (cf1 , cf ′1) ∈ R and cf ′1
l−→MODEL cf ′2 . We distinguish

four cases.

1. We assume that (cf1 , cf ′1) ∈ R according to the first condition stated above.
If cf ′1

τ−→MODEL cf ′2 , then this transition must be the result of a transition of state
machine sm1 from a state sns

1 to a state sns
sgn , and the label τ must be the result of

renaming the label send sgn1 , where sgn1 ≡ “s_”+sgn. In that case, (cf1 , cf ′2) ∈ R
according to the second condition. Otherwise, the transition cf ′1

l−→MODEL cf ′2 is
the result of behavior of state machine sm2 or one of the state machines that
are unaffected by the transformation. In that case, the corresponding transi-
tion cf1

l−→MODEL cf2 must also exist for the original model, and (cf2 , cf ′2) ∈ R holds
according to the first condition.

164 Correctness of a Transformation

2. We assume that (cf1 , cf ′1) ∈ R according to the second condition stated above.
If cf ′1

sgn()−−→MODEL cf ′2 , then this transition must be the result of a transition of state
machine sm2 from a state snr

1 to a state snr
sgn , and the label sgn() must be the

result of renaming the label receive sgn1 , where sgn1 ≡ “s_” + sgn. In that case,
cf ′1

sgn()−−→MODEL cf ′2 and (cf2 , cf ′2) ∈ R according to the third condition. If this is
not the case, then the transition cf ′1

l−→MODEL cf ′2 is the result of behavior of state
machine sm2 that is unaffected by the transformation or behavior of one of the state
machines that are unaffected by the transformation. In that case, the corresponding
transition cf1

l−→MODEL cf2 must also exist for the original model, and (cf2 , cf ′2) ∈ R
holds according to the second condition.

3. We assume that (cf1 , cf ′1) ∈ R according to the third condition stated above.
If cf ′1

τ−→MODEL cf ′2 , then this transition must be the result of a transition of state
machine sm2 from a state snr

sgn to a state snr
2 , and the label τ must be the result of

renaming the label send sgn2 , where sgn2 ≡ “a_”+sgn. In that case, (cf1 , cf ′2) ∈ R
according to the fourth condition. Otherwise, the transition cf ′1

l−→MODEL cf ′2 is the
result of behavior one of the state machines that are unaffected by the transformation.
In that case, the corresponding transition cf1

l−→MODEL cf2 must also exist for the
original model, and (cf2 , cf ′2) ∈ R holds according to the third condition.

4. We assume that (cf1 , cf ′1) ∈ R according to the fourth condition stated above.
If cf ′1

τ−→MODEL cf ′2 , then this transition must be the result of a transition of state
machine sm1 from a state sns

sgn to a state sns
2 , and the label τ must be the result of

renaming the label receive sgn2 , where sgn2 ≡ “a_”+sgn. In that case, (cf1 , cf ′2) ∈
R according to the first condition. Otherwise, the transition cf ′1

l−→MODEL cf ′2 is the
result of behavior of state machine sm2 that is unaffected by the transformation or
behavior of one of the state machines that are unaffected by the transformation.
In that case, the corresponding transition cf1

l−→MODEL cf2 must also exist for the
original model, and (cf2 , cf ′2) ∈ R holds according to the fourth condition.

Appendix E

Case Studies Concerning Property Preservation

This appendix presents the case studies of Section 8.5 in more detail. We describe the
input models used for the experiments we performed and show how they are transformed.

