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Abstract

Touch sensing plays an important role in humans daily life. Tasks like exploring,

grasping and manipulating objects deeply rely on it. As such, Robots and hand prosthesis

endowed with the sense of touch can better and more easily manipulate objects, and

physically collaborate with other agents. Towards this goal, information about touched

objects and surfaces has to be inferred from raw data coming from the sensors. The

orientation of edges, which is employed as a pre-processing stage in both artificial

vision and touch, is a key indication for object discrimination. Inspired on the encoding

of edges in human first-order tactile afferents, we developed a biologically inspired,

spiking models architecture that mimics human tactile perception with computational

primitives that are implementable on low-power subthreshold neuromorphic hardware.

The network architecture uses three layers of Leaky Integrate and Fire neurons to

distinguish different edge orientations of a bar pressed on the artificial skin of the

iCub robot. We demonstrated that the network architecture can learn the appropriate

connectivity through unsupervised spike-based learning, and that the number and

spatial distribution of sensitive areas within receptive fields are important in edge

orientation discrimination. The unconstrained and random structure of the connectivity
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among layers can produce unbalanced activity in the output neurons, which are driven

by a variable amount of synaptic inputs. We explored two different mechanisms of

synaptic normalization (weights normalization and homeostasis), defining how this can

be useful during the learning phase and inference phase. The network is successfully

able to discriminate between 35 orientations of 36 (0o to 180o with 5o step increments)

with homeostasis and weights normalization mechanism. Besides edge orientation

discrimination, we modified the network architecture to be able to classify six different

touch modalities (e.g. poke, press, grab, squeeze, push, and rolling a wheel). We

demonstrated the ability of the network to learn appropriate connectivity patterns

for the classification, achieving a total accuracy of 88.3 %. Furthermore, another

application scenario on the tactile object shapes recognition has been considered

because of its importance in robotic manipulation. We illustrated that the network

architecture with 2 layers of spiking neurons was able to discriminate the tactile object

shapes with accuracy 100 %, after integrating to it an array of 160 piezoresistive tactile

sensors where the object shapes are applied.
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Chapter 1

Introduction

1.1 Motivation

Recent technological advances have shifted the role of robots from simple industrial

tools in controlled environments to intelligent devices that can assist humans and

interact with the environment [1]. Several applications have emerged of robots’

simulation of human behavior such as humanoids, medical robots, artificial limbs, and

social robots. This shift creates new challenges that must be addressed to ensure safe

and efficient interaction between robots and humans while providing manufacturing,

entertainment, education, healthcare and healthcare services. In order to acquire

autonomous learning, safe operations, and work in unpredictable environments, robots

are made capable of navigating their environment through the equipment of sensory

tools. One particular example of such sensory tools that play a critical role in shaping

interactions with the environment is tactile perception [2]. For robots to acquire efficient

1



2 Chapter 1. Introduction

tactile perceptions, they are expected to perform complex tasks such as distinguishing

between different edge orientations, differentiation between different touch modalities,

grasping objects of different shapes and sizes. Therefore, robots and hand prostheses

endowed with the sense of touch can better and more easily manipulate objects and

physically collaborate with other agents.

Evidently, tactile sensing in biological systems has superior performance and robustness.

Human mechanoreceptors are distributed along the skin with complex overlapping

receptive fields [3–5]. Different from the case of visual receptive fields, a common

agreement on tactile receptive fields are still missing. Studies suggested that the tactile

receptive fields are similar to the visual ones but shaped differently due to the different

stimuli they interface to. Vision seems to handle more natural scenes with several

objects, and a heterogeneous background, while touch is mainly related to surface

textures and regular repetitions. Therefore, an analysis to define how the sensitive

areas (mechanoreceptors) of receptive fields are distributed on the skin is needed, in

order to design artificial skin with pre-processing embedded capabilities.

A particular study in the field of neuromorphic engineering is dedicated to the em-

ulation of the neuronal function and organization of the human nervous systems in

electronic devices in the aim of advancing the efficiency and robustness of compu-

tational interactions with environments. Mimicking the communicative function of

neurons’ action potentials through spikes that encode and propagate information, rep-

resents an example of such emulations [6]. Neuromorphic and event-driven sensors

are modeled based on biological models to perform the function of dealing with stimuli

2
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from the environments as spikes. Besides sensors, bio-inspired computational frame-

works such as spiking neural networks have also been developed [7]. By modeling the

complex dynamics of spiking neurons, learning and plasticity mechanisms observed

in biology can be implemented. Moreover, a neuromorphic approach of integrating

the hardware sensory system along with spiking neuron models mimics the behavior

of human mechanoreceptors and could perform computations much faster than con-

ventional computers, while drawing significantly less power. There is thus potential to

revolutionize the field of tactile sensing through the use of neuromorphic principles

and hardware.

1.2 Objectives

Motivated by the efficiency of biological systems in processing information, we aim

to study and develop a biologically inspired, spiking models architecture that mimics

human tactile perception with computational primitives that are implementable on

low-power subthreshold neuromorphic hardware. More specifically, the model archi-

tecture aimed to solve the problem of stimulus orientation detection, touch modalities

classification, and object shape classification. The model consists of necessary sensors

(e.g. capacitive sensors from iCub robot, piezoresistive sensors) and spiking neural

network of Leaky Integrate and Fire neurons; the output analog signals from sensors

are used as an input to the spiking neural network that process and convert them to

neuromorphic spikes trains, and algorithms that interpret them through spike driven

3
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learning mechanisms. Several objectives are listed as follows, which will enable the

successful fulfillment of the project:

1. Development of neuromorphic spiking neural network for analysis of tactile

information and capable of distinguishing different stimulus applied on skin patch

that consists of 160 sensors. We aim to develop intelligent SNN that can be

endowed with spike-driven learning capability and adaptation.

2. Exploration different topologies of the overlapping (and interleaved) receptive

fields, defining how the single sensitive areas (mechanoreceptors) are distributed

in the receptive fields. We aim to find optimal distribution of mechanoreceptors

in receptive fields for increasing the orientation acuity by applying a methodology

that based on mutual information theory.

3. Endowing the spiking neural network with biologically inspired spike driven

learning rule for interpretation and distinguishing between different stimuli.

We aim to examine whether the model can build the appropriate connectivity

patterns through local unsupervised and supervised spike-driven learning that

exploits the temporal coincidence of input spikes and neuron‘s activity in three

different application scenarios as follow: (1) edge orientation selectivity, (2)

touch modalities classification, and (3) object shape recognition.

4. Investigating different synaptic normalization mechanisms that act on all synaptic

weights to change the synaptic drive of the neuron and stabilize its activity during

the learning procedure and at the inference phase. We aim to solve classification

4
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problems in SNN‘s with edge orientation application that allow the synaptic

weights to change progressively during learning converging to stable connectivity

patterns, increasing the spatial acuity of the network.

5. Validating the neuromorphic spiking neural network on different application

scenarios to assess the generalization of the achieved results.

1.3 Contributions

The major contributions of this thesis are listed below:

1. Developed a neuromorphic architecture model composed of three layers of Leaky

Integrate and Fire neurons that used the output of necessary sensors distributed

along a artificial skin patch as an input. We demonstrated that the patch of skin

and the first layer of the SNN models the output of biological SA-1 mechanore-

ceptors, the second layer gathers the high-dimensional input of the previous layer

into a compressed representation, and the third layer neurons responsible for

decoding the stimuli presented. Moreover, the architecture is based on compu-

tational primitives that have a correspondent hardware implementation using

neuromorphic sub-threshold CMOS technology.

2. Proposed an approach for estimating the optimal distribution of sensitive areas

in receptive fields for increasing the orientation acuity. We demonstrated that

the receptive fields created by randomly selecting sensitive points perform better

5
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than structured receptive fields with uniform distribution in discriminating small

angles (down to 5 degrees with edge length equal to 11 cm ), as well as the

orientation discrimination, gracefully degrades with decreasing edge length (up

to 60° with edge length equal to 1cm). Moreover, we show the robustness of the

model to edge orientation encoding when the receptive field’s density decreases,

where nine sensors connected to each receptive field with random distribution

were enough to encode eight different stimulus orientations applied on the skin

patch.

3. Developed an unsupervised spike-driven learning algorithm (Spike Driven Synap-

tic Plasticity) that responds to spatio-temporal spikes patterns with temporal

coincidence. As a learning rule, we implemented a biologically plausible model

that exploits the temporal correlation of input spikes and neuron‘s activity. We

demonstrated that the network endowed with SDSP learning rule can learn an

appropriate connectivity pattern for edge orientation selectivity, as well as the

network is able to discriminate between different orientations with an angular

resolution of 5 o.

4. Deployed synaptic normalization mechanisms to achieve robust and adaptive net-

work architecture. It was verified that the developed system is capable of adapting

to changes in sensor pressure. We demonstrated that under the edge orientation

classification application scenario, in the developed network with weights normal-

ization mechanism the current magnitude of each synapse changed, depending
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on how many active synapses were connected to the decoder layer neuron. This

allows the synaptic weights to change progressively during the learning phase

converging to stable connectivity patterns, increasing the spatial acuity of the

network. In addition, the main advantage of the homeostasis mechanism over

the weights normalization mechanism is that the homeostasis performs better

with stimuli with varying pressure. In the constant pressure stimuli, both the

weights normalization and the homeostasis networks act the same both detecting

thirty-five orientations. However, in the varying pressure stimuli, the homeostasis

network outperforms the weights normalization by detecting 35 orientations

compared to 31 orientations detected by the weights normalization network.

5. Developed a supervised spike time dependent plasticity (STDP) that responds to

spatio-temporal spikes patterns with temporal coincidence. As a learning rule, we

implemented a SNN model that exploits the temporal correlation of input spikes

and neuron‘s activity. We show that the SNN network endowed with supervised-

STDP can learn an appropriate connectivity pattern for classification of touch

modalities and object shapes. The proposed network achieves a total accuracy of

88.3% for classifying six different touch modalities. Moreover, the network with

two layers has the ability to differentiate between 11 different object shapes with

total accuracy equal to 100%.

7
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1.5 Organization of the Thesis Document

The rest of the thesis is organized as follows:

Chapter 2 provides an overview of biological and artificial tactile sensing. A detailed

overview of applications and studies conducted in the state-of-art in the field of feature

extraction and edge orientation selectivity.

Chapter 3 introduces our neuromorphic approach for the recognition and classification

of tactile patterns. A detailed description of our experimental setup and network

architecture for each of the following applications: (1) edge orientation selectivity, (2)

touch modalities classification, and (3) object shape recognition.

Chapter 4 provides analysis for estimating the optimal distribution of sensitive areas

in receptive fields for increasing the orientation acuity. A detailed description of

experimental procedures and obtained results are provided.

Chapter 5 illustrates the methodologies that we adopted to construct a neuromorphic

spiking neural network that can learn complex patterns using only neurons, synapses,

and local learning. learning procedures, synaptic normalization mechanisms, and

results for solving edge orientation detection problems are provided. A detailed descrip-

tion of the learning and infeering procedures for solving touch modalities and object

shapes classification problems, along with results obtained are also provided in this

chapter.

Chapter 6 concludes this thesis, summarizes major contributions and presents possible

research directions for further investigation.
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Chapter 2

Literature Review

2.1 Introduction

The sense of touch plays a critical role in enabling human beings to interact with the

surrounding environments. As robots move from laboratories to domestic environments,

they are expected to be endowed with a similar tactile ability to perform complicated

tasks such as manipulating objects with arbitrary unknown shapes. In the past decade,

tremendous effort and progress have been made to mimic the sense of touch in human

beings on robotic systems. In this chapter, we will provide an review of the human

sense of touch (Sec. 2.2), followed by a review of the artificial sense of touch (Sec. 2.3).

Finally, we will provide an overview of application and studies conducted in the state-

of-art in the field of feature extraction and edge orientation selectivity (Sec. 2.4).

11
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2.2 Human Sense of Touch

2.2.1 Introduction

What if we had all forms of perception except for "touch"? Various object exploration

experiments can answer this question through, for example, soaking hands in ice for an

extended period of time. In [8], the authors found that it was difficult for a group of

subjects to grasp objects in a stable manner after anesthetizing the skin on their hands

during the experiments. Furthermore, when the sense of touch is lost, movements

become imprecise and unstable. In a separate and unique experiment conducted on

astronauts at the International Space Station, the vibro-tactile signals supplied via

"sense of touch" appeared to be highly predictive of direction and spatial disorientation

[9].

Effectively, "sense of touch" can help evaluate the attributes of an object, including

its size, shape, texture, and temperature. This evaluation can manifest itself through

detecting slips and developing perceptions of the body while rolling the object between

fingers without dropping it, and therefore distinguishing between "I" and "I am not".

Sense of touch also helps avoid injuries and dangers by alerting us to physical trauma

situations through activating a sensation of pain. It can also act as a mediator for

sharing and communicating emotions through social interactions. Therefore, without

the sense of touch or an alternative type of sensing modality, there would be a wider

gap between what is detected and what is perceived.

12
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There are two primary subcategories of the human sense of touch—the main difference

between the two depends on the location of sensory input. The first sub-form refers to

the “cutaneous” sense which corresponds to receiving sensory input from skin receptors

and is responsible for detecting pressure, temperature and pain [10]. The second

sub-form is the “kinesthetic” sense which entails receiving input from sensory receptors

located in the muscles, tendons, and joins; this functions to help approximate the

position and orientation of limbs in space [11]. For the purpose of this thesis, we will

primarily be concerned with cutaneous tactile perception. The process of human touch

sensation is highly decentralized and encompasses all body areas. Triggered by contact

with an object, cutaneous mechanoreceptors on the skin transform mechanical impulses

to electrical action potentials (i.e., spikes) which then deliver sensory information to

the Central Nervous System (CNS). Subsequently, this information is communicated

to the primary somatosensory cortex by neural afferents and then projected onto the

secondary somatosensory cortex for decoding. Ultimately, this information permits

individuals to detect object qualities, such as shape, stiffness, texture, curvature, and

orientation among other properties [12]. The remainder of this section will provide an

overview of the mechanoreceptors found in the human skin (Sec. 2.2.2) followed by a

section on the tactile pathway and information processing (Sec. 2.2.3).

2.2.2 Mechanoreceptors

There are different receptors positioned on the skin that mediate tactile sensing through

managing responses to external stimuli. While Mechanoreceptors are responsible

13
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for responding to mechanical stimuli, other receptors handle thermal gradients (i.e.,

thermoceptors) and pain triggered by mechanical, thermal or chemical stimuli (i.e.,

nociceptors). However, given that the latter are not as relevant for tactile sensation

[3], we will mainly focus on mechanoreceptors and their role in mechanical touch.

Positioned in the outmost layers of the skin, mechanoreceptors are innervated by neural

afferents that transfer tactile sensory information to the primary somatosensory cortex.

Mechanoreceptors convert mechanical stimuli into sequences of electrical discharges

which get propagated to the central nervous system for further processing. The four

principle tactile mechanoreceptors in the human skin are: Merkel‘s disks, Meissner‘s

corpuscles, Ruffini endings, and Pacinian corpuscale. Each receptor is uniquely con-

cerned with specific stimuli. While the Merkel’s disks and Missner corpuscles receptors

are situated near the surface of the skin, neighboring the epidermis, the Ruffini endings

and Pacinian corpuscles are rooted more deeply in the dermis and subcutaneous tissue.

Additionally, the various mechanoreceptors are differentially concentrated where the

Meissner’s corpuscles are the most common, comprising 40 % of the mechanoreceptors

in the human hand, while Merkel cells comprise 25 % and the Pacinian corpuscles

comprise 10-15 % (See Figure 2.1 for illustration).

Mechanoreceptors can be categorized into two subcategories, slowly adapting (SA) and

fast adapting (FA), with each having separate functionalities and receptive fields [3, 4].

The first point of distinction between the two is that SA mechanoreceptors maintain

activity during the entire period that a mechanical stimulus is detected; however, FA

mechanoreceptors’ response is more intermittent, witnessing surges of action potentials

14
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Ruffini
Ending

Merkel`s Disk
Meissner`s Corpuscle

Pacinian 
Corpuscle

Figure 2.1 Schematic representation of mechanoreceptors in human skin.

exclusively upon the initial application of the preferred stimuli and then upon its

removal [5].

In turn, the FA and SA receptors can also be categorized into two distinct subcategories

according to their receptive field properties. Type I FA receptors refer to Meissner

corpuscles which are located close to surface level on the skin and are especially

concentrated around fingertips (about 140 units/cm2). With small receptive fields that

constitute multiple maximal-sensitivity zones disseminated across a circular or oval

area of 5-9 epidermal ridges, these receptors could detect relatively high-frequency

dynamic skin deformations along with vibrations with low frequencies, flutter slip and

motion. On the other hand, located deeper in the dermal and subdermal fibrous tissue,

15
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Type II FA receptors correspond to Pacini corpuscles which innervate the hand in less

density (of approximately 20 units/cm2) [4]. With a wider receptive field and one

exclusive maximal-sensitivity zone, these receptors are activated when objects held by

the hand come in contact, or lose contact, with other objects.

As for SA receptors, Type I is signified by Merkel discs which are located close to the

surface level in the skin (with a density of about 70 units/cm2) and are linked to

sensory nerve endings [4]. These receptors have multiple maximal-sensitivity zones,

are activated by lower-frequency skin deformations, and are especially important for

discriminating texture and fine form detection. Additionally, their discharge rate is

identified as irregular upon the introduction of continuous stimuli. Finally, Type II,

which refer to Ruffini endings, are positioned more deeply within the subcutaneous

tissue and are responsible for detecting shape along with kinesthetic sense and percep-

tion of finger and joint position and movement [4]. These receptors hold one exclusive

maximal-sensitivity zone and show a regular discharge rate upon sustaining stimulation.

Table 2.1 presents a summary of the characteristics of each mechanoreceptor [13].

Pacinian
Corpuscle

Ruffini
Corpuscle

Merkel
Cell

Meissner‘s
Corpuscle

Sensation pressure, fast,
vibration, and
tickling

stretching of
skin and deep
pressure

fine touch
and pressure

fine touch,
pressure, and
slow vibration

Receptive Field

Adaptation
Adaptation rate Fast Slow Fast Slow

Table 2.1 Characteristics of human mechanoreceptors.
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2.2.3 Tactile Pathway and Information Processing

Upon contact with an object, the skin conforms and maintains the same local contour

as the surface touched. This deformation is projected to a population of receptors in the

skin, each responsible for a small area of the contour. The mechanoreceptors defined in

Sec. 2.2.2 then respond to their respective preferred stimulus (i.e. static or dynamic

stress/strain) by emitting action potentials. This signifies that no single afferent or class

of afferents can provide the complete information of the contact event. These action

potentials are then transferred to the brain using peripheral nerves that enter the spinal

cord through the dorsal root [14].

The transfer of tactile information follows two separate pathways in the spinal cord,

the medial lemniscal pathway and the spinothalamic pathway. The medial lemniscal

pathway is dedicated to signals from the four cutaneous mechanoreceptive afferents

that innervate the glabrous skin. The signals approach the spinal cord through the

dorsal root ganglia and move up towards the ipsilateral posterior column until they

synapse onto neurons in the cuneate nucleus which is located within the dorsal column

nuclei of the lower brainstem. The neurons then process the tactile afferent information

received form the mechanoreceptors and subsequently propagate this information to

the thalamus and somatosensory cortex in the brain [15, 16]. It is along this sensory

pathway that the decoding of the sensory information takes place, beginning with the

mechanoreceptors, neurons of the medial lemniscal pathway, and somatosensory cortex

to the brain which ultimately perceives and makes sense of the information [17, 18].

