275 research outputs found

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    Embodied neuromorphic intelligence

    Full text link
    The design of robots that interact autonomously with the environment and exhibit complex behaviours is an open challenge that can benefit from understanding what makes living beings fit to act in the world. Neuromorphic engineering studies neural computational principles to develop technologies that can provide a computing substrate for building compact and low-power processing systems. We discuss why endowing robots with neuromorphic technologies – from perception to motor control – represents a promising approach for the creation of robots which can seamlessly integrate in society. We present initial attempts in this direction, highlight open challenges, and propose actions required to overcome current limitations

    Neuromorphic Computing Systems for Tactile Sensing Perception

    Get PDF
    Touch sensing plays an important role in humans daily life. Tasks like exploring, grasping and manipulating objects deeply rely on it. As such, Robots and hand prosthesis endowed with the sense of touch can better and more easily manipulate objects, and physically collaborate with other agents. Towards this goal, information about touched objects and surfaces has to be inferred from raw data coming from the sensors. The orientation of edges, which is employed as a pre-processing stage in both artificial vision and touch, is a key indication for object discrimination. Inspired on the encoding of edges in human first-order tactile afferents, we developed a biologically inspired, spiking models architecture that mimics human tactile perception with computational primitives that are implementable on low-power subthreshold neuromorphic hardware. The network architecture uses three layers of Leaky Integrate and Fire neurons to distinguish different edge orientations of a bar pressed on the artificial skin of the iCub robot. We demonstrated that the network architecture can learn the appropriate connectivity through unsupervised spike-based learning, and that the number and spatial distribution of sensitive areas within receptive fields are important in edge orientation discrimination. The unconstrained and random structure of the connectivity among layers can produce unbalanced activity in the output neurons, which are driven by a variable amount of synaptic inputs. We explored two different mechanisms of synaptic normalization (weights normalization and homeostasis), defining how this can be useful during the learning phase and inference phase. The network is successfully able to discriminate between 35 orientations of 36 (0 degree to 180 degree with 5 degree step increments) with homeostasis and weights normalization mechanism. Besides edge orientation discrimination, we modified the network architecture to be able to classify six different touch modalities (e.g. poke, press, grab, squeeze, push, and rolling a wheel). We demonstrated the ability of the network to learn appropriate connectivity patterns for the classification, achieving a total accuracy of 88.3 %. Furthermore, another application scenario on the tactile object shapes recognition has been considered because of its importance in robotic manipulation. We illustrated that the network architecture with 2 layers of spiking neurons was able to discriminate the tactile object shapes with accuracy 100 %, after integrating to it an array of 160 piezoresistive tactile sensors where the object shapes are applied

    Soft eSkin:distributed touch sensing with harmonized energy and computing

    Get PDF
    Inspired by biology, significant advances have been made in the field of electronic skin (eSkin) or tactile skin. Many of these advances have come through mimicking the morphology of human skin and by distributing few touch sensors in an area. However, the complexity of human skin goes beyond mimicking few morphological features or using few sensors. For example, embedded computing (e.g. processing of tactile data at the point of contact) is centric to the human skin as some neuroscience studies show. Likewise, distributed cell or molecular energy is a key feature of human skin. The eSkin with such features, along with distributed and embedded sensors/electronics on soft substrates, is an interesting topic to explore. These features also make eSkin significantly different from conventional computing. For example, unlike conventional centralized computing enabled by miniaturized chips, the eSkin could be seen as a flexible and wearable large area computer with distributed sensors and harmonized energy. This paper discusses these advanced features in eSkin, particularly the distributed sensing harmoniously integrated with energy harvesters, storage devices and distributed computing to read and locally process the tactile sensory data. Rapid advances in neuromorphic hardware, flexible energy generation, energy-conscious electronics, flexible and printed electronics are also discussed. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’

    An AER-Based Actuator Interface for Controlling an Anthropomorphic Robotic Hand

    Get PDF
    Bio-Inspired and Neuro-Inspired systems or circuits are a relatively novel approaches to solve real problems by mimicking the biology in its efficient solutions. Robotic also tries to mimic the biology and more particularly the human body structure and efficiency of the muscles, bones, articulations, etc. Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Spiking Neural Network Based on Threshold Encoding For Texture Recognition

    Get PDF
    This paper presents a neuromorphic computing model that classifies material textures using a neural coding scheme based on threshold encoding. The proposed threshold encoding converts raw tactile data of each texture into an eventbased data highlighting the spatio-temporal features needed to recognize human touch. Achieved results show that the model can categorize the input tactile signals into their corresponding material textures with high accuracy and fast inference. This work paves the way toward employing the proposed encoding method in more complex tactile based applications from the theoretical and hardware implementation aspects

    AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-02Ministerio de Ciencia y Tecnología TIC2000-0406-P4- 0

    Biomimetic tactile sensing

    Get PDF
    corecore