E.1 ACS, 1394-fin, and Wafer Stepper
The ACS Manager along with Containers and Components is a part of the software
of the ALMA project, carried out by the European Southern Observatory [92]. The
intention of this project is to put more than 60 radio telescopes on a plane high up in
the mountains of Chili for radio astronomy. A specification of this system is part of the
official distribution of the mCRL2 toolset [49]. Figure E.1 describes a transformation of
the receive action (rcv) into a more detailed procedure involving decompression of the
received message. This rule was applied on the two components and one container present
in the specification. The other parties in the two-way synchronizations were essentially
left unchanged. However, by rewriting the action send to send′, we ensure that the rule
system is terminating, confluent, and synchronization uniform. Furthermore, the rule
system adds a synchronization rule stating that decompress can be fired by itself.

i

ii

rcv

ii

decompress

i

rcv'

iii

Figure E.1: A transformation rule refining the processing of received messages

The 1394-fin (Firewire) case and the Wafer Stepper case are two other mCRL2
specifications that have been transformed using rules very similar to this rule, but which
involve different numbers of transitions.

166 Case Studies Concerning Property Preservation

E.2 Broadcast
Broadcast is a system of fifteen processes communicating via three-party broadcast, i.e.
three processes at a time synchronize simultaneously. Figure E.2 shows two pairs of three
such processes. For each group of three processes, there is a synchronization rule that
states that actions a1, a2, and a3 synchronize.

13

14

15

23

24

25

33

34

35

a1 a2

a1 a2

a3

a3

73

74

75

83

84

85

93

94

95

a1 a2

a1 a2

a3

a3

Figure E.2: Groups of three processes that communicate via broadcast

Due to restrictions imposed by an implementation platform, a transformation that
breaks this down into a series of two-party synchronization might be desired. Three
transformation rules that refine a model in this way are shown in Figure E.3. After
transformation, new synchronization rules are introduced that define that a1′ and a2′,
and a2′′ and a3′ synchronize. This naive refinement does not preserve properties.

vii

vi

a3'

vi

vii

a3

i

ii

a1

iii

iv

a2

i

ii

a1'

iv

v

a2'

a2''

iii

Figure E.3: Transformation rules that replace a three-party broadcast by pairwise
communication

Improved versions of these transformation rules are shown in Figure E.4. Actions a2
and a3 are replaced by a2′ and a3′, respectively, to make the rule system terminating and
confluent. After transformation, new synchronization rules are introduced that define
that

• m1a1 and m2a1,
• c1a1 and c2a1,
• a1a1 and a2a1, and
• a2′ and a3′

synchronize. The dashed τ -transitions in Figure E.4 indicate that this transformation is
only property preserving if state i is matched on states that are diverging.

To check whether the transformation rules of Figure E.4 preserve properties, a number
of checks have to be performed. Figure E.5 show some of the LTSs that are used for

E.3. Alternating Bit Protocol 167

ix

viii

a3'

viii

ix

a3

i

ii

a1

i

iii

ii

c1a1m1a1

a1a1

iv

v

a2

iv

vi

v

vii

c2a1m2a1

a2'

a2a1

τ

τ

Figure E.4: Three improved transformation rules that replace a three-party broadcast by
pairwise communication

these checks. The LTSs in Figure E.5 are created from the left-hand sides of the three
transformation rules in Figure E.4. The tools Exp.Open and ltscompare of the mCRL2
toolkit cannot handle LTSs with multiple initial states. To be able to use these tools to
perform the checks, one initial state is added to each of the LTSs, as well as τ -transitions to
the original initial states. Figure E.5 also show the κ-loops that are added to the original
initial states. Each of the checks determines whether a network consisting of a combination
of LTSs created from the left-hand sides of transformation rules is divergence-sensitive
branching bisimilar with the network consisting of the corresponding LTSs created from
the right-hand sides, after hiding the appropriate actions in both networks.

0

i

ii

k0

a1

κ1

τ

ττ

1

iv

v

κ2

a2

κ3

τ
τ

2

viii

ix

κ4

a3

κ5

τ
τ

Figure E.5: Process LTSs of the left-hand sides of the transformation rules in Figure E.4

E.3 Alternating Bit Protocol
Figure E.6 shows two components, P and Q , which communicate via four buffers, B1 ,
B2 , B3 , and B4 . For the experiments described in Section 8.5, we analyzed a model
containing five instances of such a communicating system operating concurrently.