17
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There are various tactile sub-modalities and afferent types through which stimulus

information is presented. While different afferent types collaboratively convey tactile

information, they differ in the ways they follow to convey this information. In their

article, Jorntell et al.[18] showed that cuneate neurons uniquely respond to sensory

inputs, which proposes that each neuron holds a distinct task-related combination of

input features. Additionally, Pruszynski et al. [19] presented results that suggested

that Type I, FA and SA, receptors are selectively sensitive to the orientation of edges.

There are various differentially-distributed transduction sites corresponding to these

receptors; this produces complex receptive fields that are highly sensitive to specific

edge orientations. As such, the results indicate that the site of tactile information

processing is not exclusively in the brain and central nervous system, but occurs along

the tactile pathway during the transmission of sensory information

2.3 Artificial Sense of Touch

2.3.1 Introduction

The sense of touch is an important gateway to interact with the environment [1].

Robots and hand prosthesis endowed with the sense of touch can better and more

easily manipulate objects and physically collaborate with other agents. Even though

autonomous robots mainly rely on some form of visual perception to interact with the

surrounding environment, there are tasks that would be impossible or too complicated

without the sense of touch [20].

18
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To acquire contact information from visual input necessitates complex 3D scene resolu-

tion which challenges the effectivity of robots in dynamic environments. In effect, there

are many benefits for introducing tactile information in robotics. Case in point, tactile

information can be useful as a control parameter in manipulative tasks [21–23] where

the necessary information entails an estimation of the contact point, surface normal

and curvature measurement, as well as slip detection [24] through measuring normal

static forces. Measuring the contact forces is necessary for the ability to maintain stable

grasps as it permits grasp force control [25]; in addition to a grasp force control, a

manipulator displacement is required in compliant manipulators [26]. In dexterous

manipulation, the magnitude and direction of force are essential to guarantee grasp

stability, or what is referred to as friction cone [27]. Additionally, shear information is

crucial for full grasp force and torque determination [28, 29].

The tactile sensing specific robot-environment interaction has overwhelmingly been

limited to measuring static interaction forces while having neglected dynamic forces,

although both forces are present in real-world interactions. In addition, the majority of

sensors are developed to measure static pressure or forces which does not encompass

the ability of obtaining information about the stickiness, texture, hardness, elasticity,

etc. However, more recently, there have been more efforts to acknowledge the centrality

of dynamic events and to develop sensors to detect stress changes [30], [31], incipient

slip [32], strain changes, as well as other temporal contact events. For example, sensors

with the ability to identify the shape, size, position, forces and temperature of an object

can be found in [33, 31, 34], along with others than can identify surface texture [35],

19



20 Chapter 2. Literature Review

[36], hardness or consistency [37], [38], and friction [39] using almost every mode

of transduction ranging from resistive/piezoresistive, tunnel effect, capacitive, optical,

magnetic, piezoelectric, etc. In the remainder of this section, we will present a survey

of the state-of-the-art transducer technologies for artificial skin in Sec. 2.3.2 along with

a review of the tactile sensors implementation in robotics (Sec. 2.3.3).

2.3.2 Transduction Mechanisms

In robotics, the most commonly adopted sensing modes are capacitive, resistive, piezo-

electric, optical and magnetic. This section presents a selection of techniques, describing

their main features and drawbacks.

Capacitive Sensors The first sensing mode is capacitive which involves mainly two

conductive layers with deformable dielectric material separating them—when applied,

this deformable dielectric is caused by pressure which subsequently transforms the struc-

ture’s capacitance, and the measurement capacity allows for pressure to be estimated.

Capacitive technology is particularly appropriate for robotics (specifically large areas)

because of the presence of off-the-shelf components for the readout electronics and how

compatible the sensors are with flexible substrates [40]. In addition, these sensors have

impressive levels of sensitivity, compactness, and hold unlimited operational bandwidth

(however, some dielectric material can limit the bandwidth to relatively low frequency).

On the other hand, capacitive sensors are prone to noise triggered by crosstalk noise and

field interactions (particularly in mesh configurations) and necessitate highly complex
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electronics for processing and filtering out the noise [20]. Thus, this may negatively

result in mechanical wear and tear, hysteresis, drift of sensitivity due to temperature,

and in some cases relatively complex production processes, which ultimately leads to

degrading the elastomeric material in the deformable dielectric.

However, more recently, in an effort to improve mechanical figures and durability and

reducing hysteresis, dielectric materials in capacity sensors have been made of a thin

layer of 3D fabric glued to conductive and protective layers [41]. More reproducible

responses along with less costly and less complicated fabrication can be achieved

through large-scale production.

Piezoresisitive Sensors Resistive sensors have a generally straightforward design

which is possible to execute on flexible printed circuit board. In these sensors, the

resistance varying because of forces applied to the sensor can be measured using two

electrodes [42]. Compact and simple voltage divider and an off-the-shelf analog-to-

digital converter are needed for the readout electronics. Additionally, due to their

simple detection mechanism and measuring resistance process, piezoresistive sensors

need less complex electronics, are simple to produce and integrate with other elements

in circuits, and are less sensitive to noise which renders them appropriate for array

and mesh configurations. On the other hand, they have a lower frequency response

than other sensors (e.g., capacitive sensors) because of hysteresis [43]; the negative

properties associated with this sensor is high power consumption, hysteresis and short

life of material.
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Optical Sensors Generally, tactile sensing through optical means can be achieved in

two ways. One way entails vision where a digital camera would detect deformations

on a flexible membrane surface [44]. This process builds on developments in computer

vision and relies on camera systems and algorithms to reproduce surface texture in 3D

[45]. However, despite its sensitivity to surface texture, this process is not appropriate

for large scale implementations because of the pressing challenge that curved surfaces

introduce as well as space limitations. The second process involves measuring scattered

light intensity as material deforms through using photo detectors [46]. In this case, the

sensor includes conformable urethane foam, and is irradiated with LED light. Photo

detectors beneath the skin detect the differences in scattered light intensity that form

due to deformation of the foam. While there has been a previous demonstration of

the distribution of 1864 sensing elements over a humanoid robot [47], the system

sampling rate was not fast enough for manipulation tasks as it was below 20 Hz. There

are several benefits for optical based tactile sensors, such as their ability to not get

affected by electromagnetic interference (EMI), their high spatial resolution, and their

insensitivity to lower frequency electromagnetic interferences by electrical systems [48]

which consequently lowers their susceptibility to environmental noises. On the other

hand, associated setbacks include lower performance in strong light conditions as well

as higher power consumption. A measure of local pressure results from the response of

solutions, which are based on multiple layers of optical media, to light diffusion inside

the layers proceeding their deformation [49].
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Piezoelectric Tactile Sensors Piezoelectric materials are appropriate for dynamic

force sensing primarily because of their ability to produce charges, in a fast and linear

manner over a large range of stimuli, when a force is introduced to the sensor. The

structure of the sensor determines its sensitivity and the ability to differentiate between

transverse, longitudinal and shear forces. Polymeric material, including, for example

polyvinylidene difluoride, hold extended chemical stability and flexibility. As such,

they have been useful to implement tactile sensors based on an integrated device,

the POSFET (piezoelectric oxide semiconductor field effect transistor [50]) in which

piezoelectric material detects charges produced by the force after being situated over

the gate of a complementary metal–oxide–semiconductor transistor. The POSFET

permits the readout circuitry and the sensing material to integrate, which then reduces

noise and wiring and optimizes resolution. However, for the polymer to be deposed

and polarized over the sensing elements array, flexible integrated circuits and a specific

post-processing should be developed. Moreover, while Piezoelectric tactile sensors have

an impressive high-frequency response which allows them to detect high dynamics

such as vibrations, they are solely able to measure dynamic forces and not static forces

because of their large internal resistance [51].

Magnetic Tactile Sensors There are two primary ways to develop inductive tactile

sensors which are based on magnetic transduction, as reported in the literature [52, 53].

The first approach involves the sensors measuring the variation in magnetic coupling or

inductance of a coil after a force or pressure is applied. However, the second category
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involves measuring the variation in the magnetic flux, whether through using the

Hall effect or through magnetoresistance. While these sensors have a highly dynamic

range, they are bulky, have a low spatial resolution, and low repeatability due to

hysteresis which stems from their mechanical nature [53]. Additionally, the technology

is restrictive in robotics due to the detected signal being altered upon the interaction

between the magnetic field and metallic objects in addition to the requirement of

complex electronics to process and demodulate oscillating signal amplitude.

2.3.3 Tactile Sensors Implementation in Robotics

While developing functional and robust electronic skin is complex, there have been

impressive accomplishments that satisfy the previously mentioned requirements which

can be taken as a building foundation for the ultimate skin technology. This section

will review technologies that have appeared to be reliable in different implementations

with robots. First, we will introduce SynTouch [54], a bio-inspired multimodal fingertip

which contains impedance sensors used to measure deformations proceeding normal

or shear forces, pressure transducers which measure vibrations and pressure when

sliding over textured surfaces, as well as temperature sensors. The sensing principle

is resistive due to elastomers covering a fluidic structure. The fragile transducers are

protected against environmental damage due to the propagation of the force signal

to a remote position. The response to forces ranges from 0.1 N to 0.3 N while the

sensor spacing is under 2 mm. However, the primary drawback is their inability to cover

large areas along with their high cost. Additionally, there is no straightforward relation
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between applied local pressure and the sensor’s response which results in an increased

complexity for activating the sensing elements upon pressure. Despite this, SynTouch

has been applied to various robotic hands and is successfully utilized in several tasks

under machine-learning techniques, such as discrimination of objects [55], control of

slip [56], in-hand manipulation [57].

In [58], the authors put forth an electronic skin that builds on hexagonal PCB modules,

with every one of them relying on three distinct types of sensors and performing local

pre-processing with redundant connections to a mesh network structure. Large areas

of the robot’s body are covered through embedding elements to an elastomer which

can adapt to curved surfaces [58]. Additionally, this elastomeric layer guarantees the

protection of the sensors while also regulating the transducers’ sensitivity . One of the

benefits of this is its ability to extend over large areas with multiple modalities, such as

temperature, vibrations and acceleration (3D accelerometer), light touch and proximity

(optical). Moreover, collision avoidance is achieved through proximity sensors while

collision detection is achieved through the work of accelerometers [58]. As for, robot

self-calibration, it is made possible through consolidating the data from accelerometers

and tactile units [58].

Moreover, authors in [41] suggest an alternative flexible capacitive skin which covers

large and small areas of the robot’s body (e.g., fingertips). This alternative holds a

triangular flexible PCB as its basic unit, with 12 capacitors as well as an off-the-shelf

capacitance-to-digital converter. One of the 12 capacitors takes on the role of a reference

to compensate temperature drifts. In addition, the connectivity issues for large areas
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are impressively contained through the presence of up to 16 patches which serially

communicate with a microcontroller to direct the signals received to a controller area

network serial line. The dielectric and top layer of the capacitors are soft and flexible.

Different materials are applied to fine-tune the sensitivity, hysteresis and durability of

the skin as a function of the application desiderata [41]. Several robots have different

versions of this solution, for example, for safe interaction with withdrawal reflexes,

in human–robot interaction in cases of physical contact, for manipulation, and in

learning-by-demonstration sessions. Reponses from adjacent sensors are integrated to

allow for stimuli localization with a higher resolution than sensor spacing since the

response of the sensor is analog (super-resolution [59]). Moreover, there have been

solutions implemented specifically for prosthesis [60–62].

2.4 Feature Extraction and Edge Orientation Selectivity

In this section, we provide an overview of applications and studies conducted in

the state-of-art, starting with a review of feature extraction and tactile perception

(Sec. 2.4.1), followed by an overview of Spiking Neural Networks and Neuromorphic

Approaches (Sec. 2.4.1.2), and finally a look into previous work surrounding the edge

orientation selectivity (Sec. 2.4.2).
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2.4.1 Feature Extraction and Tactile Perception Overview

2.4.1.1 Traditional Machine Learning

Employing machine-learning methods for tactile data processing may facilitate the use

of tactile sensing systems in many domains, such as robotics, industrial automation,

and biomedical devices. Such methods are important for enabling intelligent tasks to

be implemented in response to the requirements of the application domains. Pattern

recognition algorithms are frequently useful in certain tasks where material and texture

classification are targeted [63]. Thus, many researches have recently directed their

efforts towards the classification/recognition of materials’ textures, patterns, and shapes

[64, 65]. Drimus et al. [66] applied k-nearest neighbor classifier and dynamic time

warping for the classification of rigid and deformable objects. They equipped a robotic

gripper with the tactile sensors which they then used to palpate and squeeze the test

objects; the emerging patterns were subsequently classified using k-nearest neighbor

classifier and dynamic time warping. The issue around estimating roughness through

the k-nearest neighbor method was addressed in Oddo et al. [67]. Moreover, Decherchi

et al. [65] compared between the support-vector machine (SVM), regularized least

square (RLS) and regularized extreme learning machine (ELM) to categorize materials

from raw sensor data. Furthermore, Pezzementi et al. [68] applied an appearance-

based method for object recognition, obtaining the most informative features through

utilizing a bag-of-features classification technique along with exploratory movements.
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Similar approaches for object identification [69, 70], texture recognition [71] and

compliance characterization [72] have also been reported in the literature.

However, the classification of gestures and touch modalities such as poking, squeezing,

pushing and grabbing is addressed in fewer studies [73, 74]. Naya et al. [75] were able

to recognize five touch modalities through employing the k-nearest neighbor (KNN)

algorithm that supports tactile interfaces for pet-like robots . Furthermore, authors in

[76] relate touch interpretation and social interaction through supervising a ‘LogicBoost’

algorithm which differentiates between eight touch modalities upon the interaction

of subjects and artificial arms. In addition, machine learning methods have also been

employed in material classification [77], surface-roughness classification [64], and

texture and pattern recognition [78].

Neural network algorithms have also been used for recognition and classification. In

[79], authors explored the potential of recurrent neural networks (RNN) models to be

used in touch modality classification. Liu et al. [80] performed object shape recognition

using low-resolution pressure maps. They extracted scale and position invariant features

from the tactile map and used a neural network for classification of the extracted

features. Furthermore, Petriu et al. [81] employed a neural network classifier to

categorize the tactile patterns emerging from 3D objects. Additionally, a neural network

that estimates local curvatures was reported in [82], while an algorithm that detects

slippage was reported in [83]. Furthermore, Schneider et. al. [84] categorized objects

using low-resolution intensity images retrieved from multiple grasping interactions

through employing a bag-of-words approach and an unsupervised clustering technique.

28



2.4 Feature Extraction and Edge Orientation Selectivity 29

In addition, Madry et al. [85] along with Luo et al. [86] proposed recognizing

tactile patterns through employing enhanced descriptors and feature learning methods.

Moreover, Liu et al [87] designed a kernel sparse coding method to achieve tactile data

classification and representation. Finally, Soh et al. [88] put forth an online learning

algorithm to conduct object classification through the data collected by a five-fingered

iCub robotic hand.

2.4.1.2 Spiking Neural Networks and Neuromorphic Approaches

Spiking Neural Networks (SNN) and synaptic learning have recently emerged as viable

techniques to solve classification problems, with SNNs being computationally efficient

and able to run on low-power hardware. The temporal plasticity, ease of application

in neural interface circuits, and reduced computation complexity are the key benefits

of SNN. The authors of [89] suggested a power-efficient tactile texture categorization

framework that learns from the neural coding of conventional tactile sensor readings

using SNN. A functional neural network that can use a neuron model with a two-layer

SNN and a homeostatic synaptic learning mechanism to learn and distinguish the

tactile characteristics of the input from a bionic touch sensor has been implemented in

[90]. In [91], authors, proposed a biologically plausible system for object recognition

based on tactile form perception comprises a snn of two layers. The results show that

the proposed system gives good performance in recognising objects based on tactile

form perception. In addition, there have also been studies addressing neuromorphic

approaches to tactile perception. Pearson et al.’s [92] work was able to facilitate the
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active exploration and navigation of a robot in its environment through replicating

a neuromorphic vibrotactile sensory system that resembles a rat’s whiskers. This

system was able to build a model of large networks of leaky integrate-and-fire neurons

which process vibrotactile information through the execution of hardware processing

architecture [93, 94]. Moreover, Kim et al. [95, 96] experimented with modeling

mechanoreceptors in glabrous skin for robotic and prosthetic applications. Furthermore,

Bologna et al. [97, 98] investigated braille patterns decoding through primary and

secondary neurons in a two-layer network; they then transformed the outputs of a

force sensor array to spikes through employing a leaky integrate-and-fire neuron model

[97–99]. In addition, Spigler et al.[100] and Lee et al. [101] applied an Izhikevich

neuron model to define surface properties and incipient tactile stimulus. Moreover,

Rongala et al. [102] converted tactile array outputs to spikes through employing an

Izhikevich neuron model and revealed that the classification of ten naturalistic textures

can be possible through the statistics of inter spike intervals and the Victor Purpura (VP)

distance between spike trains—hence showing how feasible it is to utilize neuromorphic

techniques to recognize texture. While the findings revealed that spike timing is crucial

for texture classification, computation of the metrics cannot be implemented in real-

time as they necessitate offline processing for the entire time window. However, Friedl

et al. [103] suggested a solution to this problem through an alternative spiking neural

network architecture. This network involved the neural engineering framework (NEF)

[104] which employs a heterogeneous population of neurons to transform sensor

data to spike patterns. Nonlinear frequency information was then obtained through
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employing bandpass filters, ensuring the convolution of this activity through a hidden

layer. Thus, a neurally-implemented support vector machine was employed to classify

the high-dimensional feature representation. However, while it was possible to simulate

the suggested network on neuromorphic hardware such as SpiNNaker [105], it was

not executed and tested on any neuromorphic hardware platforms and hence remained

only software based. Moreover, another limitation is that its task-specific architecture

can have the potential to restrict its application in various of pattern recognition tasks.

2.4.2 Edge Orientation Selectivity Overview

Artificial tactile sensing has been gaining an increasing appeal, as it has been inspired

by the computational efficiency of biology through, for example, encoding tactile

information as a series of neuromorphic spike trains to mimic the mechanoreceptor’s

response characteristics. So far, neuromorphic tactile sensing has demonstrated its

potential for being useful in developing neural interfaces that could provide tactile

feedback to amputees by relying on upper limb neuroprosthesis [106, 107]. Edge

orientation detection is tactile discrimination application that helps during object

manipulation. More precisely, edge orientation detection could be seen as the basis

for contour , as it helps in detecting the shape of an object, rendering it as one of the

most central feature extractions in detecting the shape of an object. For instance, edge

orientation-selective neurons have been observed in the first-order tactile afferents of

human fingertips [19, 108] and are often used in artificial vision and touch as part of a

pre-processing stage. In addition, evidence shows that tactile feature extraction can
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already take place at afferent stages [109, 110] complemented with central information

processing in the sensory cortex [111]. In Pruszynski et al. (2014) [19], the authors

presented a network composed of two layers for edge orientation selectivity; the

first consists of neurons with overlapping receptive fields (each neuron possesses

a distinct distribution of highly sensitive zones on the skin), while the second is

able to spot the temporal coincident activation between these neurons and decode

the input stimulus orientation. In another work of Pruszynski and Hay [112], they

aimed to show that synaptic integration across the complex signals from the first-order

neuronal population could possibly underlie the human ability to accurately and rapidly

process the orientation of edges moving across the fingertip. First, they derived spiking

models of human first-order tactile neurons that fit and predict responses to moving

edges with high accuracy. They used the model neurons in simulating the peripheral

neuronal population that innervates a fingertip. By employing machine learning to

train classifiers performing synaptic integration across the neuronal population activity,

they were able to show that synaptic integration across first-order neurons can process

edge orientations with high acuity and speed. In another study [108] authors recorded

spike-trains generated by the overlapping receptive fields of FA-I and SA-I neurons

and reported that humans could distinguish the edges spanning the entire fingertip

with of edge orientation resolution. To differentiate between various edge orientations

at different locations on simulated mechanoreceptor skin patches, [113] proposed 3

layers spiking neural model starting with first-order neurons to encode input stimulus

into spike trains and ending with cortical neurons to decode edge orientation.
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In robots, several solutions have been employed to establish fine orientation detection

(up to 5o) on artificial skin, ranging from an AI-based vector regression method with

offline learning [114] to a more neuromorphic approach with spike-based classification.

In [115], authors implemented a model of spike-based neuromorphic encoding of

tactile stimuli, emulating the discrimination properties of cuneate nucleus neurons

based on pathways with differential delay lines. These strategies allowed the system

to correctly perform a dynamic touch protocol of edge orientation recognition ridges

from 0o to 40o, with a step of 5o. [116] conducted static edge perception experiments

by tapping the stimuli with tactile sensors to demonstrate passive tactile perception

for contour following specifically, the edge detection was applied only on right angles.

In [117], the authors aimed to estimate the boundary edge orientation while rotating

a piezoresistive tactile sensor which was attached to a robotic hand-over an object

through suggesting a model based spatiotemporal correlation matching method. Their

findings revealed support for the abilities of the suggested method to efficiently leverage

spatial and temporal information by obtaining accurate orientation estimates (±1.67o

error for edges oriented from 10o to 90o, with a step of 5o) in spite of a low-resolution

sensor (169 mm2, 4×4 resolution).

2.5 Discussion

In this chapter, we presented the ways that biological systems acquire and process

somatosensory data, developed tactile sensors based on various techniques, algorithms,
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and applications used in literature for interpretation and distinguishing tactile stimuli.

In tactile sensing, mechanical pressures and distortions are picked up by mechanorecep-

tors by emitting action potentials, enabling the perception of features such as vibration,

texture, friction, softness, etc. This action potential are then transferred to the brain

using nerves that enter the spinal cord through the dorsal root. Mimicking every aspect

of the biological tactile system is probably impractical due to engineering constraints,

the understanding of tactile sensing in humans nevertheless provides useful insights

on the organization and behavior of organisms in dynamically changing environments.

The performance of biological tactile sensing helps to define the specifications when

designing robotic artificial tactile sensors and electronic skins.

Researchers focused on designing tactile sensors that mimic the behavior of mechanore-

ceptors based on the various techniques. Besides tactile sensors, spiking models are

considered one of the tools that can be used to mimic the response of mechanoreceptors

found in human skin. While it may still interesting to investigate transducer technology

for specialized applications, the focus is shifting towards technologies for large-scale

implementation, interpretation, and distinguishing algorithms by integrating sensory

systems into neuromorphic models which can learn and decode input stimuli.

The latest generation of neural networks incorporates temporal features for computa-

tion. These networks are known as spiking neural networks (SNN), where networks

of neurons and their rich dynamic behavior are simulated artificially. Due to their

biological plausibility, SNNs are useful for modeling information processes in the brain

and investigating various learning mechanisms.
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Like most analog and digital computing chips today, neuromorphic devices are built

from silicon transistors. Researchers exploit the fact that when operating in the sub-

threshold region, transistors exhibit many functional similarities with neurons. In

particular, the transistor current is exponentially dependent on its terminal voltages,

much like how the membrane potential of a neuron is exponentially related to the

active populations of voltage-sensitive ionic channels [118]. Utilizing this property,

electronic models of conductance-based neurons and synapses can be implemented

in silicon to achieve biologically plausible computation primitives such as logarithmic

functions, inhibition, thresholding, and winner-take-all selection.

Previous works presented in this chapter for solving classification and recognition

problems, specifically, for solving edge orientation selectivity lack the possibility to

be embedded on robots or neuromorphic chips, due to the need for offline learning

and the presence of structures not easily transferable in silicon. Moreover, online

learning is an important key for interpretation and distinguishing different input stimuli

which are still missing in some previous work. In such situations, where energy and

space are major constraints, a hardware implementation with online learning and

low power devices is usually preferred. Such a methodology enables the system to

perform end-to-end computation from the sensors to the processing and classification,

consuming low power. Therefore, in this thesis, we targeted the development of an edge

orientation architecture based on the event-driven acquisition and unsupervised spike-

driven learning that can be implemented on low-power subthreshold neuromorphic

hardware. Such as, the architecture can be used for solving other classification and
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recognition problems (touch modalities and object shapes classification). Moreover,

the unconstrained and random structure of the connectivity among layers can produce

unbalanced activity in the output neurons, that are driven by a different number of

synaptic inputs. This hypothesis is one of our main constraints through learning and

infeering the input stimuli.

The rest of the thesis will explore how mechanisms in biological tactile sensing can be

used to improve tactile systems, in a particular designing compact and efficient sensing

devices that can locally pre-process the tactile signal.
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Chapter 3

Neuromorphic Approach for Tactile

Perception

3.1 Introduction

Biological information-processing systems operate on completely different principles

than traditional computing systems. While computers are constructed from fast and

high-precision hardware with high power dissipation, brains are composed of slow

asynchronous neural components which use a combination of both analog and digital

representations [119]. By emulating the neural organization and function of nervous

system in electronic devices, neuromorphic systems aim to enable artificial systems

that can operate with human-like intelligence at power efficiencies close to biological

levels [120]. Moreover, they may be helpful in providing some insight into compu-

tational mechanisms of the brain. Neuromorphic sensory systems use a new form of
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asynchronous output representation which carries timing information similar to spikes

in the nervous systems [119].

In robotics, in order to mimic the tactile capability of biological mechanoreceptors,

several types of tactile sensors have been developed based on various techniques (e.g.,

capacitive, piezoresistive, optical, magnetic, binary, and piezoelectric) [121, 61, 122].

Most of these sensors require circuits that sample the environment at a fixed rate and

generate discrete data, regardless of the device being in contact with a stimulus. This

requirement stresses the trade-off between accuracy and speed, which can lead to a

slow or inaccurate reaction in dangerous situations (for example when operating near

humans). On the other hand, biological sensors react to changes in the sensory signal,

rather than sampling the sensory signal at fixed time intervals. This characteristic is

known as event or data driven sensing. As it conveys data only at change, it reduces

redundancy (no samples for constant signal), while it increases the sampling rate

for fast changes. While neuromorphic circuits are being developed to encode the

continuous analog signal from physical transducers into spikes [123, 124], sigma-delta

conversion [125] or spiking neuron models can be used to convert the signals generated

by front-end clocked artificial tactile sensors to neuromorphic spikes [126].

Inspired by the computational efficiency of biology, neuromorphic tactile sensing has

been gaining an increasing appeal, using spiking neurons and artificial sensors to mimic

the mechanoreceptor’s response and the processing associated with the somatosensory

nervous system [123, 102].
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The rest of the chapter is organized as follow: neuromorphic approach for tactile

perception was demonstrated in Sec. 3.2, followed by a section describing the sensors

and network architecture used for edge orientation selectivity ( Sec. 3.3), then the

sensors and network architecture used for touch modalities classification (Sec. 3.4),

finally a section demonstrating the sensors and network architecture used for object

shape classification (Sec. 3.5).

3.2 Biologically Inspired Neuromorphic Approach for

Tactile Perception

Neuromorphic systems can emulate spike-based neuronal mechanisms that are observed

in natural effectors and senses, and thus have a potential application scenario in

neuro-robotics and neuro-prostheses. In this section, we present a neuromorphic

model for tactile perception analysis that relies on event-driven acquisition, based

on computational primitives that are implementable on low-power mixed-mode sub-

threshold neuromorphic hardware. The neuromorphic model comprises a sensory

array and three layers of spiking neural network. The role and the implementation

of each layer of the proposed spiking neural network was introduced in this section

as follows: First, conversion from analog signal into neuromorphic spikes provided

in Sec. 3.2.1. Second, the role of layer two (receptive field layer) demonstrated in

Sec. 3.2.2. Third, modeling of layer three (decoder layer) as coincidence detectors
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was provided in Sec. 3.2.3. Finally, to increase the selectivity of the network, the

implementation of WTA was provided in section Sec. 3.2.4.

3.2.1 Touch Afferents: First-Layer Neurons

The first layer of neuromorphic models is usually designed to convert the pressure

data produced from the sensory array into neuromorphic spikes. The mechanism used

to recreate this behaviour is highly inspired by the studies on the sensors present on

human skin, composed by two different parts: the mechanoreceptors and the afferents.

The first ones are mechanical structures that release ionic currents when pressed.

Different mechanoreceptors that encode touch are present on the human glabrous

skin: Merkel disks, Meissner’s corpuscles, Pacinian corpuscles and Ruffini’s corpuscles

[127]. Afferent neurons are instead nervous cells that convert ionic currents into spikes.

Several studies argue in favor of a joint contribution between SA-I and RA-I [128]. A

study [113] proposes instead that the way SA-I are modeled at the moment does not

reflect the real behaviour of biological equivalents. The more faithful model, called in

the mentioned work Dynamic SA-I, behaves like a hybrid between SA-I and RA-I. The

advantage of such behaviour, according to the paper, is the relaxation of the trade-off

typical of SA-I and RA-I where SA-I are resistant to noise, but RA-I are more accurate in

the stimulus depiction.

In literature, spiking neuron models can be used to convert the signal generated by

front-end clocked artificial tactile sensors to neuromorphic spikes [129, 130]. There

are many models of spiking neurons (e.g. Hodgkin-Huxley, Leaky Integrate and Fire,
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and Izhikevich). The fathers of the spiking neurons are the conductance-based neu-

ron models, such as the well-known electrical model defined by Hodgkin & Huxley

[131]. Hodgkin & Huxley modeled the electro-chemical information transmission of

natural neurons with electrical circuits consisting of capacitors and resistor. In the class

of spiking neurons defined by differential equations, the two-dimensional Izhikevich

neuron model [130] is a good compromise between biophysical plausibility and compu-

tational cost. Derived from the Hodgkin-Huxley neuron model are Integrate-and-Fire

(I&F) neuron models that are much more computationally tractable. An important

I&F neuron type is the Leaky-Integrate-and-Fire (LIF) neuron [132]. Compared to the

Hodgkin-Huxley model, the most important simplification in the LIF neuron implies

that the shape of the action potentials is neglected, and every spike is considered as a

uniform event defined only by the time of its appearance.

The variation of membrane potential vmem for layer one neurons in LIF model at time t

can be written as:

dvmemi

dt
= vrest − vmemi

τmem1

+ Ii(t)
Cmem1

if vmemi
(t) > vth. then S1i

(t)←− 1; vmemi
(t)←− vreset

In this equation, Ii(t) represents the input analog pressure measured by the sensors and

Cmem1 is the membrane capacitance. When applying an input current, the membrane

potential vmemi
of the layer one neurons starts to increase until reaching a fixed

threshold vth. At this point, a spike occurs and the membrane voltage is reset to its
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resting value vreset. S1i
represents the spike train of layer one neurons. It is a function

whose value is 1 when the neuron fires a spike at time t and 0 otherwise. The neuron

is leaky since the summed contributions to the membrane potential decay with a

characteristic time constant τmem1.

Figure 3.1 represents the encoding of pressure signals into neuromorphic spikes proce-

dure when a vertical bar pressed on artificial skin from the iCub robot. The constant

pressing of a bar over the skin generates a sustained constant in the sensors, as shown

in Figure 3.1-B. Depending on the applied stimulus, different sensors are activated at

the same time. For example, a vertical bar placed in the middle of the skin results in a

response only in central sensors. Each stimulus generates different analog signals that

are fed as a current into layer one neurons. This process is similar to what happens

in the human skin, where the Merkel disks convert stable pressure into analog ion

currents that stimulate afferents neurons. In this thesis, afferents neurons (layer one

neurons) are modeled using LIF neurons. LIF respond with tonic spiking to a sustained

current [133], in which the firing rate of the neurons are proportional to the input

pressure. This is similar to typical SA-I afferents, which have a sustained response for

constant pressure stimuli [134].

All the simulation and models are implemented using Brian2 simulator [135].

3.2.2 Receptive Fields: Second-Layer Neurons

Once the tactile analog stimulus has been converted into spikes, the signal needs to be

funneled into a further layer: the receptive field layer. In this part, the dimensionality
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Figure 3.1 SA-I afferents: layer one encodes analog pressure in spike trains and consists of
160 LIF neurons; (A) An example of a vertical bar pressed on the skin patch that consists of
160 capacitive sensitive elements (Taxels) distributed over 16 triangles. (B) Analog output
of the 160 taxels when pressed with the gray vertical (0o) oriented bar, where the gray
shadow represents the non pressed taxels. (C) The output pressure of the taxels is used as
input to LIF neurons; (top) Output spikes of neurons after pressing the skin with (0o) bar;
(bottom) firing rate of one neuron.

of the stimulus gets compressed from high number of neurons into smaller elements.

This allows efficient transmission across the acquisition path, with limited information

loss. In this thesis, the second layer represents the receptive fields layer, in which each

neuron in the second layer represents one receptive field.

3.2.3 Decoder Layer: Third-Layer Neurons

Johansson et al. claim the design of the somatosensory pathways could enable rapid

classification of tactile stimuli by temporal-to-spatial conversion at the level of second-

order neurons [3]. Based on the argument of rapid classification, they propose that

cuneate neurons with a function of coincidence detection could be one possibility.

Following this hypothesis, in this thesis, we modeled layer three neurons (decoder

neurons) as coincidence detectors. The neurons in layer three are modeled using
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LIF model, in which the input to layer three neurons was given by the summation

of coincidence activation of the previous layer, such that the differential equations

determining the evolution of their dynamics is:

dv3i

dt
= vrest − v3i

τ3
+ Iex(t) + Iinh(t)

Cm3

In this equation, v3i
represents the membrane potential of layer three neurons, τm3 is

the membrane time constant and Cm3 is the membrane capacitance. Iinh represents

the inhibitory current arriving from the global inhibitory neuron, and Iex is the current

supplied from layer two neurons which defined as:

Iex(t) =
n∑

j=1

(
w3ji

∑
k

S2j
(t− tk)

)

S2j
represents the spatio-temporal output spikes of the jth neuron in layer two. tk is the

time in which the neurons in layer two fire a spike.

Therefore, the coincident activation of several layer two neurons signals the presence

of a specific stimulus pressed on the simulated skin. This coincidence is decoded using

the layer three neurons. Specifically, the stimulus is decoded based on the temporal

coincidence activation of layer two neurons using competitive neurons, controlled by

a global inhibition WTA mechanism [136]. The layer three neuron that spikes with

the highest activity is then defined as the winner, while the others are considered

not-significant.
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3.2.4 Winner-Take-All

The winner-take-all (WTA) computation is an intrinsic property of recurrent networks,

which abound in cortex. In this thesis two kinds of WTA competition were studied and

implemented. The first kind, synapses with hard-wired connectivity are used to realize

a competitive WTA network with layer three neurons. The WTA structure, composed

by a global inhibitory neuron: all neurons of the third layer sends their excitation

through excitatory synapses on the global inhibitory neuron; the inhibitory neuron, in

turn, stimulates the inhibitory synapses of the all excitatory neurons of the third layer,

such that only the neuron receiving the highest input can be active [136]. The second

kind, the WTA structure, composed of fast lateral inhibitory layer consist of inhibitory

neurons. Every neuron in the decoder layer is connected to one neuron in the inhibitory

layer, where it receives excitation from the neuron in the decoder layer and in turn

inhibits all the other neurons. Through lateral inhibitory connections, a firing neuron

tends to either prevent the other neurons from firing or reduce their firing rate [137].

3.3 Neuromorphic Architecture for Edge Orientation Se-

lectivity

3.3.1 Sensors and Dataset

In this study, the system is composed of a skin patch from the iCub robot [138], a

ZynQ7020 board, and a laptop as shown in figure 3.2.
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Skin Patch

Zynq 7020

Laptop
(YARP middleware)

Bar

Figure 3.2 System setup for edge orientation processing

The skin patch, with dimensions ( 11 × 7.5 cm), comprises 160 capacitive tactile

sensing elements (taxels) distributed along 16 triangles (10 taxels each) as shown in

figure 3.3.

During the contact, the capacitance value is acquired and digitised by an off-the-shelf

ADC7147 and sent via the I2C bus to the Xilinx ZynQ 7020 device. The Xilinx ZynQ

7020 device uses programmable logic to acquire, deserialise, and associate a timestamp

to the samples (samples refer to the clock-based sampling of the capacitive value). The

data stream is then written to memory through DMA and made available to any process

for computation. In our setup, this is realised by a software grabber module that reads

data from DMA and sends to Yet Another Robot Platform (YARP) middleware [139]
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Figure 3.3 Skin patch from iCub robot.

through Ethernet, where the stream of samples is available for high level software

processing.

The dataset collected for this work was obtained by manually pressing the bar on the

iCub‘s skin at 8 different orientations (0o, ±22.5o, ±45o, ±67.5o, 90o). We augmented

the dataset, increasing the number of possible orientations, by mean of an ad-hoc

Python library that computes the superposition of the bar with the taxels for a given

orientation and outputs the corresponding measured activation of the taxels. The user

can generate all kind of stimuli, changing bar width, length and orientation. Because a

simulated press happened, a different approach has been followed: given that the real

dataset didn’t have any information about the relation between the sensors output and

the pressure applied, we assumed in the network that the relation between the pressure

of the bar and the sensor’s response is linear, applying at the latter a multiplicative

coefficient. In this study, the minimum angle variation considered was 5o, with a

maximum angle of 180o.
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3.3.2 Network Architecture

Inspired by the finding of [19], in this study, we present a neuromorphic model for

edge orientation selectivity that relies on event-driven acquisition and unsupervised

spike-driven learning, based on computational primitives that are implementable on

low-power mixed-mode sub-threshold neuromorphic hardware. In this study, we used

the capacitive skin of the iCub robot [138] as front-end sensors, connected to a three-

layers network of LIF neurons, that gives rise to edge orientation selectivity, as shown

in figure 3.4. Layer one consists of 160 LIF neurons that converts the analog values

produced by the pressure-sensitive capacitors into spike trains. The analog pressure

value is used as a current injected in the neuron‘s membrane whereby the output
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Figure 3.4 Spiking neural network for edge orientation selectivity; Network architecture
comprising skin patch and three layers of LIF neurons. Layer one neurons convert the
analog capacity value into spike trains (SA-I afferents); Layer two gathers input from
multiple layer one neurons and having spatially distributed, overlapping, receptive fields;
Layer three neurons receive input from layer two, each neuron of layer three is selective to
a specific input orientation. Recurrent connectivity by neurons of a global inhibitory neuron
ensures that a single layer three neuron is active, implementing a form of WTA competition.
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firing of the neurons is proportional to the pressure, mimicking the sustained response

of SA-I types of mechanoreceptors. Layer two consists of 16 neurons that integrate

the activity of multiple mechanoreceptors from layer one. As it is possible to obtain

higher orientation acuity when using receptive fields with random (and interleaved)

sensitive points rather than when they are positioned uniformly [108], we implemented

the structure of receptive fields based on a matrix of connectivity between layer one

neurons and layer two neurons generated randomly, such that every neuron in layer one

is connected to only one neuron in layer two, as shown in figure 3.5. In order to design

equally likely connectivity patterns between layer one and layer two, we generated

the matrix with two constraints: (1) every 10 neurons in layer one are connected to

one neuron in layer two and (2) each neuron in layer one is connected only to one

neuron in layer two. Layer three consists of 36 LIF neurons (each for one orientation)

and decodes different orientations using the temporal coincidence activation of layer

two neurons. For better selectivity, layer three employs WTA structure, composed of a

global inhibitory neuron.
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Figure 3.5 Randomly generated connectivity matrix between layer one and layer two (first
20 neurons on layer one); each neuron in layer one (rows) is connected to only one neuron
in layer two (cols).