Figure E.6: Two components (P and Q) that communicate via four buffers (B1 to B4)

168 Case Studies Concerning Property Preservation

Figure E.7 show the process LTSs representing the six components. Process P performs
an action pa or an action qa, and then communicates with component Q via the buffers.
After receiving either an a or a b from P , process Q performs an action qa or an action qb.
Afterwards, Q acknowledges the message reception. The numbers in the action labels
represent the channels and indicate which actions synchronize. For example, actions s1a
and r1a synchronize.

(a) Process P (b) Process Q (c) Process B1

(d) Process B2 (e) Process B3 (f) Process B4

Figure E.7: Process LTSs of the components shown in Figure E.6

Figure E.8 shows two transformation rules that replace two of the buffers by two
processes that implement the alternating bit protocol. The alternating bit is encoded
by the added suffixes “t” and “f” in the transition labels. To make the rule system
synchronization uniform regarding the synchronization rules of the system, there are also
transformation rules for the other processes that only perform some simple renaming, for
instance to rename pa to pa′. Lossy communication is simulated by adding two versions
of the synchronization rules that specify how the actions representing communication
between components B1 and B2 synchronize. One version specifies that a pair of such
actions synchronize and lead to successful communication, and the other specifies that
an action that represents sending a message can also be performed independently. The
erroneous version of this transformation mentioned in Section 8.5 misses the loops on
states ix and xiv that represent the reception of messages with the wrong bit.

i

iv

r1a'

v

r1b'

r2f s2at

vi

r2t

r2f s2bt

r2t

vii

r1a'

viii

r1b'

r2f

r2t s2af

r2f

r2t s2bf

i

ii

r1a

iii

r1bs2a s2b

ix s2f r2af r2bf

xii

r2at

xiii

r2bt

xiv

s3a' s3b'

s2t r2at r2bt

xv

r2af

xvi

r2bf

s3a' s3b'

ix

x

r2a

xi

r2bs3a s3b

Figure E.8: Two transformation rules that replace buffers

Summary

From Napkin Sketches to Reliable Software
In the past few years, model-driven software engineering (MDSE) and domain-specific
modeling languages (DSMLs) have received a lot of attention from both research and
industry. The main goal of MDSE is generating software from models that describe
systems on a high level of abstraction. DSMLs are languages specifically designed to
create such models. High-level models are refined into models on lower levels of abstraction
by means of model transformations.

The ability to model systems on a high level of abstraction using graphical diagrams
partially explains the popularity of the informal modeling language UML. However, even
designing simple software systems using such graphical diagrams can lead to large models
that are cumbersome to create. To deal with this problem, we investigated the integration
of textual languages into large, existing modeling languages by comparing two approaches
and designed a DSML with a concrete syntax consisting of both graphical and textual
elements. The DSML, called the Simple Language of Communicating Objects (SLCO), is
aimed at modeling the structure and behavior of concurrent, communicating objects and
is used as a case study throughout this thesis. During the design of this language, we
also designed and implemented a number of transformations to various other modeling
languages, leading to an iterative evolution of the DSML, which was influenced by the
problem domain, the target platforms, model quality, and model transformation quality.

Traditionally, the state-space explosion problem in model checking is handled by
applying abstractions and simplifications to the model that needs to be verified. As an
alternative, we demonstrate a model-driven engineering approach that works the other
way around using SLCO. Instead of making a concrete model more abstract, we refine
abstract models by transformation to make them more concrete, aiming at the verification
of models that are as close to the implementation as possible. The results show that it is
possible to validate more concrete models when fine-grained transformations are applied
instead of coarse-grained transformations.

Semantics are a crucial part of the definition of a language, and to verify the correctness
of model transformations, the semantics of both the input and the output language must
be formalized. For these reasons, we implemented an executable prototype of the semantics
of SLCO that can be used to transform SLCO models to labeled transition systems (LTSs),
allowing us to apply existing tools for visualization and verification of LTSs to SLCO
models. For given input models, we can use the prototype in combination with these
tools to show, for each transformation that refines SLCO models, that the input and
output models exhibit the same observable behavior.