3.4 Neuromorphic Architecture for Touch Modalities Clas-

sification

3.4.1 Sensors and Dataset

In this study, the tactile sensing system is composed of a piezoresistive tactile sensor

array, an electronic interface, and a graphical user interface. The tactile sensor array is

based on the Force Sensing Resistor (FSR) MS9723 composed of a 16×10 piezoresistive

sensor. It converts the applied pressure into electric resistance variation. When the

force applied on the sensor increases, the resistance decreases inducing an increase in

the output current. The tactile array has 10 columns and 16 rows, making a total of

160 force sensing nodes (8 mm X 8 mm).
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The electronic interface is based on the snowboard system and is a resistive version of

modern capacitive multi-touch sensing technology. The Snowboard is developed by

Kitronyx and can be connected to any resistive matrix sensor. When connecting the

MS9723 to snowboard, all forces applied to each node can be detected. The snowboard

has a USB interface facilitating the communication with the computer.

Poke Press Grab

Squeeze Push Rolling a
wheel

Figure 3.6 Six different touch modalities.

The graphical user interface (GUI) is based on the Snowforce 3 software to visualize

2D force map data and data logging. This software is specially designed to work with

Kitronyx data acquisition devices including the snowboard. This GUI has been used to

visualize and test the system, and to perform data acquisition for the touch modality

dataset.
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The dataset collected for this study is composed of six different touch modalities: “poke,

press, grab, squeeze, push, and rolling a wheel” as shown in figure 3.6. It has been

collected from three male participants with average age of 20-year-old. Each participant

has been asked to apply the touch on the sensor array forming the modality with an

interval of time between 1 and 3 seconds. The participants repeated each modality

many times to form a dataset of size of 40X6.

3.4.2 Network Architecture

In Sec. 3.3.2 the neural architecture that gives rise to edge orientation selectivity

is based on a network composed of three layers of LIF neurons. In this study, we

modified the neural architecture to be able to classify different touch modalities. The

network for touch modalities classification shares the same structure of the network

architecture proposed for edge orientation selectivity, which include an input layer,

hidden layer, and output layer as shown in figure 3.7. The input layer consists of 160

LIF neurons responsible for the conversion of analog pressure into neuromorphic spikes.

When human interacts with the sensor array that consists of 160 piezoresistive sensors

mentioned in the previous section (Sec. 3.4.1) with different touch modalities, these

sensors produce an output analog signal that defined the activation of each sensor as a

function of time. The hidden layer shares the same role and number of neurons of the

receptive field layer in Sec. 3.3.2, as well as the connectivity with the previous layer.

The output layer consists of 6 LIF neurons (one neuron for each modality) that decode

different modalities by receiving input spikes from the previous layer and using the
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Hidden Layer
(16 neurons)

Input Layer
(160 neurons) Output Layer

(6 neurons)

Inhibitory
Layer

Touch 
Modalities

Figure 3.7 Spiking Neural Network for touch modalities classification; (Left) example of
two from six different touch modalities applied on a sensor array of 160 piezo-resistive
sensors. (Middle) 3 layers of LIF neurons; input layer consists of 160 neurons, hidden layer
gathering the 160 inputs from input layer, and output layer consists of 6 neurons which is
equal to the number of classes to be classified (touch modalities). (Right) lateral inhibitory
layer that consists of 6 inhibitory neurons to increase the accuracy performance of the
network.

temporal activation of hidden layer neurons. Neurons of hidden layer and output layer

are connected all-to-all through weighted synapses (W). To achieve better selectivity,

and also to increase the classification accuracy of the network during the testing phase,

a fast lateral inhibitory layer composed of 6 inhibitory neurons has been added to the

network. Every neuron in the output layer is connected to one neuron in inhibitory

layer, where it receives excitation from the neuron in the output layer (black synapses

between output layer and inhibitory layer in figure 3.7) and in turn inhibits all the

other neurons ( green synapses in figure 3.7).
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3.5 Neuromorphic Architecture for Tactile Object Shape

Classification

3.5.1 Sensors and Dataset

In this study, the tactile sensory system is similar to the one used in the touch modality

classification experiment (Sec. 3.4.1).

The dataset collected for this studyis composed of eleven different object shapes which

are: Bottle Cap, Eraser, Gas Lashes, Highlighter Cap, Key, Marbel, Rock, Shaped Screw

Driver, Spray Cover, Tape, and Wood. Each object has been applied on the artificial

skin for multiple trials, in which each trial was saved in a separate dataset. The total

number of the collected datasets is equal to 440 where it was divided into 80% for

learning and 20% for testing.

3.5.2 Network Architecture

In this study, we adopted and modified the feed-forward spiking neural network shown

in Sec. 3.3.2 to be able to discriminate between different object shapes. The SNN

comprises two layers of spiking neurons that represents the input (layer one) and

output (layer two) layers attached to an artificial skin patch consisting of 160 piezo-

resistive tactile sensors as shown in figure 3.8. Layer one represents the encoding

layer and consists of 160 neurons, in which each neuron in layer one is connected to

one sensor in the sensory array as one to one connection. The output analog signals
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Layer One 

( 160 neurons, 1 per sensor)
Layer Two 

( 11 neurons, 1 per object)
Winner-Take-All

( Global Inhibitory Neuron)

Sensory Array

( 160 sensors)

Figure 3.8 Spiking Neural Network for object shapes classification. (Left) sensory array
of 160 piezo-resistive sensors. (Middle) 2 layers of LIF neurons. layer one consists of
160 neurons and layer two consists of 11 neurons (one per object shape), in which the
connection between the two layer were all to all connection through weighted synapses.
(Right) WTA structure composed by global inhibitory neuron.

produced by the activated sensors are used as input current to layer one neurons. Layer

two (classifier layer) consists of 11 neurons that decode the different object shapes

presented to the network by detecting the temporal coincidence between activated

neurons in layer one. The proposed network with only two layers SNN could be

considered as one of the simplest networks for solving classification problems since it

only relies on the input and output layers. Moreover, replacing the used sensors with

event driven sensors may dramatically decrease the complexity of the network since

these sensors could fed directly the output layer.
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3.6 Discussion

In this chapter, we developed a biologically spiking network composed of three layers

of LIF neurons to discriminate different edge orientations of a bar, as well as different

touch modalities applied on the artificial skin. Two different sensory arrays were used

in this chapter, the skin patch from the iCub robot for edge orientation discrimination

and the FSR sensory array for touch modalities classification. These two neuromorphic

architectures were developed based on competitive primitives (e.g LIF neuron model,

synapses, and WTA) that can be implemented on low power mixed mode sub-threshold

neuromoprhic hardware. The network is capable of analysing the analog pressure

values arriving from the sensory array upon contact with stimulus and convert them

into neuromorphic spikes by means of layer one neurons. Such that, the neurons

output firing rate is proportional to the pressure, mimicking the sustained response

of SA-I types of mechanoreceptor. In addition, the activity of each group of multiple

mechanoreceptors converges to one receptive fields that sends its excitatory current

to the decoder layer that decodes the input stimulus based on temporal coincidence

activation of those receptive fields.

For a different application scenario in which we aim to discriminate between different

object shapes, we adopted and modified the spiking neural network. The network for

object shapes recognition is composed only of two layers (input and output layer). In

this way we decreased the complexity of the network as well as the computational cost.
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Chapter 4

Receptive Fields

4.1 Introduction

Visual and tactile sensory processing both involve neural mechanisms that extract high-

level geometric features of a stimulus, such as the orientation of an edge, by integrating

information from many low-level inputs [111, 140–143]. Although geometric feature

extraction is generally attributed to neural processing in the cerebral cortex [144, 145],

there is growing evidence in the visual system that feature extraction begins very

early in the processing pathway [146], even at the level of first-order (that is, bipolar)

neurons in the retina [147]. Authors in [19] demonstrated that feature extraction

also begins very early in the tactile processing pathway, at the distal arborization of

first-order tactile neurons. First-order neurons in the tactile system have distal axons

that branch in the skin and form many transduction sites, yielding complex receptive

fields with many highly sensitive zones [148, 149].
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Despite the concept of receptive field is commonly present in nervous systems (like

visual receptive fields [150]), a common agreement on tactile receptive fields is still

missing. Previous observations that first-order tactile neuron’s highly sensitive zones

are non-uniformly distributed within its receptive field [109, 151] motivated two key

predictions. First, the intensity of a neuron’s response would signal edge orientation

because its firing rate would increase with the degree of spatial coincidence between

the neuron’s highly sensitive zones and local tissue deformations caused by an edge

moving across the skin [152, 151]. That is, for a given neuron, some edge orientations

show more spatial coincidence than others, and therefore yield stronger responses.

Second, the temporal structure of a neuron’s response would signal the orientation

of an edge moving across its receptive field. That is, the temporal structure of the

evoked action potentials is defined by the sequential stimulation of the neuron’s highly

sensitive zones, which in turn depends on edge orientation. These two predictions were

confirmed in the study conducted by authors in [19], where they presented a model of

receptive fields in which for each edge orientation subset of neurons activated at the

same time, and studying the spatial coincidence between neurons.

Moreover, some early studies suggested that the tactile receptive fields are similar to the

visual ones but shaped differently due to the different stimuli they interface with: vision

seems to be handling more natural scenes with several objects and a heterogeneous

background, while touch is mainly related to surface textures and regular repetitions.

Touch stimuli seem in general sparser than visual stimuli [153]. Some other more

recent studies [154, 108] suggest that this sparsity greatly influences the mechanism
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behind receptive fields in touch. The sparsity of the signal could have led, according

to the studies, to a semi-random distribution of the receptive field. The authors also

suggest that an explanation behind semi-random distributions in the receptive field

comes from compressive sampling theory, in which high sampling accuracy can be

obtained using random bases [108]. In [108] they modeled a virtual patch of skin

with known biological constraints to show how, under a simple coincidence-coding

scheme [155, 156], the presence of heterogeneous receptive fields with many subfields

influences edge orientation resolution as a function of edge length and orientation.

The virtual patch was innervated by synthetic units (i.e., first-order tactile neurons)

with innervation density [4] and receptive field size [157] based on the known human

physiology. Each unit’s receptive field was actually composed of receptor elements.

They compared two versions of the model. One where units had unique subfields by

virtue of being connected to a random (2–64) number of receptors placed randomly in

the units’ nominally circular receptive field. And, as a comparison, another model with

all units’ having receptive fields with uniform sensitivity by virtue of being connected

to one receptor element whose receptive zone corresponded to the unit’s receptive field

boundary. Results in [108] show that (1) the model with subfields performed at levels

slightly better than our human participants – showing discrimination thresholds 1.3o

for the infinite length edge to 13.1o for the 1 mm long edge and (2) the model with

subfields always outperformed the model with a uniform receptive field.

In this thesis, within the edge orientation apllication scenario we conducted three

different studies: (1) we analyzed the response of the model for edge orientation
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selectivity to a manually designed set of receptive fields inspired by the finding of [19]

(Sec. 4.2), (2) we investigated different receptive fields topologies with three different

connectivity patterns (Sec. 4.3), and (3) we verified the hypothesis that receptive fields

with random (and interleaved) sensitive points can offer higher orientation acuity than

receptive fields where sensitive points are positioned uniformly [108] (Sec. 4.4).

4.2 Edge Orientation Discrimination with Designed Re-

ceptive Fields

Inspired by the finding of [19] we designed a manual structure of overlapping receptive

fields in order to test the ability of our model architecture provided in chapter 3

Sec. 3.3.2 in discriminating between different edge orientations.

The dataset collected in this experiment consists of 8 different bar orientations manually

pressed on the skin patch of the iCub robot (0o, ±22.5o, ±45o, ±67.5o, 90o) using a bar

of (11cm × 9mm) as shown in figure 4.1-A. Moreover, five overlapping receptive fields

were designed as follows: (1) for each of the 8 different bar orientations we chose three

active sensors during pressing, in which these active sensors are connected to layer one

neurons (colored mechanoreceptors in figure 4.1-A) as one-to-one connection, such

that the total number of neurons in layer one was equal to the number of activated

sensors for the whole bar orientations. (2) The three active neurons at each orientation

are connected to three specific neurons in layer two ( receptive fields) as one-to-one

connections, causing them to fire as shown in figure 4.1-B, such that for each orientation
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Figure 4.1 Spiking neural network for edge orientation with designed receptive fields:
(A) Skin patch from the iCub robot and layer one, which encodes the analog signal into
spikes. (B) First order tactile neurons (layer two) gathering the 160 inputs from layer one,
organised in receptive fields. (C) Layer three discriminates edge orientation and includes a
global inhibitory neuron that implements the WTA network.

three receptive fields are activated and firing simultaneously. The combination of the

activated neurons in layer two at each orientation was connected to a single neuron

in layer three as shown in figure 4.1-C. The coincident spiking activity of the three

neurons of layer two increases the membrane potential of the neuron in layer three,

causing it to spike. As a result, each neuron in the third layer is selective to a given

orientation, increasing its firing rate for orientations close to its preferred orientation

and showing maximum firing rate in response to the one for which it is tuned. Figure

4.2 represents the firing rate for the 8 neurons at layer three at each of the 8 different

orientation (box per orientation in figure 4.2). For each of the different orientations,

61



62 Chapter 4. Receptive Fields

Layer three neurons Layer three neurons Layer three neuronsLayer three neurons

Figure 4.2 Firing rates of neurons in layer three for different stimulus orientations; with
(red) and without (green) WTA.

there is only one neuron from layer three that has a maximum firing rate as shown

in figure 4.2. Green curves in figure 4.2 show that some neurons fire several spikes

also for orientations that do not have their exact combination of receptive fields but a

similar one. To increase orientation selectivity, we implemented WTA competition using

a global inhibitory neuron as shown in figure 4.1. Orange curves in figure 4.2 shows

that with WTA only the winning neuron in layer three is firing and has a maximum

firing rate.
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Nevertheless, the network was able to detect eight different peaks through applying

eight distinct input stimuli with each having a different orientation. This confirms

that the model with manual structure of overlapping receptive fields can discriminate

between several distinct edge orientations applied on artificial skin.

4.3 Receptive Field Structure

In section 4.2 we analyzed the response of the model to a manually designed set

of receptive fields inspired by the finding of [19]. In this section, we aim to find

the ability of our model to signal edge orientation with three different structures of

receptive fields inspired by the findings of [108]. This gives the ability to increase

the number of orientations to be detected by the model, as well as the randomization

and generalization of the model proposed in chapter 3 Sec. 3.3.2 for edge orientation

selectivity. In this study, The three structures share the same number of neurons in layer

one (160 neurons which is equal to the number of sensors in the skin patch) and the

number of receptive fields which is equal to 12 (12 neurons in layer two). The three

different structures of receptive fields were implemented using a matrix of connectivity

between layer one and layer two. The matrix composed of 160 rows in which each row

represents one neuron in layer one, and 12 columns in which each column represents

one receptive field (one neuron in layer two). Based on the two biological constraints

we built the layer one layer two connectivity matrix W1. The first constraint is the

non-negative regularization in W1 that simulates the fact that first-order tactile neurons
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can only be excited when their transduction sites are stimulated [154]. The second

constraint is the convergence from layer one to layer two that simulates the many-

to-one convergence from mechanoreceptors in the skin to first-order tactile neurons

traveling in the nerve [154]. These constraints result in a matrix of zeros and ones (1

connected and 0 not connected), in which in each row there is single 1 which means

that each neuron in layer one is connected only to one neuron in layer two. The three

structures of receptive fields differ in the way of connecting the neurons in layer one to

the neurons in layer two as mentioned in the following sections (Sec. 4.3.1, Sec. 4.3.3,

and Sec. 4.3.2).

Figure 4.3 Uniform structure of receptive fields.
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4.3.1 Uniform Receptive Fields

In the Uniform structure of receptive fields, the skin is divided in different and homoge-

neous receptive fields grouping the sensitive elements into regions. For example, we

chose 12 different centers uniformly on the skin (one center per receptive field), then

the 12 adjacent mechanoreceptors to these centers belong to a specific receptive field

with constant area as shown in figure 4.3.

Figure 4.4 Random structure of receptive fields.
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4.3.2 Random Receptive Fields

In the random structure of receptive fields, the sensitive elements on the whole skin are

randomly associated to different receptive fields. For example, each receptive field con-

sists of 12 mechanoreceptors connected randomly, the position of the mechanoreceptors

changes at every simulation. This kind of connectivity forms randomly generated over-

lapping interleaved receptive fields. Figure 4.4 shows an example of random receptive

fields structure on the skin patch of the iCub robot, where each color represents one

receptive field (e.g. the dark blue small boxes represents the mechanoreceptors of the

dark blue receptive field).

Figure 4.5 Random structure with subfields of receptive fields.
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4.3.3 Random with Subfields Receptive Fields

In the random with subfields structure of receptive fields, the receptive field is composed

of small clusters of adjacent sensing elements, such that for each receptive field, there

are 4 highly sensitive points (taxel) randomly placed on the skin. The four highly

sensitive points and two of their neighbors represent the mechanoreceptors of that

receptive field as shown in figure 4.5. The random with subfields structure is different

from the random structure where each taxel is independent of its neighbors.

4.4 Receptive Fields Assessments Using Mutual Infor-

mation Theory

To verify the hypothesis that receptive fields with random (and interleaved) sensitive

points can offer higher orientation acuity than receptive fields where sensitive points

are positioned uniformly [108], we conducted three different experiments at the level

of receptive fields layer (layer two) and we measured the performance acuity using

mutual information theory. The three different experiments are as follow: (1) Receptive

fields assessments as a function of connected sensors to each receptive fields (Sec. 4.4.2)

, (2) Receptive fields assessments as a function of edge length (Sec. 4.4.3), and (3)

receptive fields assessments as a function of center position (Sec. 4.4.4).
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4.4.1 Mutual Information Theory

When neurons respond to an input stimulus, they encode its characteristic in their

spiking activity. This means that the input stimulus variables (e.g. like the pressure

intensity or the angle of the bar) is converted into the output variable in the neuron (e.g.

the spike count, the interspike interval or the time of the first spike). The value of the

output variable is influenced up to a certain degree by the input variable. Estimating

how much the output variable is expressing the input variable is the main aim of

Information Theory [158].