170 Summary

This, however, does not prove the correctness of these transformations in general. To
prove this, we first formalized the semantics of SLCO in the form of structural operational
semantics (SOS), based on the aforementioned prototype. Then, equivalence relations
between LTSs were defined based on each transformation, and finally, these relations
were shown to be either strong bisimulations or branching bisimulations. In addition
to this approach, we studied property preservation of model transformations without
restricting ourselves to a fixed set of transformations. Our technique takes a property
and a transformation, and checks whether the transformation preserves the property. If a
property holds for the initial model, which is often small and easy to analyze, and the
property is preserved, then the refined model does not need to be analyzed too.

Combining the MDSE techniques discussed in this thesis enables generating reliable
and correct software by means of refining model transformations from concise, formal
models specified on a high level of abstraction using DSMLs.

Curriculum Vitae

Personal Information
Name: Lucas Johannes Petrus (Luc) Engelen

Date of birth: October 7, 1981

Place of birth: Nijmegen, the Netherlands

Education
Technische Informatica 2000–2006

Eindhoven University of Technology

Eindhoven, the Netherlands

Atheneum 1994–2000

Jeanne D’Arc College

Maastricht, the Netherlands

Professional Experience
Researcher 2012–present

LaQuSo

Eindhoven, the Netherlands

PhD candidate 2008–2012

Eindhoven University of Technology

Eindhoven, the Netherlands

Junior researcher 2006–2008

Eindhoven University of Technology

Eindhoven, the Netherlands

IPA Dissertation Series

Titles in the IPA Dissertation Series since 2006

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of Hy-
brid Systems. Faculty of Mathematics and
Computer Science and Faculty of Mechan-
ical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics and
Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applications.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML programs.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci-
ences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-11

L. Cheung. Reconciling Nondeterminis-
tic and Probabilistic Choices. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods
and protocol standardization. Faculty of
Mathematics and Computer Science, TU/e.
2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML. Faculty of Science,
Mathematics and Computer Science, RU.
2006-16

174 IPA Dissertation Series

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science, RU.
2006-18

L.C.M. van Gool. Formalising Interface
Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels
for Exogenous Coordination of Distributed
Systems: Semantics, Implementation and
Composition. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormalities
in Locally Autonomous Distributed Sys-
tems. Faculty of Mathematics and Com-
puting Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com-
puter Science, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and Cov-
erage. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe-
matics and Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty of
Mathematics and Computer Science, TU/e.
2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics and
Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information
in Software Development Processes. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in Time.
Faculty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty of
Mathematics and Computer Science, TU/e.
2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathematics,
and Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electri-
cal Engineering, Mathematics, and Com-
puter Science, TUD. 2007-16

175

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Math-
ematics and Computer Science, TU/e.
2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty of
Mathematics and Computer Science, TU/e.
2007-18

M.A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty of
Mathematics and Computer Science, TU/e.
2007-19

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Mathe-
matics and Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechani-
cal Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and
Assimilation of Language Conglomerates.
Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification of
Optimistic Fair Exchange Protocols. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing Ma-

chines. Faculty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty of
Mathematics and Computer Science, TU/e.
2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi-
cations Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and Com-
mitments. Faculty of Science, Mathematics
and Computer Science, RU. 2008-14

P.E.A. Dürr. Resource-based Verifica-
tion for Robust Composition of Aspects.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechanical
Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream Pro-
cessing Systems. Faculty of Mathematics
and Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

176 IPA Dissertation Series

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and Con-
straint Solving. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for Car-
tographic Applications. Faculty of Math-
ematics and Computer Science, TU/e.
2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty of
Mathematics and Natural Sciences, UL.
2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Natural
Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting
and Its Certification. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-
uation. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2008-29