Specifically, mutual information is the measure of the reduction of uncertainty that the

output variable causes on the input one. The uncertainty (or entropy) can be expressed

as:

H(X) =
∑
x∈X

p(x)log2

(
1

p(x)

)

where p(x) is the probability density function of the value x in the variable X. When

the output variable Y is measured, the outcome can depend on the input variable X.

This relation can be expressed as

H(X|Y ) =
∑

x∈X;y∈Y

p(x, y)log2

(
1

p(x, y)

)

where p(x, y) represents the joint probability density function between the value x

of X and y of Y . By computing how much uncertainty the output variable reduces

with respect the input variable, the mutual information (or MI) can be estimated. The
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resulting formula is

MI(X, Y ) = H(X)−H(X|Y ) =
∑

x∈X;y∈Y

p(x, y)log2

(
p(x, y)

p(x)p(y)

)

This concept has been used in this work for assessments and to characterize the system

at the receptive field layer (layer two). In the following three experiments, the activity

of the receptive fields’ layer encodes the orientation of the bar through a spatial code

defined at each temporal window (the time during which a stimulus is presented). In

said time, the neurons that have a spike activity higher than an arbitrary threshold

(defined as half the spike rate of the most active neuron) are considered as ‘1‘ while

the other ones as ‘0‘. To assess the quality of the neural code generated by said layer

we used mutual information. For each trial we counted the times a given spatial code

appeared in relation to a bar’s orientation. This results in a joint probability table of size

R× S, where R represents the spatial code responses and S the stimulus orientation.

Therefore, using mutual information (MI), we computed how much information about

the input orientation the system can encode.

4.4.2 Connected Sensors Study

We firstly recreated the experiment where a bar is pressed manually on the skin at eight

different orientations (0o, ±22.5o, ±45o, ±67.5o, 90o), but changing the configuration of

the receptive fields according to the three proposed topologies (Uniform, Random, and

Random with subfields).
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2 connected sensors 
for each receptive 

fields

16 connected 
sensors for each 
receptive fields

Random Receptive Fields Structure

Figure 4.6 Example of the connected sensors study experiment with the random receptive
fields structure; (left) 16 connected sensors to each receptive fields ( each color represents
the mechanoreceptors (sensors) of one receptive fields). (right) 2 connected sensors for
each receptive fields.

This was repeated multiple times, while decreasing the number of taxels impinging to

each receptive field. Starting with full connectivity of connected sensor (mechanore-

ceptors) to each receptive field, then decreasing the number of mechanoreceptors

until we reach the minimum connectivity in which each receptive field comprising 2

mechanoreceptors. Figure 4.6 shows two examples of receptive fields structure with

two different number of mechanoreceptors impinging to each receptive field (to the

left, 16 connected sensors to each receptive field, where each color represents the

mechanoreceptors (sensors) of one receptive field, and to the right 2 connected sensors

for each receptive field with the random structure). Since the mechanoreceptors are

randomly connected to the receptive fields in two of the structure mentioned in the
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previous section, we repeated the simulation for 150 trials; in each trial the mechanore-

ceptors are randomized in different ways based on the matrix of connectivity. Figure

4.7 shows the mutual information computed for every different topology and for the

number of taxels per receptive field. The taxels’ number variation is meant to estimate

the robustness of each topology to edge orientation encoding when the receptive fields

density decreases. Moreover, as a function of connected sensors, the random structure

of receptive fields outperformed the subfields and uniform structure.

Figure 4.7 Mutual Information for each receptive fields’ structure, as a function of connected
sensing elements (mean and std shaded).

4.4.3 Edge Length Study

To calculate the minimum angle that the different topologies could discriminate, and

to estimate robustness to the decreasing level of information about the stimulus, we
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simulated an increased number of bars with different lengths and orientations. The

way the taxels were distributed followed again the three different topologies.

x 12

Bar 
(11 cm X 9mm)

05 175

36 orientations 
with 5 degree 

step increments

Bar 
(1 cm X 9mm)

Figure 4.8 Edge length experiment. 36 orientation ranging from 0 o to 180 o with 5 o step
increments applied on the skin patch with changing bar from 11 cm to 1 cm with step 1 cm.

In this experiment, we applied 36 different angles ranging from 0o to 180o with 5o step

increments with the length of the bar changing from 1cm to 11cm with a 1cm step as

shown in figure 4.8. Each configuration was repeated for 150 trials. We measured the

minimum angle detectable by the network dividing the maximum angle excursion and

the number of detected orientations.

Angle(◦) = Maximum excursion

Number of orientations
= 180◦

2MI
(4.1)

The results, visible in Figure 4.9, highlight that, given a fixed length, the receptive

fields with random distribution seem to perform better in orientation acuity such that

the receptive fields created by randomly selecting sensitive points perform better than

structured receptive fields with uniform distribution in discriminating small angles
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(down to 5o). As expected, the orientation discrimination, gracefully degrades with

decreasing stimulus length.

Figure 4.9 Minimum detectable angle as a function of bar length (mean and std shaded).

4.4.4 Center position Study

For generalization of the system proposed in this thesis for edge orientation selectivity,

we conducted three different experiments as a function of center position of the pressed

oriented bar. In the first experiment, we choose 4 different bar orientations (- 45o, 0o,

45o, and 90o). Each oriented bar pressed on the skin patch with different position (e.g.

the 90 o bar pressed on the skin patch at 15 different position starting from the bottom

of the skin and going upward by step 0.5 cm increments as shown in figure 4.10).

To illustrate, the total dataset collected for this experiment was composed of 4 different

orientations with 15 different positions for each orientation (4 × 15). The way the

taxels were distributed followed again the three different topologies. We used mutual
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x 15

90 degree oriented bar

iCub skin patch center position

Figure 4.10 Center position study (first experiment); 90 0 oriented bar pressed on the skin
with 15 different center position.

information in order to compute how much orientation the model encodes at each of

the different center positions. The simulation was repeated 150 times. Figure 4.11

Shows the mutual information values as a function of 4 orientations. The number of

centers detected by the network for each of the 4 different orientation calculated by

the following equation

number of centers = 2MI (4.2)

(e.g., with 0o orientated bar and random structure the mutual information was equal

to 4, which means that the system detected the 0o orientation at 24 center position as

shown in figure 4.11). The results, visible in Figure 4.11, highlight that, with different

centers positions the random and random with subfields structures looks similar in

encoding the orientations and outperformed the uniform structure.
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Figure 4.11 mutual information as a function of 4 different bar orientations for the three
different receptive fields structures ( uniform, random with subfields, and random); each
orientation applied on the skin with 15 different center positions.

In the second experiment, we choose 12 centers position, at each position we simulate

the 36 orientations ranging from (0 to 180 with step 5 increments) as shown in figure

4.12. As such, the total dataset collected for this experiment was equal to 12 × 36.

At each position we calculated the mutual information (how much the system encodes

different orientation at each of the different center positions at receptive fields layer) for

the three different structures. The simulation was repeated for 150 times to calculate

the mean and standard deviation. Figure 4.13 Shows the mean and standard deviation

(shaded) mutual information as function of center position. The results, visible in Figure

4.13, highlight that, at the center of the skin patch, the system detected the highest

number of orientations, whereas the number of orientations detected at the boundaries
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0
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36 orientations 
with 5 degree 

step increments

Center position

x 12

0175 5

Figure 4.12 Center position study (second experiment); 36 orientations ranging from 0 o

to 180 o with 5 o step increments applied on the skin in 12 trials, in each trial we change
the center position.

of the skin was the lowest. Moreover, as in the previous experiments the structure with

random connectivity outperformed the random with subfields and uniform structure in

detecting more orientations applied on the skin patch.

Finally in the last (third) experiments, we combined the center position and edge length

in the same study, in which the experiments were as follow: (1) 5 different center

positions, (2) 6 different bar lengths, and (3) 36 orientations. At each center position

we applied 36 different angles (180◦ with 5◦ steps) with the length of the bar changing

from 5cm to 11cm with a 1cm step as shown in figure 4.14.
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Figure 4.13 Mean mutual information and std (shaded) as a function of center position
for the three different receptive fields structures ( uniform, random with subfields, and
random).

Each configuration was repeated for 150 trials. Figure 4.15 shows the mutual infor-

mation as a function of center position and edge length for the random receptive

field structure. The results, visible in Figure 4.15, highlight that, given a fixed length,

the number of encoded orientation was better when the center position of the 36

orientation was at the center of the skin patch and with the longest edge bar, whereas

the number of orientation decreased when the bar length decreased. Moreover, the

orientation discrimination, decreases whenever the center of the applied orientations

was far away from the center of the skin patch.

77



78 Chapter 4. Receptive Fields

0
1755

36 orientations 
with 5 degree 

step increments

x 6

Bar 
(11 cm X 9mm)

0 1755

x 5

Shorter Bar

x 6

Figure 4.14 Center position study (third experiment); (left) 36 orientations ranging from
0o to 180o with 5o step increments applied with bar changing from 11 cm to 5 cm with step
1 cm. (Right) same as in the left part, whereas the center position of the 36 orientation is
different.
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Figure 4.15 Mutual information as a function of edge length and center position for the
random structure of the receptive fields.
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4.5 Discussion

In the first part of this chapter the ability of the network architecture in discriminating

different bar orientations pressed manually on the skin patch of iCub robot with manu-

ally designed overlapping receptive fields was studied. Thanks to the encoding strategy

and the coincidence activation mechanism the network has the ability to discriminate

between eight different orientations. Moreover, the WTA competition was introduced in

this work, showing how when we used WTA composed of only global inhibitory neurons,

the orientation selectivity can be increased. In the second part of this chapter, the

response from several neurons connected to different sensors have then been collected

into receptive fields to compress the information. The connection between layer one

and layer two (i.e. the neurons connected to sensors and the neurons representing the

receptive fields) has been studied to assess maximum information transmission. We

verified the hypothesis that receptive fields with random (and interleaved) sensitive

points can offer higher orientation acuity than receptive fields where sensitive points

are positioned uniformly within three different studies (connected sensors, edge length,

and center position). Therefore, through following biological examples [108] in which

sensitive areas of the receptive fields are randomly distributed on the skin, we proposed

an approach for estimating the optimal distribution of taxels in receptive fields for

increasing the orientation acuity. This method can be used as a tool to minimise the

connectivity and number of required taxels in future generations of artificial skin, while

maintaining spatial sensitivity.
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Chapter 5

Spike Based Learning with Synaptic

Normalization

5.1 Introduction

Neurons in most vertebrate nervous systems communicate through action potentials.

These are abrupt moments where the membrane voltage of a neuron rapidly rises

and falls in a consistent trajectory. As the trajectory of the membrane voltage is

independent of the amount of current that induced the response, an action potential or

spike is typically considered an all or nothing event [159]. It is traditionally assumed

that information is conveyed through the average spiking rate of a neuron [160].

However, recent studies have found precise temporal relationships in spike patterns

evoked by sensory stimuli in visual, auditory, olfactory, and somatosensory pathways

[161], suggesting that information is also encoded in the time of each spike. The
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computational capabilities of individual neurons would be much higher than previously

thought if temporal features are taken into consideration [162]. These key insights are

the fundamental basis for the field of SNN. SNNs are synthetic networks of neurons

that emulate the rich time-varying dynamics found in biology for increased realism

[163, 164]. SNNs are shown to be superior to rate-based neural network models

for complex tasks such as recognition of visual patterns, odors, sound properties,

and tactile stimuli [165, 166]. Due to their biological credibility, SNNs are useful

for modeling information processes in the brain and investigating various learning

mechanisms [167, 168]. Engineering problems such as pattern recognition and real-

time computation also benefit from the use of SNNs [169, 170]. The neurons in an

SNN are linked together through synapses. Each higher-order neuron may receive

inputs from multiple lower-order neurons through synapses of adjustable weights or

efficacies. Like their biological counterparts, computational neurons models in SNNs

communicate through spikes, which are discrete events in time. For SNNs with multiple

layers, the ability for neurons to map specific spatiotemporal input spike patterns to

temporally precise output spikes is very useful, as the spiking outputs can then be

decoded by higher-order neurons sensitive to spike timing [171]. The temporally

precise mapping can be achieved by adjusting the weights of the input synapses.

However, the development of efficient algorithms for computing weights remains a

challenge due to the complex nature of spike trains. For instance, elementary operations

such as addition, subtraction, and multiplication cannot be directly performed on spike

trains. Existing learning rules typically employ heuristic approaches which may produce
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sub-optimal results. Hence, techniques to robustly optimize synaptic weights remain

an important area of research for SNNs. Several techniques to train spiking neurons

have been reported in the literature, in which they act directly on the weights of

the synapses of two neurons connected with each other. Spike Timing Dependent

Plasticity (STDP) and Spike Driven Synaptic Plasticity (SDSP) are the most famous

learning rules, which depend on the activation patterns of spike trains between neurons,

and they are implementable on low-power neuromorphic hardware devices. In this

chapter, we introduce a novel bio-inspired spiking neural network endowed with spiked-

based learning rule, to show how, using only neurons, synapses, and local learning,

complex patterns can be learned. Moreover, we show how using synaptic normalization

mechanism the unbalanced current between neurons can be solved in spiking neural

networks. The organization of this chapter is as follows. Sec. 5.2 & Sec. 5.3 presents

the most famous biological learning rules STDP and SDSP. Sec. 5.4 demonstrates

the problem of edge orientation classification in SNN and how can be solved using

unsupervised spiked-based learning rule and synaptic weights normalization. Sec. 5.5

STDP is applied to the particular application where the goal is to detect different touch

modalities. In Sec. 5.6 we solved the problem of object shape classification using SNN

and supervised STDP learning. Finally, Sec. 5.4.1 provides a discussion of our finding.
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5.2 Spike Timing Dependent Plasticity (STDP)

Learning rules are algorithms performed in the synapses: depending on the activity

of the synapses or of the neurons they are connecting. The learning rule changes

the synapse’s transmission capability by modifying its weight. More specifically, the

way the weight changes depends on the behaviour of the neuron before the synapse

(called PRE) and the neuron after the synapse (called POST). The weight of the synapse

changes the amount of signal that the PRE is able to send to the POST. One of the most

famous learning rule is (STDP) [172, 173, 101]. The latter is a form of learning that

depends on the timing between the spikes of the PRE and POST neurons, connected by

a synapse. STDP is often referred as the standard learning rule for emulating neural

behaviour [174], as well as it is considered the basis of learning and information

storage in the human brain. In the case where a presynaptic spike is followed closely by

a postsynaptic spike, the synapse potentiates. However, when the postsynaptic spike is

emitted shortly before a presynaptic spike, the synapse is depressed. Previous work by

the authors [175], has successfully developed a learning algorithm that used a modified

version of the conventional STDP rule, called the Cross Correlated (CC) rule. This

algorithm was used to train a two-layer network and the results were benchmarked

against existing supervised learning algorithms [176, 177]. Authors in [178] proposed

a bio-plausible SNN model for SL based on the symmetric spike-timing-dependent

plasticity (sym-STDP). They achieved good performance in the benchmark recognition

task (MNIST dataset) by combining the sym-STDP rule with bio-plausible synaptic
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scaling and intrinsic plasticity of the dynamic threshold. In [178] the readout synaptic

weights (W) connecting hidden layer neurons to output layer neurons evolve according

to a supervised rule through STDP using post-synaptic spike traces tri(t) and post-

synaptic target trace tgti(t). The post-synaptic tri is updated at every post-synaptic

spike and decays exponentially over a time constant as shown in equation 5.1

τtr
dtri

dt
= −tri +

∑
f

δ(t− tf
i ) (5.1)

In this equation τtr represents the time constant in ms and tf
i the time were the post-

synaptic (output layer) neurons fire a spikes. The weights updated at every pre-synaptic

(hidden layer neuron) spike as shown in equation 5.2

wij = α.(tgtpost
i − trpost

i )δ(t− tf
j ) (5.2)

where wij represents the synaptic weights dynamic between the jth neuron in hidden

layer and the ith neuron in output layer, α is the learning rate, tgti represent the post-

synaptic target trace which is constant, and δ(t− tf
j ) represents the time were the jth

neuron in hidden layer fire a spikes.

In this thesis, the STDP learning rule using post-synaptic spike traces and post-synaptic

target traces has been used for learning the network to classify different touch modalities

and object shapes applied on artificial sensory array.
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5.3 Spike Driven Synaptic Plasticity (SDSP)

Initially proposed by Brader et al [179], the SDSP is counted as one of the most

biologically plausible learning rules. Differently from the STDP, which depends only on

the time between spikes, the synaptic weights in SDSP are dependent on two variables,

as shown in figure 5.1: (1) the concentration of the slow postsynaptic calcium and

(2) the state of the postsynaptic membrane potential at the time of the presynaptic

spike. This rule has been already tested by Brader et al. [179] who demonstrated the

ability of 2000 input neurons in classifying thousands of overlapping patterns from

the MNIST dataset. They also demonstrated the ability of the network to generalize

to other classification tasks with a similar or better performance than ANNs. Finally,

they compared the long-term performance of STDP and SDSP and found that they were

similar, but SDSP presented better generalization properties and biophysical accuracy. In

addition, through presenting a VLSI network of spiking neurons and dynamic synapses,

Mitra [180] showed the network’s ability to perform real-time classification of complex

patterns of mean firing rates. Moreover, another experiment [181] proposed an online

learning digital spiking neuromorphic processor that utilized on-chip learning for the

classification of 16x16 MNIST images. These findings establish that the SDSP learning

rule is not only biologically realistic but also implementable on neuromorphic devices.

Figure 5.1 shows the results of a Brian2 simulation where two neurons are connected

in a PRE-POST link using SDSP-equipped synapses for a 500 ms stimulation period.

Figure 5.1-A represents the presynaptic spike train. When input spikes arrive from the
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membrane threshold

Pre-Synaptic Spikes

Post-Synaptic Membrane Potential

Post-Synaptic Calcium Variable

Synaptic Weight

A
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D
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Figure 5.1 Toy example of two neurons connected via SDSP synapse. (A) Pre-synaptic
neuron spike arrives at time tk. (B) Post-synaptic membrane potential. (C) Post-synaptic
calcium variable. (D) Synaptic weights variation as a function of time. If post-synaptic
calcium variable and membrane potential meet the requirements at the moment of the
pre-synaptic spike arrival, the synaptic weights potentiated by value A+.

presynaptic neuron, they increase the membrane potential of the postsynaptic neuron

above the SDSP membrane threshold θv. This behaviour goes on until it reaches the

neural membrane threshold, this triggers a spike in the post-synaptic neuron, as shown

in figure 5.1-B. According to SDSP rule, every time the post-synaptic neuron emits a

spike, the post-synaptic calcium variable C(t) , which represents calcium concentration,

increases of a fixed value JC . The calcium variable C(t) is represented in mathematical
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equation:

dC

dt
= −C

τC

+ JC

∑
i

δ(t− ti)

This variable is therefore proportional to the instantaneous neuron‘s spiking activity

and it decays with a fixed time constant (τC) , as shown in figure 5.1-C.

When a pre-synaptic spike arrives, the instantaneous values of v(tpre) and C(tpost)

indicates the change of the synaptic variable w3 according to the following conditions:


w −→ w + A+ if v(tpre) > θv and θl

up < C(tpre) < θh
up

w3 −→ w + A− if v(tpre) < θv and θl
down < C(tpre) < θh

down

In this conditions, A+ and A− are the learning jumps, θv is the voltage threshold and

θl
up, θh

up, θl
down and θh

down indicates the thresholds for the calcium variable.

Under the mentioned conditions related with the calcium concentration and POST’s

membrane potential, the presynaptic spike triggers a variation in the internal weight

of the synapse (W), increasing it by a value A+, as shown in figure 5.1-D. Despite the

instantaneous adaptation, W is converging toward one of two stable states (Wmax or

Wmin). The direction of the convergence depends on whether the current value is above

or below a given threshold θw as shown in the following conditions:


dw
dt

= α if w > θw

dw
dt

= −β if w < θw
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Moreover, the synapses has efficacy J+ if (W) is greater than θw, otherwise the synapse

has efficacy J−, as shown in figure 5.1-D.

5.4 Unsupervised Learning and Synaptic Normalization

Mechanisms for Edge Orientation Selectivity

In chapter 3 we proposed a neuromorphic model for edge orientation selectivity,

composed of artificial skin from the iCub robot and three layers of spiking neural

network, based on computational primitives that are implementable on low power

neuromorphic hardware devices. Moreover, A previous analysis was conducted in

chapter 4 to propose a receptive field structure on the iCub skin to maximize the

mutual information transmitted between layer one and layer two. The outcome of the

study was that, in presence of a noiseless stimulus, higher information is delivered

by the random shaped structure, while a more structured receptive field performed

increasingly worse when reducing the length of the pressed bar. In this structure

the different sensors present on the skin patch are assigned randomly to 16 different

receptive field. The activation of one of the afferent in the receptive field activates

the whole receptive field. More the active afferents in the receptive field, higher the

receptive field activity. In the following parts, for reference, a random distribution has

been generated and kept identical for all the simulations.

The goal of this work was to make the network learn the different orientations using

temporal coincidence. For that reason, we endowed the network with local unsuper-
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vised learning (SDSP) between layer two and layer three, in which the baseline network

is equipped only with a WTA mechanism. Mutual Information has been used in this

work for estimating the ability of the network to distinguish the different orientations.

When a stimulus (i.e., a bar pressed with a specific orientation) is presented to the

network the output layer response is used for estimating the MI. The amount of spikes

emitted by the different neurons in the layers is calculated, after a binning in time.

The neuron with the highest spike count is considered the winner and the positive

number ’1’ is assigned to it in the vector containing all the output neurons. All the other

neurons receive instead a ’0’. This particular way of coding the output is necessary

to overcome the drawbacks present in Information theory. Furthermore, the usage of

WTA network at the output layer reduces the error generated by this simplification.

As a result, a matrix composed by N time bins and M neurons is generated. This

matrix is then used to create the joint probability where in each column is encoded

the probability that a specific output neuron, given different input stimuli, spikes more

than the others. This matrix can be defined as the joint probability between the two

variables p(X, Y ). The information obtained by the formula has been then converted in

"Number of Orientations Detected" using the concept that

Recognised Orientation = 2MI

The unconstrained and random structure of the connectivity among layers can produce

unbalanced activity in the output neurons, that are driven by a different number of
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synaptic inputs. Two different forms of activity balancing (e.g. weights normalization

and homeostasis) can be implemented at inference and learning time to create an

homogeneous network that enables the system to discriminate between different bar‘s

orientation applied on the skin patch.

In this section, three different networks are studied. The three networks share the

same common structure: three layers of neurons, a random connection between layer

one and layer two, and a learning connection between layer two and layer three. The

difference between these three networks is that while the first network is equipped

only with a WTA (Baseline Network Sec. 5.4.1), in the other two there is weight

normalization (Weight Normalization Network Sec. 5.4.2) and homeostasis (Final

Network Sec. 5.4.3), respectively. These two techniques are used to balance the activity

of the output neurons.

5.4.1 Baseline Network

The baseline network (figure 5.2-A) was trained with multiple consecutive stimuli

presentations, at randomly selected orientations in the range 0o - 180o (5o resolution).

During learning, the synapses connecting layer two to layer three were potentiated or

depressed depending on the reciprocal activation of layer two neurons.

Figure 5.2-B shows the synaptic weights before and after learning. The synaptic weights

were initialized using an uniform random distribution (figure 5.2-B left) such that

all the weights were depressed. After learning, only a small percentage of weights

were potentiated (green squares in the layer two and layer three connectivity matrix
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of figure 5.2-B right) and, correspondingly, several layer three neurons did not learn

any of the orientations presented during the learning phase, in which all the synapse

weights connecting to them were still depressed ( red squares in the layer two and layer

three connectivity matrix of figure 5.2-B right). Nevertheless, most likely a subgroup of

output neurons learnt several orientations, leaving some output neurons non-selective

to any orientation.
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Figure 5.2 SDSP Learning rule with Baseline Network. (A) Baseline network with all to all
connection between layer two neurons and layer three neurons endowed with SDSP synaptic
learning rule to build the required connectivity through potentiation or depression of the
synaptic weights and to learn an appropriate connectivity patterns for the classification. (B)
Synaptic weights at the initial and final state of the simulation; (left) The synaptic weights
between layer two and layer three were initialized using uniform random distribution such
that all the weights were depressed (red boxes); (right) The synaptic weights at the end of
the learning, each small box represents the synaptic weights of one neuron in layer two
(x-axis) connected to one neuron in layer three (y-axis), where most layer two neurons to
layer three neurons connecting weights were still depressed (red) and some potentiated
(green).
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To illustrate the spiking response of the third layer for different edge orientations, we

fed the network with 36 orientations ranging from 0o to 180o with step 5o. Right part

of Figure 5.3-B represents the spiking responses of layer three neurons with baseline

network. In this case it’s visible that while some neurons responded to several patterns

some other neurons were unresponsive.
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Figure 5.3 Spiking responses of the three layer of the neuromorphic network architecture.
(A) Examples of different bars pressed on the skin at different orientations (0o, 15o, 75o,
105o, 165o). (B) Raster plot of layer one neurons (SA-1 afferents) as a function of time for
36 orientations (0o to 180o with step 5o increments) (left), raster plot of layer two neuron
(receptive fields) (middle), and (right) raster plots of layer three neurons as a function of
time for 36 orientations with baseline network (colored spikes trains match the orientations
given in part (A) and the black spike trains for the remaining orientations.
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For quantitative assessment, we divided the learning simulation into 10 epochs. In

each epoch, we extracted the weights and tested the network on two different datasets.

The first dataset was composed of 36 orientations ranging from 0o to 180o with 5o step

increments, randomly repeated for many times, where in each dataset the pressure

is constant. The second dataset was similar to the first except that the pressure was

varying. We used mutual information to compute the number of orientations and

the information the network decodes at layer three. Figure 5.4 shows the mutual

information as a function of number of epochs. In each epoch, we computed the

number of orientations detected using the mutual information (number of orientations

= 2MI). As such, using the first dataset, the baseline network was able to detect only

six orientations at the end of learning, whereas, using the second data set, the network

was able to detect only three orientations.
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Figure 5.4 Network performance for the baseline networks based on mutual information.
(A) Mutual information as a function of epochs with constant pressure dataset; in each
epoch 36 orientations ranging from 0o to 180o with step 5o increments, randomly repeated,
and all with constant pressure. (B) The benchmark of baseline network when varying
pressure stimuli dataset were used.
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Figure 5.4, shows that the baseline network doesn’t recognize all the possible input

orientations. This behaviour is given by the presence of different amount of excitatory

currents arriving from layer two to layer three neurons at each orientation. In fact,

due to the non-uniform distribution of taxels in the layer two receptive field, it can

happen than an output neuron encoding a specific orientation which has just three

layer two neurons connected to it will always spike weaker that an output neuron that

has six layer two neurons connected to it (middle part of figure 5.3-B). This becomes

even more clear if we consider that several neurons at the layer two are encoding in

their spiking different orientations, making it difficult for the network to differentiate

between those.

5.4.2 Weights Normalization Network

Given the problem highlighted in the baseline example, a way to reduce the unbalanced

input current from layer two to layer three was tackled. Specifically, to assure that the

response of different neurons competing with each other was the same, regardless of

the quantity of input synapses connected to them, weight normalization was used. The

latter is a technique where synapses’ input is reduced according to some algorithm in

the network. In the weights normalization network, we changed the current magnitude

of each synapse depending on how many active synapses were connected to a layer

three neuron (i.e. how many weights were potentiated).

Early studies have suggested that weights normalization could be one of the key mech-

anisms for classification problems in SNNs. A previous work from Mostafa et al.[182]
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utilized weight normalization in a MNIST classification task, setting the normalization

weights as the following: the neuron spikes when its membrane potential crosses a

firing threshold which was set to 1, where the firing threshold was dynamically changed

using spiking activity. In another work from Soures et al. [183], the variation in synap-

tic weights was considered as a function of the activity of a larger set of neurons. As

they state, the normalization of synaptic weights enables the network to achieve better

classification accuracy through adding global constraints to the synapse‘s strength.

When the sum of the currents arriving from pre-synaptic neurons to post-synaptic neu-

rons exceeds a certain threshold, the synaptic weight decreases, such that the current

remains within the identified threshold.

In the weights normalization network, we introduced a component that reduces the

current coming from the synapses looking only at the weights of the connection to a

specific neuron. This way of implementing synapse normalization has the advantage

of implementing local changes without the need of global variables. Using the same

dataset as the previous example, we studied how the weights normalization network

was able to discriminate between different orientations. The weight normalization was

especially useful during learning: synaptic weights, driven by SDSP rule, were used to

define dynamically the current that each synapse was able to conduct. When a weight

between one layer two neuron and one layer three neuron exceeded a normalization

threshold, then all the synapses connected to that layer three neuron were reduced

in magnitude, as shown in figure 5.5-A. This resulted in a balance of activity between

different layer three neurons, helping the learning procedure. As in the baseline
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Figure 5.5 SDSP learning rule with weights normalization network. (A) Schematic repre-
sentation of the weights normalization mechanism between layer two neurons and layer
three neurons; synaptic weights connecting all layer two neurons to a single neuron in layer
three were normalized by dividing the weights by the summation of the activated synapses
(i.e., how many weights exceeds the normalization threshold). (B) Synaptic weights at
the initial and final state of the simulation; (left) The synaptic weights between the two
layers were initialized using same synapses random distribution as the previous example;
(right) The synaptic weights at the end of the learning, each row represents the synaptic
weights connecting all neurons in layer two to one neuron in layer-three state: depressed
(red) or potentiated (green), where the weights normalization mechanism help the learning
procedure in a balance of activity between different neurons and converging the synaptic
weights to stable connectivity patterns. (C) Number of orientation detected by weights
normalization network for 10 different trials, by changing the weights initialization random
values in each trial.
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network, the synaptic weights between the two layers were initialized using uniform

random distribution (figure 5.5-B to the left) with all the weights depressed at the

initial state.

After learning, synaptic weights progressively change to converge to stable connectivity

patterns, as shown in figure 5.5-B to the right.

Thanks to SDSP learning rule and weights normalization mechanism, each neuron in

layer three learned a specific orientation. To study the accuracy performance of the

network with different initialization of the the weights, we repeated the simulation for

10 different trials, in each trials the initial weights randomized in different distributions.

Figure 5.5-C shows the number of detected orientations at each trial, where the number

of detected orientations looks similar for all trials.
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Figure 5.6 Raster plot of layer three neurons as a function of time for 36 (ranging from 0o

to 180o with 5o step increments) orientations with weights normalization network (colored
spikes trains match the orientations given in figure 5.3-A and the black spike trains for the
remaining orientations.
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Figure 5.6-B shows the raster plot of layer three neurons with weights normalization

network, where for each orientation only one neuron is firing.

Figure 5.7-A shows the improved performance of the weight normalization over the

baseline network, in which the number of detected orientation was equal to 35 ori-

entations from 36 orientations (ranging from 00 to 1800 with 50 step increments).

Whereas Figure 5.7-B shows that the weight normalization was not able to infer all the

orientations when pressure variation was present (31 from 36 orientations). Therefore,

the network ability to infer can be in fact worsened by heterogeneous pressure levels,

during infeering, in which the pressure heterogeneity is an important feature in a

network that wants to detect real-world stimuli.
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Figure 5.7 Network performance comparison for the two different networks (Baseline,
Weights Normalization) based on mutual information. (A) Mutual information as a function
of epochs with constant pressure dataset; in each epoch 36 orientations ranging from 0o

to 180o with step 5o increments, randomly repeated, and all with constant pressure. (B)
The benchmark of the two networks (baseline and weights normalization networks) when
varying pressure stimuli dataset were used; the weights normalization network Network
outperformed the baseline network by detecting more stimulus orientations.
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5.4.3 Homeostasis Network

As an alternative to weight normalization to balance the neurons‘ synaptic drive and

allow the network to discriminate between different orientations, we explained the

use of homeostasis between layer two neurons and layer three neurons. Synaptic

homeostasis is a mechanism observed in biological neural systems that acts to maintain

a homogeneous response from neurons within a given operating range [184]: when

neuron‘s spiking activity stably leaves given boundaries, the synaptic drive is scaled to

restore the activity within their functional operating range. The process is usually very

slow and account for drifts of activity, without interfering with signal processing.

Several different types of homeostatic mechanisms have been observed in biological

neural networks, comprising both forms of synaptic plasticity mechanism and mod-

ification of intrinsic properties of the excitability of the neuron [185–187]. Global

homeostatic synaptic scaling allows for the control of the network‘s overall stability,

while complying to the need for change (or learning), to adapt to the statistic of the

input signals [188]. In [189] authors present a synaptic circuit that supports both

spike-based learning and global synaptic scaling homeostatic mechanism.

In our implementation, based on [189], the synaptic excitatory current, triggered by

layer two neurons and fed into layer three neurons, is compared to a target current.

The homeostatic control monitors the activity of layer two neurons at each orientation

and adapt the weights connecting layer two neurons to layer three neurons globally

when the pressure of the pressed bar increased or decreased, so that the excitatory
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current driving from layer two neuron to layer three neurons should be equal to a

target current Itarget, as in the following equation:

τhomeo
dhomeoi

dt
= −homeo +

n∑
j=1

(w3ji
S2j

(t− tk))

Itarget

In this equation, τhomeo is the homeostasis time constant, wji represents the synaptic

weights connecting layer two neurons to layer three neurons and S2 represents the

spatio-temporal output spikes of layer two jth neurons. Tk is the time in which the

neurons in layer two fire a spike.

If the value is higher the homeostatic plasticity changes the normalization of the

weights.

w3ji
=

w3ji

homeoi

The network with homeostasis has the advantage to adapt when the output pressure of

the artificial tactile sensors steadily changes during pressing.

As in the weights normalization network, Figure 5.8 shows that with homeostasis

network, each neuron in layer three is selective to a specific orientation and firing along

with respect to the input orientation.

The main advantage of homeostasis network over the weights normalization mech-

anism is that homeostasis performs better with stimuli with varying pressure. The

results highlight that in the constant dataset both the weights normalization and the

homeostasis networks act the same both detecting thirty five orientations as shown
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Figure 5.8 Raster plot of layer three neurons as a function of time for 36 (ranging from 0o to
180o with 5o step increments) orientations with Homeostasis network (colored spikes trains
match the orientations given in figure 5.3-A and the black spike trains for the remaining
orientations.
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Figure 5.9 Network performance comparison for the three different networks (Baseline,
Weights Normalization, and Homeostasis) based on mutual information. (A) Mutual
information as a function of epochs with constant pressure dataset; in each epoch 36
orientations ranging from 0o to 180o with step 5o increments, randomly repeated, and
all with constant pressure. (B) The benchmark of the three networks when varying
pressure stimuli dataset were used; the homeostasis Network outperformed the weights
normalization and baseline network by detecting more stimulus orientations.
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in figure 5.9-A. However, in the varying pressure dataset, the homeostasis network

outperformed the weights normalization by detecting 35 orientations compared to 31

orientations detected by the weights normalization network. Thanks to homeostasis

control, the network was able to discriminate between 35 orientations as shown in

figure 5.9.
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Figure 5.10 Accuracy of the three networks as a function of stimuli with different intervals
of times; the duration of stimuli changes from 2ms to 20ms with a step increment of 2ms,
both Homeostasis and weights normalization networks outperformed the baseline network
in detecting a different number of orientations with different time interval.

In order to demonstrate that this architecture can be used in real-time applications, we

measured the accuracy of the three networks when stimuli are presented in different

interval of times. The duration of stimuli presentation changes from 2ms to 20ms

with a step size of 2ms. Figure 5.10 shows that the number of detected orientations

increases as a function of the duration of the stimulus presentation, the system then

reaches a maximum at 10ms , recognising all between the 36 orientations both with

the weights normalization and homeostasis network.
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5.5 Touch Modality Classification Using Supervised STDP

Learning

This section presents the experiments done to demonstrate the ability of the network

presented in Chapter 3 Sec. 3.4 in learning different touch modalities. To achieve this

goal we endowed the network with supervised STDP learning rule between hidden

layer and output layer neurons with all-to-all connections. During the learning phase,

the network fed the output layer with multiple consecutive stimulus presentations,

randomly repeating the six touch modalities (poke, press, grab, squeeze, push, and

rolling a wheel). Each stimulus presentation is encoded in the spiking activity of

number of neurons of the hidden layer. Moreover, the learning dataset composed of 180

interactions (6 modalities X 30 each), repeated many times. In addition output layer

neurons are fed with external stimulus spikes trains that act as teacher signals. Thus,

when one neuron in the output layer spikes thanks to the combination activity of the

input synapses and of the teaching signal, the synapses that are active are potentiated,

those that are less active and hence have a lower probability of falling in the positive

region of the STDP curve are depressed. Therefore the potentiation or depression

depends on the combination between the activated neurons for each modality at hidden

layer and the teaching signal.

Figure 5.11 to the left represents the synaptic weights connecting all neurons in hidden

layer to one neuron in output layer, in which that neuron learned one of the touch

modalities, where the green curve represents the potentiated synapses and the orange
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Figure 5.11 STDP learning phase; (Left) variation of synaptic weights connecting all
neurons in hidden layer to one neuron in output layer for each presynaptic spike as a
function of time. (Right) summation of synapses weights at the end of learning (green for
potentiated synapses and orange for depressed synapses) connecting all neurons in hidden
layer to each neuron in output layer(x-axis). Orange bars are multiplied by −1 for better
presentation.

one represents the depressed synapses. The synaptic weights are bounded between two

values wmax and wmin. After learning synaptic weights connecting hidden layer neuron

with output layer neurons progressively change to converge to stable connectivity

patterns. Figure 5.11 to the right represents the summation of the potentiated (green)

and depressed (orange) weights connecting hidden layer neurons to each neuron

in output layer (one neuron per touch modality), where each neuron has its own

connectivity pattern that depends on the activated neurons in hidden layer for each

modality. For example, for the poke modality, the summation of the potentiated synapse

weights and the depressed weights that connected hidden layer neurons to the poke
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neuron are equal to 3nA and 13nA respectively, which means that 3 synaptic weights

potentiated and the others depressed.