M.H.G. Verhoef. Modeling and Validat-
ing Distributed Embedded Real-Time Con-
trol Systems. Faculty of Science, Mathe-
matics and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of Math-
ematics and Computer Science, TU/e.
2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applications.
Faculty of Electrical Engineering, Math-
ematics, and Computer Science, TUD.
2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready for
Prime Time. Faculty of Science, UU.
2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2009-11

177

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science, TU/e.
2009-20

T. Han. Diagnosis, Synthesis and Analy-
sis of Probabilistic Models. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences, UL.
2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Faculty
of Mathematics and Natural Sciences, UL.
2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA.
2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science, UvA.
2010-05

178 IPA Dissertation Series

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences, UL.
2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Imple-
mentations and Applications. Faculty of
Mathematics and Natural Sciences, UL.
2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathemat-
ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Genera-
tion with Templates. Faculty of Mathemat-
ics and Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory of
Multi-Agent Systems Refinement. Faculty
of Mathematics and Natural Sciences, UL.
2011-04

J. Proença. Synchronous coordination of
distributed components. Faculty of Mathe-
matics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science, TU/e.
2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty of
Mathematics and Computer Science, TU/e.
2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty of
Mathematics and Computer Science, TU/e.
2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2011-14

M. Raffelsieper. Cell Libraries and Veri-
fication. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15

179

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Verifi-
cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transforma-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science, RU.
2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Faculty
of Mathematics and Natural Sciences, UL.
2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational
Security Policies: Theory and Practice.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Ver-
ification of Wireless Sensor Networks and
Abstraction Learning for System Inference.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics and
Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional
Interchange Format for Hybrid Systems:
Design and Implementation. Faculty of
Mechanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means of
Annotated Graph Mining Algorithms. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of Mathemat-
ics and Computer Science, TU/e. 2012-11

	Acknowledgements
	Table of Contents
	Introduction
	Problem Statement
	Research Questions
	Outline and Origin of Chapters
	Suggested Method of Reading

	Integrating Textual and Graphical Modeling Languages
	Introduction
	UML Activities and Surface Languages
	Specification of the Surface Language
	Grammarware
	Modelware
	Other Applications of our Approach
	Case Study
	Related Work
	Conclusions and Future Work

	Simple Language of Communicating Objects
	Metamodel
	Concrete Syntax
	Target Languages
	Semantic Gaps and Platform Gaps
	Model Transformations
	Sequences of Transformations
	Simplified SLCO
	Implementation

	Exploring the Boundaries of Model Verification
	Introduction
	Approach
	Comparison of Transformations
	Experiments
	Discussion
	Related Work
	Conclusions and Future Work

	Prototyping the Semantics of a Domain-Specific Modeling Language
	Introduction
	Prototyping Semantics
	Visualization
	Verification
	Related Work
	Conclusions and Future Work

	Reusability and Correctness of Endogenous Model Transformations
	Introduction
	Model Transformations for SLCO
	Correctness of Model Transformations
	Related work
	Conclusions and Future Work

	Evolution of a Domain-Specific Modeling Language
	Introduction
	Development Process
	Evolution
	Related Work
	Conclusions and Future Work

	Checking Property Preservation of Refining Transformations
	Introduction
	Background
	LTS Transformations
	Checking Property Preservation
	Experimental Results
	Related Work
	Conclusions and Future Work

	Conclusions
	Contributions
	Future Work

	Bibliography
	Software Tools
	ASF+SDF and the Meta-Environment
	openArchitectureWare
	ATL Transformation Language
	Dot and Graphviz

	Operational Semantics of SLCO
	Syntax
	Semantics
	State Machines
	Initialization

	Two Transformations for SLCO
	Simple Transformation
	General Transformation

	Correctness of a Transformation
	Case Studies Concerning Property Preservation
	ACS, 1394-fin, and Wafer Stepper
	Broadcast
	Alternating Bit Protocol

	Summary
	Curriculum Vitae
	IPA Dissertation Series