To validate the proposed network, the synapses weight obtained after leaning the

network with the 6 touch modalities have been extracted. Moreover, the learning

contributions have been switched off. In the testing phase, all output neurons fired

according to inputs from the hidden layer. To achieve better selectivity, and also to

increase the classification accuracy of the network during the testing phase, a fast lateral

inhibitory layer composed of 6 inhibitory neurons has been added to the network. The

dataset used for testing is composed of 10 samples from each of the six modalities.

Figure 5.12 shows the confusion matrix after testing. The poke modality has the highest

accuracy in comparison with the other touch modalities with 100% acuity. Moreover,

most of the touch modalities have an accuracy equals to 90% which overcomes similar

state of the art work [190]. These results indicate that the touch modalities are easily

Figure 5.12 Confusion matrix for touch modalities classification.
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recognized by the network. The lower accuracy was for the push modality type, where

it was equal to 70%. Nevertheless, the accuracy achieved by the proposed network

equals to 88.3%, whereas the accuracy presented in [190] was equal to 71%.

5.6 Object Contact Shape Classification using Supervised-

STDP

one of the important applications of robots is multisensory object recognition. Recently

tactile based object recognition in robotics has gained increasing interest. Inspired by

the achieved results obtained with edge orientation detection and touch modalities

classification, in this section, we aim to classify different objects shapes applied on

sensory array using spiking neural network and synaptic learning. In the remainder of

this section, we will present the software implementation including the learning and

testing phase for distinguishing between different shapes in Sec. 5.6.1 along with a

hardware implementation for real time classification (Sec. 5.6.2).

5.6.1 Software Implementation

Learning Phase In the previous sections we solved the problem of classifying different

bar‘s orientation applied on an artificial skin using a three layers spiking neural network

and unsupervised learning, as well as touch modalities classification using similar

network architecture of three layers of spiking neurons and supervised spike based

learning rule. Here, in this study, our goal was to solve the problem of object shapes
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classification using a network architecture composed of spiking neurons inspired by the

finding of previous experiments. Besides, the network architecture developed for object

shapes classification composed of two layers. As in the previous sections, we aim to

learn the connectivity between layer one neurons and layer two neurons, such that the

network could distinguish between different object shapes presented as input stimuli.

To achieve this aim, we endowed the network with the STDP rule between layer one

and layer two neurons with all to all connection, in which the synapses weights were

initialized as zeros. During the learning phase, the network fed the output layer with

multiple consecutive stimulus, randomly repeating the eleven object shapes. Each

object shape is encoded in the spiking activity of several neurons in layer one. The

training has been repeated over 10 folds where in each fold the dataset is randomly

divided into 80% for training and 20% for testing. The training accuracy achieved a

100% accuracy over the 10 runs. In addition, output layer neurons are fed with external

stimulus spike trains that act as teacher signals during learning. Thus, when a neuron

in the output layer spikes thanks to the combination activity of the input synapses and

of the teaching signal, the synapses that are active are potentiated. Otherwise, the

synapses are not active are depressed.

Figure 5.13 represents the variation of synaptic weights connecting all neurons in layer

one to neurons in layer two as a function of time. Each box in Figure 5.13 shows the

synaptic weights change connecting all neurons in layer one to one neuron in layer

two (one neuron per object shape). The synaptic weights are bounded between two

values wmax and wmin. After learning, synaptic weights connecting layer one neurons
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Figure 5.13 Variation of the synaptic weight for each presynaptic spike as a function of
time. Each box represents the synaptic weights between all neurons in layer one to one
neuron in layer two.

with layer two neurons progressively change to converge to stable connectivity patterns.

Thanks to STDP learning each neuron in layer two learned specific connectivity patterns,

which means that each neuron in layer two learned specific object shape.

Testing Phase To validate our proposed network, the synapses weight obtained after

learning the network with 11 different object shapes have been extracted. Moreover, the

learning contributions have been switched off. During the learning phase the synaptic

weights were modified according to the combination activity of the input synapses

and of the teaching signal. Whereas in the testing phase, the activation of neurons in

layer two depend only on the synaptic current inputs arriving from layer one neurons

at each object shape presented as input stimulus. Inspired by the network developed
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Figure 5.14 Output spikes of layer one and two:(top) 11 different object shapes; (middle)
each object shape corresponds to the activation of multiple neurons in layer one; (bot-
tom)Output spikes of neurons in layer two after learning, such as for each object shape
only one neuron in layer two is firing.

for edge orientation classification, and to achieve better selectivity during testing, we

implemented WTA competition composed by global inhibitory neuron. In the testing

phase, the 20% of the dataset allocated to the testing have been fed to the network.

Each of the 11 objects shapes was detected by the network with an accuracy of 100 %.

Figure 5.14 shows the raster plots of layer one neurons for each of the 11 objects. Each

object activates several neurons representing the sensors. Besides, a raster plot of the

layer two after decoding the object shape is also provided. For every object shape, only

one neuron in layer two is firing, giving out the predicted shape.

In order to demonstrate that this architecture can be used in real-time applications,

we measured the accuracy of the networks when stimuli are presented in different
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number of samples. Starting by the lowest number of samples produced by the sensors

(1 sample), then increasing the number of samples by step one increments. Figure

5.15 shows that the accuracy increases when the number of samples produced by each

sensors increase. Therefore, the minimum number of samples required for detecting the

whole object shapes with accuracy 100 % was equal to nine samples per each sensor.
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Figure 5.15 Network accuracy as a function of number of samples.

Computational Cost Counting the number of floating-point operations FLOPs is

considered as a metric to analyze the efficiency of an algorithm. The number of FLOPs

gives an indicator on how fast a model will perform FLOPs. In this study, we counted

the FLOPs that the proposed SNN network uses in order to classify a single object shape.

The total number of FLOPs required by the network can be estimated as follows:

TotalF lops = (#FLOPs)(#iterations) (5.3)
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where the number of #FLOPs denotes the number of FLOPs per iteration and #iterations

represents the totla number of iterations for the given time of run:

#iterations = Duration

dt
(5.4)

In addition, we measured the CPU execution time the network required to classify

single object shapes. Table 5.1 represents the FLOPs, CPU time, and accuracy for three

different time steps (dt).

dt 2ms 1ms 0.1ms 0.01ms
FLOPs 10770 19128 179292 1674012

CPUtime 0.17s 0.1875s 0.21875s 0.421875s
accuracy% 80 90 100 100

Table 5.1 SNN computational cost

5.6.2 Hardware Implementation

Based on the promising results achieved with the proposed network in terms of com-

putational cost and high classification accuracy, a validation of the network on an

embedded hardware platform has been targeted. For that, since the Brian2 simulator is

a python based platform, we decided to implement the SNN network on a Raspberry pi

device since the codes could be easily converted. After that, the weights obtained after

the learning phase have been used between layer one and layer two of the network.

Note that the same interface electronics and sensors mentioned in Sec. 5.6.1 were

used. Figure 5.16 shows the block diagram of the hardware setup. The application

scenario was as follow: first, the object is pressed on the sensory array, in which the
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Figure 5.16 Real time object shape classification setup.

interface electronic collects the tactile stimuli. Second, the Raspberry pi with the

implemented SNN network executes the inference and reads the sensory data. The

communication between the Raspberry pi and the snowboard, was achieved through a

UART communication. Finally, the Raspberry pi communicates the predicted shape to

be displayed on a Liquid Crystal Display.

5.7 Discussion

In this chapter, a neuromorphic spiking neural network has been implemented on

a neuron simulator to show how, using only neurons, synapses, and local learning,

complex patterns can be learned.

In the first part of this chapter, a neuromorphic spiking neural network composed

of three layers of LIF neurons endowed with unsupervised spike-driven learning was

introduced. This network is used to solve the problem of distinguishing between

different bar orientations applied on the artificial skin from the iCub robot. Several

issues appeared during the learning and inference procedure. First, when the network
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is equipped only with a WTA structure, several neurons in the output layer did not learn

any of the orientations presented during the learning procedure. Besides, a subgroup of

output neurons learned several orientations, leaving some output neurons non-selective

to any orientation. This behavior is given by the presence of the different amounts of

excitatory currents arriving from layer two to layer three neurons at each orientation

and the non-uniform distribution of taxels in the layer two receptive fields, which yield

to unbalanced input current from layer two to layer three neurons.

This issue was solved using weights normalization endowed between layers two and

three neurons: the number of active synapses connected to each output neuron was

defining the degree of normalization each synapse was getting. The higher the number

of active synapses connected to the output neuron, the lower the strength of each

synapse. This method allows the synaptic weights to change progressively during the

learning phase converging to stable connectivity patterns, increasing the spatial acuity

of the network. Nevertheless, the network with weights normalization mechanism has

the ability to distinguish between 35 orientations of 36 orientations presented to the

network as input stimuli with constant pressure. Whereas, the network with weights

normalization was not able to infer all the orientations when pressure variation was

present in the input stimuli, detecting only 31 orientations of 36 orientations.

Another problem that was tackled in this study which is the different pressure levels

that a pressed bar can exert on the skin. The network ability to infer can be in fact

worsened by heterogeneous pressure levels, during infeering. This issue was solved

using homeostasis, where the activity of the neurons triggers a normalization of the
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synapses. The mechanism can be also used to compensate for drifts in sensor behaviours,

given by fatigue or aging. The main advantage of the homeostatic mechanism over

the weights normalization mechanism is that the homeostasis performs better with

stimuli with varying pressure. In the varying pressure stimuli, the homeostasis network

outperforms the weights normalization by detecting 35 orientations compared to 31

orientations detected by the weights normalization network.

In the second part of this chapter, we present the implementation of a spiking neu-

ral network endowed with a supervised spike-based learning rule (STDP) for touch

modality classification. The network has demonstrated the ability to learn appropri-

ate connectivity patterns for the classification, achieving a total accuracy of 88.3%

overcoming similar previous work.

Finally, we demonstrated that based on temporal coincidence, a spiking network with

two layers of LIF neurons and endowed with supervised learning has the ability to

build up the required connectivity between layers for distinguishing between different

object shapes. Moreover, the network is capable to distinguish between eleven different

objects shapes, achieving a total accuracy of 100 %, when a time step of 0.1 ms was

used.

Inspired by the computing efficiency of SNNs we implemented the proposed network

on Raspberry PI, in which it reads sensory data, execute the inference, and show the

result on a Graphical Liquid Crystal Display. The execution time for classifying one

object shape after pressing in real-time was equal to 0.421875s.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The core idea presented in this dissertation represents a paradigm shift in the approach

towards representing and processing of tactile signals. This thesis presents a biologically

inspired, spiking models architecture that mimic human tactile perception with compu-

tational primitives that are implementable on low-power subthreshold neuromorphic

hardware. More specifically, the model architecture aimed to solve the problem of

stimulus orientation detection, touch modalities classification, and object contact shape

classification. The model consists of a necessary sensory array integrated into a spiking

neural network of leaky integrate and fire neurons. Inspired by biology, I hypothesized

that a spatiotemporal representation of tactile signals will be a powerful technique for

the efficient encoding of contact stimuli. Following this hypothesis, we used the analog
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signals measured by the sensors as input to our spiking neural network that processes

and converts them into neuromorphic spikes.

In artificial sensory systems, feature extraction is an important stage to extract infor-

mation from the sensory signal. Edge orientation detection could be seen as the basis

for contour following making it considered as one of the most feature extraction for

detecting the shape of an object. In literature, edge orientation selectivity was solved

by concentrating on the biological aspect more than the computational efficiency [113].

Furthermore, the methodology used by researchers through their studies [115, 114],

lack the possibility to be embedded on robots or neuromorphic chips, due to the need

for offline learning and the presence of structures not easily transferable in silicon.

In such situations, where energy and space are major constraints, a hardware imple-

mentation with online learning and low power devices is usually preferred. Such a

methodology enables the system to perform end-to-end computation from the sensors

to the processing and classification, consuming low power.

Inspired by the biological finding of Pruszynski et al. (2014) [19], we validated the

developed network architecture in discriminating different edge orientations manually

applied on the artificial skin from the iCub robot by designing a structure of overlapping

interleaved receptive fields. The network is capable of discriminating between eight

different orientations by adopting a model of overlapping and interleaved receptive

fields that exploits temporal coincidence of the activation of neurons with different

receptive fields. Then, following biologically examples [108] in which sensitive areas of

the receptive fields are randomly distributed on the skin, we proposed an approach for

118



6.1 Conclusion 119

estimating the optimal distribution of sensitive areas in receptive fields for increasing

the orientation acuity. We demonstrated that the receptive fields created by randomly

selecting sensitive points perform better than structured receptive fields with uniform

distribution in discriminating small angles (down to 5 o with edge length equal to 11

cm ), as well as the orientation discrimination, gracefully degrades with decreasing

stimulus length (up to 60 o with edge length equal to 1cm). Moreover, we show

the robustness of the model to edge orientation encoding when the receptive field’s

density decreases, where nine sensors connected to each receptive field with random

distribution were enough to encode eight different stimulus orientations applied on

the skin patch. This method can be used as a tool to minimize the connectivity and

number of required taxels in future generation of artificial skin, while maintaining

spatial sensitivity.

Thanks to the encoding, based on temporal coincidence, the network also has the ability

to build up the required connectivity to discriminate between different orientations,

when endowed with spike-based unsupervised learning (Spike Driven Synaptic Plas-

ticity (SDSP) Learning rules). The SDSP learning rule responds to Spatio-temporal

spikes patterns with temporal coincidence, where it is implementable on neuromorphic

subthreshold CMOS technology. Furthermore, we hypothesized that the unconstrained

and random structure of the connectivity among layers can produce unbalanced activity

in the output neurons, that are driven by a different number of synaptic inputs, as well

as the change in pressure in the input stimulus orientation can degrade the performance

during infeering. Thus, we deployed synaptic normalization mechanisms to achieve
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robust and adaptive network architecture. It was verified that in the developed net-

work with weights normalization mechanism, the current magnitude of each synapse

changed, depending on how many active synapses were connected to the decoder

layer neuron. This allows the synaptic weights to change progressively during learning

converging to stable connectivity patterns, increasing the spatial acuity of the network.

Moreover, the developed system is capable of adapting to changes in sensor pressure

using a homeostasis mechanism. Nevertheless, the network is able to discriminate

between different orientations with an angular resolution of 5 o.

Moving on, we demonstrated that the network developed after modification has the

ability to appropriate connectivity patterns for the classification of different touch

modalities when endowed with a supervised STDP learning rule. The network inte-

grated with a sensory array consisting of 160 piezo-resistive sensors achieves a total

accuracy of 88.3 % in classifying six different touch modalities overcoming similar

previous work.

Finally, inspired by the computational efficiency of the spiking neural network we

developed a network of two-layer of spiking neurons to distinguish between different

object shapes pressed on a sensory array. The network with only two layers of SNN

could be considered as one of the simplest networks for solving classification problems

since it only relies on the input and output layers. Moreover, replacing the used sensors

with event-driven sensors may dramatically decrease the complexity of the network

since these sensors could fed directly the output layer. The network with two layers

has the ability to build up the required connectivity between input and output layers
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when endowed with supervised STDP learning rules. The network achieved a total

accuracy of 100% when a time step of 0.1 ms was used for classifying eleven object

shapes. Furthermore, inspired by the computing efficiency of SNNs we implemented

the proposed network on Raspberry Pi, in which it reads sensory data, executes the

inference, and shows the result on a Graphical Liquid Crystal Display. The execution

time for classifying one object shape after pressing in real-time was equal to 0.42s. The

proposed system overcomes a similar state-of-the-art solution in [91] by increasing the

number of sensors (160 tactile sensors compared to 42) and the number of objects to

be recognized (eleven objects instead of 3) in [91]. Moreover, the network presented

in [91] was intended for simulation on software, while the proposed network has been

simulated on software then ported on a Raspberry Pi hardware device.

6.2 Future Work

Development of a robust and efficient tactile sensory system for robotic and prosthetic

applications is still a great challenge. This thesis explored several biologically-inspired

approaches to address some of existing challenges. However, it is far from achieving a

complete solution. There is much to be explored in this domain.

The full potential of a neuromorphic tactile perception system will not be feasible with-

out appropriate event-driven neuromorphic tactile sensors. In this thesis, we utilized

a biologically neuromorphic approach in which taxels were scanned passively using

a hardware setup and their values were converted into spatiotemporal spike patterns
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for processing. This work, and the field of neuromorphic tactile perception in general,

can greatly benefit from development and miniaturization of event-driven sensors and

their readout circuitry that mimic the behaviour of human mechanoreceptors response,

specifically, SA and FA types.

Algorithms to process spatio-temporal feature representations are still in their infancy.

In this thesis, we proposed to utilize spiking neural networks for signal processing.

However, spiking neural networks simulated on conventional computing hardware

will not achieve the real-time performance and low power consumption promised by

neuromorphic systems. Ideally, the proposed algorithms should be implemented on

multi-purpose event based computing platforms such as the SpiNNaker [191] and Loihi

[192] to leverage on the massive parallelism and computational efficiency afforded by

these systems.

The multiple receptor types and their varying responses have been assumed to be a

form of low level feature extraction, specifically, edge orientation selectivity. We have

presented a model that mimic the biological SA-I that appears to improve the efficiency

of feature representations and edge orientation selectivity. However, the model only

simulates the first-order properties of the mechanoreceptor, and additional refinement

is needed to reproduce the more complex characteristics of the afferent. Moreover,

it would be prudent to include the simulation of Dynamic SA-I and FA-I receptors to

increase biological realism and signal dimensionality. In this thesis, we proposed an

approach for estimating the optimal distribution of sensitive areas in receptive fields

for increasing the orientation acuity. By combining different types of mechanoreceptors
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could increase the orientation acuity, besides it leads to a complex random overlapping

receptive fields on the artificial skin. Reward-Modulated STDP could be the neuronal

basis for reward learning, and it could be used to learn the distribution of different types

of mechanoreceptors along their receptive fields, with the aim of designing compact

and efficient sensing devices that can locally pre-process the tactile signal. Eventually,

the effectiveness of the neuromorphic approach will only be appreciated by the solving

of real-life problems.
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Appendix A

SDSP Learning Rule

A.1 SDSP Learning Rule Code

" " "
SDSP Learning Rule Toy Example

This code i s made to demonstarte how the SDSP lea rn ing
ru l e works and the output presented in Nature Journal ( In prepara t ion )
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
" " "

from brian2 import *
import numpy as np
np . random . seed (3000)
s t i mu l i 1=np . ones (20)/2
s t i mu l i 2=np . ones (15)*1
s t i mu l i 3=np . ones (15)/3
s t i m u l i=np . concatenate (( s t imul i1 , s t imul i2 , s t i m u l i 3 ) , a x i s =0)
st imul3=np . random . s h u f f l e ( s t i m u l i )
p r i n t ( s t i m u l i )
p l t . f i g u r e ()
p l o t ( s t i m u l i )

i n p u t _ s t i m u l i = TimedArray (( s t i m u l i )* nA , dt=10*ms)

L0 l eaky_ i a f = Equat ions ( ’ ’ ’
dv/ dt= ((−80*mV) − v + (70*Mohm * i n p u t _ s t i m u l i ( t ) )
− (( g_sra )*70*Mohm*( v − (−80*mV))))/(20*ms)
: v o l t ( un les s r e f r a c t o r y )
dg_sra / dt= − g_sra /(1000*ms) : siemens

’ ’ ’ )
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142 Chapter A. SDSP Learning Rule

t r a i n i n g = NeuronGroup (1 , model=L0leaky_ ia f , th re sho ld="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV; g_sra +=0*nS " , r e f r a c t o r y=5*ms , method=" eu le r " )
t r a i n i n g . v = −75*mV
t r a i n i n g . g_sra =’rand ()*0*nS ’
v _ r e s t=−70*mV
tau_c=200*ms
Jc=0.1
L2 l eaky_ i a f = Equat ions ( ’ ’ ’

dv/ dt = ( v_res t−v )/(10*ms) +
(( i e *15))/(3*nF) : v o l t ( un les s r e f r a c t o r y )
dc/ dt = (4.4−c+Jc )/ tau_c :1
dJc / dt=−Jc /(20*ms) :1
die / dt=−i e /(20*ms ) :amp

’ ’ ’ )
l ayer2 = NeuronGroup (1 , model=L2leaky_ ia f , th re sho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−70*mV" , r e f r a c t o r y=5*ms , method=" eu le r " )

l ayer2 . v = −80*mV
layer2 . c=4
a_plus =0.1*nA
b_minus=0*nA

thresho ld_v=−65*mV
thresho ld_ l_up =4.2
threshold_l_down=4
threshold_h_up=40
threshold_h_down=4.8
Jc_p lus=4
J_minus=0.0000001*pA
J_p lus =0.00001*pA
Jc=0.1
w_max=1*nA
w_min=0*nA
J_p lus =0.003*nA
J_minus=0.003*nA
threshold_w= 0.5*nA
alpha =0.0035*nA
beta=−0.0035*nA
model_Pre_Post = ’ ’ ’

dw12/ dt=(( i n t (w12 > threshold_w ) * ( alpha )) +
(( beta )* i n t (w12<threshold_w )) )/ (1000*ms) :amp

’ ’ ’
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model_on_pre = ’ ’ ’

w12+=(a_plus * i n t ( v_post>thresho ld_v )* i n t ( c_post>thresho ld_ l_up )
* i n t ( c_post<threshold_h_up))+(−b_minus* i n t ( v_post<thresho ld_v )
* i n t ( c_post>threshold_l_down )* i n t ( c_post<threshold_h_down ))
w12=((w12+J_plus )* i n t (w12>threshold_w))+
((w12−J_minus )* i n t (w12<threshold_w ))

i n i=w12

w12=w_max* i n t (w12 > w_max) + w12* i n t (w12 <= w_max)
* i n t (w12 > w_min) + w_min* i n t (w12 < w_min)
e_post+=i n i

’ ’ ’

model_on_post = ’ ’ ’
Jc+=Jc_p lus

’ ’ ’

Synp12 = Synapses ( t r a in ing , layer2 , model=model_Pre_Post ,
on_pre=model_on_pre , on_post=model_on_post , name=’raw ’ )
Synp12 . connect ()

Synp12 . w12=0.4*nA

layer2_membrane=StateMonitor ( layer2 , [ ’ v ’ , ’ c ’ ] , record=True )
spLayer0 = SpikeMonitor ( t r a in ing , record=True )
spLayer2 = SpikeMonitor ( layer2 , record=True )
stSynp12 = StateMonitor (Synp12 , v a r i a b l e s =’w12 ’ , record=True )

durat ion=len ( s t i m u l i )*10*ms

run ( durat ion )
sp ikes_pre=spLayer0 . t [ spLayer0 . i == 0]/ms
p l t . f i g u r e ()
f o r i in range ( len ( sp ikes_pre ) ) :

p l t . v l i n e s ( x=sp ikes_pre [ i ] , ymin=0, ymax=3)
p l t . a x i s ( ’ o f f ’ )

import seaborn as sns

sp ike s_ t imes=spLayer2 . t [ spLayer2 . i == 0]/ms
p l t . f i g u r e ()
p l t . p l o t ( layer2_membrane . t /ms , layer2_membrane . v [0]/mV, co lo r =’ black ’ )
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144 Chapter A. SDSP Learning Rule

f o r i in range ( len ( sp ike s_ t imes ) ) :
p l t . v l i n e s ( x=sp ikes_ t imes [ i ] , ymin=−50, ymax=−30)

p l t . axh l ine (−50, l i n e s t y l e =’dashed ’ , co lo r =’ black ’ )
p l t . axh l ine (−60, l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . y t i c k s ( [ ] )
p l t . x t i c k s ( [ ] )
sns . despine ()
p l t . f i g u r e ()
p l t . p l o t ( layer2_membrane . t /ms , layer2_membrane . c [0] , co lo r =’ black ’ )
p l t . axh l ine (4 .2 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . axh l ine (4 .8 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . axh l ine (14 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . y t i c k s ( [ ] )
p l t . x t i c k s ( [ ] )
sns . despine ()

p l t . f i g u r e ()
p l t . p l o t ( stSynp12 . t /ms , stSynp12 [Synp12 [ 0 ] ] .w12/nA , co lo r =’ black ’ )
p l t . axh l ine (0 .1 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . axh l ine (1 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . axh l ine (0 .5 , l i n e s t y l e =’dashed ’ , co lo r =’gray ’ )
p l t . y t i c k s ( [ ] )
p l t . x t i c k s ( [ ] )
sns . despine ()
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Object Contact Shape Classification
Codes

B.1 Brian2 Codes for Software Implementation

B.1.1 Dataset Splitting

’ ’ ’
This func t ion i s made to s p l i t the da ta se t
in to t r a i n i n g and t e s t i n g d a t a s e t s
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
’ ’ ’

def readcsv ( f i lename ) :
i f i l e = open ( fi lename , " rU " )
reader = csv . reader ( i f i l e , d e l i m i t e r =" , " )

rownum = 0
a = []

fo r row in reader :
i f rownum == 0:

rownum += 1
cont inue

# i f rownum >15:
# rownum+=1
# cont inue
del row[0]
rownum+=1
a . append (row)
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i f i l e . c l o s e ()
re turn a

def read_datase t ( seed ) :
a l l _ d a t a s e t =[]
np . random . seed ( seed )
random . seed ( seed )

da ta se t =[]
path = ’/ Users / AliDabbous / Desktop / Da ta se t _ob j e c t s / ’
f o r i in range (1 ,435):

# p r i n t ( i )
a l l _ d a t a s e t = readcsv ( path+’ da ta se t ( ’+ s t r ( i )+ ’) . csv ’ )
a l l _ d a t a s e t=np . ar ray ( a l l _ d a t a s e t ) . T
da ta se t . append ( a l l _ d a t a s e t )

index_datase t=[random . sample ( range (0 ,20) ,20) ,
random . sample ( range (20 ,55) ,20) , random . sample ( range (55 ,92) ,20) ,
random . sample ( range (92 ,133) ,20) ,

random . sample ( range (133 ,161) ,20) ,
random . sample ( range (161 ,198) ,20) ,
random . sample ( range (198 ,245) ,20) ,
random . sample ( range (245 ,304) ,20) ,
random . sample ( range (304 ,352) ,20) ,
random . sample ( range (352 ,378) ,20) ,
random . sample ( range (378 ,434) ,20)]

t r a i n i n g _ d a t a s e t=np . zeros ((160 ,1))
f o r i in range (17) :

f o r j in range (11) :
t r a i n i n g _ d a t a s e t=np . concatenate (( t r a i n i n g _ d a t a s e t ,
np . ar ray ( da ta se t [ index_datase t [ j ][ i ] ] ) ,
np . zeros ((160 ,20))) , a x i s =1)

t r a i n i n g _ d a t a s e t 1=np . zeros ((160 ,1))
f o r i in range (30) :

t r a i n i n g _ d a t a s e t 1=np . concatenate (( t r a in ing_da ta se t1 ,
t r a i n i n g _ d a t a s e t , np . zeros ((160 ,20))) , a x i s =1)

t e s t i n g _ d a t a s e t =[]
t e s t i n g _ d a t a s e t=np . zeros ((160 ,1))
f o r i in range (17 ,20):

f o r j in range (11) :
t e s t i n g _ d a t a s e t=np . concatenate (( t e s t i n g _ d a t a s e t ,
np . ar ray ( da ta se t [ index_datase t [ j ][ i ] ] ) ,
np . zeros ((160 ,20))) , a x i s =1)

re turn t ra in ing_da ta se t1 , t e s t i n g _ d a t a s e t

B.1.2 STDP Rule and Training
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’ ’ ’
This code demonstrates the STDP lea rn ing ru l e
implementation and the t r a i n i g procedure
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
’ ’ ’

def create_components ( ) :
ce l l_params = {

’ c_m ’ : 0.025*pF , ’ i _ o f f s e t ’ : 0.0*nA ,
’R_m ’ : 800E6 * ohm,
’ t au_re f rac ’ : 10.0*ms ,
’ L2tau_syn_e ’ : 10.0*ms ,
’ L2tau_syn_i ’ : 10.0 * ms ,
’ v_rese t ’ : −70.0 * mV,
’ v_res t ’ : −65.0 * mV, ’ v_thresh ’ : −50.0 * mV}

v _ r e s t =−65.0*mV
L0 leaky_ i a f = ’ ’ ’
dv/ dt= ((−80*mV) − v +
(10*Mohm * i n p u t _ s t i m u l i ( t , i ) ) )/(20*ms)
: v o l t ( un les s r e f r a c t o r y )

’ ’ ’

l ayer0 = NeuronGroup (160 , model=L0leaky_ ia f ,
th re sho ld ="v>(−50.0 * mV) " , r e s e t ="v=−80*mV" ,
r e f r a c t o r y=1*ms , method=" eu le r " )

l ayer0 . v = −80*mV
return layer0

def l ea rn ing ( l ea rn ing_da ta s e t ) :
da tase t1 =[]
datase t1=lea rn ing_da ta se t

d e f a u l t c l o c k . dt = 1 * ms
analog_c lock = 10 * ms
durat ion = len ( datase t1 [0])*10*ms
nNeurons_layer0 = 160

a l l i n p u t =[]
a l l i n p u t = np . sum( dataset1 , a x i s =0)
# p l t . f i g u r e ()
# p l t . p l o t ( a l l i n p u t )
s t a r t p o i n t _ i n p u t = []
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endpoint_ input = []
p r i n t ( len ( s t a r t p o i n t _ i n p u t ) ,
len ( endpoint_ input ))
i = 0
avg=0
while i < ( len ( a l l i n p u t ) ) :

i f a l l i n p u t [ i ] != 0:
f o r j in range ( i , len ( a l l i n p u t )−18):

i f a l l i n p u t [ j ] == 0:
fo r n in range ( j , j + 18):

i f a l l i n p u t [n] == 0:
avg += 1

i f avg == 18:
endpoint_ input . append ( j )
s t a r t p o i n t _ i n p u t . append ( i )
i = j + 1

avg = 0
break

i += 1

p r i n t ( len ( s t a r t p o i n t _ i n p u t ) ,
len ( endpoint_ input ))

i n p u t _ s t i m u l i = TimedArray (( datase t1 . T)* nA ,
dt=analog_c lock )
layer0= create_components ()

spLayer0 = SpikeMonitor ( layer0 , record=True )

l aye r3_cur ren t=np . ar ray ([ np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [ 0 ] ) ) ] )
cur=0
pressure_va lue=30
f o r j in range ( len ( s t a r t p o i n t _ i n p u t ) ) :
# parameter+=layer3_t ime [ j ]

f o r k in range ( s t a r t p o i n t _ i n p u t [ j ] ,
endpoint_ input [ j ] ) :

l aye r3_cur ren t [ cur ][ k]=pressure_va lue
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cur+=1
i f cur == 11:

cur=0

pos t_cur ren t=TimedArray (( l aye r3_cur ren t . T)*
nA , dt=10*ms)
V_res t=−70*mV
V_rese t=−65*mV
V_threshold=−50*mV
tau_ re f=1*ms
C_m=1.5* nfarad #1.5
tau_m=20*ms #10
tau_cur rent=0*ms
tau_ t r=3*ms
t g t=2
eqs_post = ’ ’ ’
dv/ dt= ((−80*mV) − v + (10*Mohm * pos t_cur ren t ( t , i ) )
− (( g_sra )*70*Mohm*( v − (−80*mV))))/(20*ms)
: v o l t ( un les s r e f r a c t o r y )
dg_sra / dt= − g_sra /(1000*ms) : siemens
d t r / dt=(1.9− t r )/ t au_ t r :1
’ ’ ’
post_neuron = NeuronGroup (11 , model=eqs_post ,
th resho ld ="v>(−50.0 * mV) " , r e s e t ="v=−80*mV;
g_sra +=0*nS " , r e f r a c t o r y =10*ms ,
method=" eu le r " )
post_neuron . v = −80*mV
post_neuron . g_sra =’rand ()*0*nS ’
post_neuron . t r=0
w_max=1*nA
w_min=−1*nA

#===========================STDp synapses==============
STDP_model = ’ ’ ’

w: amp
’ ’ ’

STDP_on_pre = ’ ’ ’
w+=0.003* i n t ( t g t − t r _ p o s t <0)*nA +
(−0.00001)* i n t ( t g t − t r _ p o s t >0)*nA* i n t (w<0.1*nA)
w=w_max* i n t (w >= w_max) +
w* i n t (w < w_max and w>w_min) +
w_min* i n t (w <= w_min)

’ ’ ’
STDP_on_post = ’ ’ ’

t r _ p o s t= t r _ p o s t + 0.1
’ ’ ’

p re_post_synapses=Synapses ( layer0 , post_neuron ,
model = STDP_model ,
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on_pre = STDP_on_pre ,
on_post= STDP_on_post , name=’raw ’ )
pre_post_synapses . connect ()
pre_post_synapses .w=np . zeros (1760)*nA

#=========================end========================

spikemon_post = SpikeMonitor ( post_neuron ,
v a r i a b l e s =’v ’ )
stSynp12 = StateMonitor ( pre_post_synapses ,
v a r i a b l e s = [ ’w’ ] , record=[ i f o r i
in range (0 ,160*11)] , dt = 100*ms)

#==================== end ===========================================
run ( durat ion )
p l t . f i g u r e ()
f o r j in range (11) :

p l t . p l o t ( spikemon_post . t [ spikemon_post . i == j ]/ms ,
zeros ( len ( spikemon_post . t [ spikemon_post . i == j ]))+ j ,
’ o ’ , co lo r = ’ black ’ , markers ize=2)

weight_index=0
weight_index1=1
weight_index2=2
weight_index3=3
weight_index4=4
weight_index5=5
weight_index6=6
weight_index7=7
weight_index8=8
weight_index9=9
weight_index10=10

f i g , axes=p l t . subp lo t s ( nrows=3, nco l s =4,
sharex=True , sharey=True )
while weight_index< 1750:

axes [0 ,0 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index ] ] .w)
weight_index+=11

while weight_index1< 1751:
axes [0 ,1 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index1 ] ] .w)
weight_index1+=11

while weight_index2< 1752:
axes [0 ,2 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index2 ] ] .w)
weight_index2+=11

while weight_index3< 1753:
axes [0 ,3 ] . p l o t ( stSynp12 . t , stSynp12
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[ pre_post_synapses [ weight_index3 ] ] .w)
weight_index3+=11

while weight_index4< 1754:
axes [1 ,0 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index4 ] ] .w)
weight_index4+=11

while weight_index5< 1755:
axes [1 ,1 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index5 ] ] .w)
weight_index5+=11

while weight_index6< 1756:
axes [1 ,2 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index6 ] ] .w)
weight_index6+=11

while weight_index7< 1757:
axes [1 ,3 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index7 ] ] .w)
weight_index7+=11

while weight_index8< 1758:
axes [2 ,0 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index8 ] ] .w)
weight_index8+=11

while weight_index9< 1759:
axes [2 ,1 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index9 ] ] .w)
weight_index9+=11

while weight_index10< 1760:
axes [2 ,2 ] . p l o t ( stSynp12 . t , stSynp12
[ pre_post_synapses [ weight_index10 ] ] .w)
weight_index10+=11

ext rac ted_we ight s=l i s t ( pre_post_synapses .w)
re turn ex t rac ted_we ight s

seeds =[42356 ,3356 ,23 ,120 ,1140 ,160 ,1154 ,3 ,897 ,567]

f o r i in range (10) :
t r a i n i n g _ d a t a s e t =[]
t e s t i n g _ d a t a s e t =[]

t r a i n i n g _ d a t a s e t , t e s t i n g _ d a t a s e t=read_datase t ( seeds [ i ])
t r a i n i n g _ d a t a s e t=t r a i n i n g _ d a t a s e t . as type ( f l o a t )
ex t rac ted_we ight s=lea rn ing ( t r a i n i n g _ d a t a s e t )
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B.1.3 Testing

’ ’ ’
This code demonstrates the STDP lea rn ing ru l e
implementation and the t r a i n i g procedure
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
’ ’ ’
def create_components ( ) :

ce l l_params = {
’ c_m ’ : 0.025*pF , ’ i _ o f f s e t ’ : 0.0*nA ,
’R_m ’ : 800E6 * ohm,
’ t au_re f rac ’ : 10.0*ms ,
’ L2tau_syn_e ’ : 10.0*ms ,
’ L2tau_syn_i ’ : 10.0 * ms ,
’ v_rese t ’ : −70.0 * mV,
’ v_res t ’ : −65.0 * mV,
’ v_thresh ’ : −50.0 * mV}

v _ r e s t =−65.0*mV
L0 leaky_ i a f = ’ ’ ’

dv/ dt= ((−80*mV) − v +
(10*Mohm * i n p u t _ s t i m u l i ( t , i ) ) )/(20*ms)
: v o l t ( un les s r e f r a c t o r y )

’ ’ ’

l ayer0 = NeuronGroup (160 ,
model=L0leaky_ ia f ,
th re sho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV" , r e f r a c t o r y=1*ms ,
method=" eu le r " )
l ayer0 . v = −80*mV
return layer0

def t e s t i n g ( superv ised_weights , t e s t i n g _ d a t a s e t ) :
da tase t1 =[]
datase t1=t e s t i n g _ d a t a s e t
superv ised_weights11=superv i sed_weights
d e f a u l t c l o c k . dt = 0.1 * ms
analog_c lock = 10 * ms
durat ion = len ( datase t1 [0])*10*ms
i n p u t _ s t i m u l i = TimedArray (( datase t1 . T)*
nA , dt=analog_c lock )
layer0 = create_components ()
spLayer0 = SpikeMonitor ( layer0 ,
record=True )
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V_res t=−70*mV
V_rese t=−65*mV
V_threshold=−50*mV
tau_ re f=1*ms
C_m=1.5* nfarad #1.5
tau_m=20*ms #10
tau_cur rent=0*ms
tau_ t r=3*ms
t g t=2
eqs_post = ’ ’ ’
dv/ dt= ((−80*mV)−v )/(15*ms) +
(( i e)+ i i )/(5*nF) :
v o l t ( un le s s r e f r a c t o r y )
die / dt=−i e /(20*ms ) : amp
d i i / dt=−i i /(2*ms) :amp
’ ’ ’
post_neuron = NeuronGroup (11 ,
model=eqs_post ,
th resho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV" , r e f r a c t o r y =10*ms ,
method=" eu le r " )
l aye r_ inh=NeuronGroup (1 , model=’v : vo l t ’ ,
th re sho ld =’v > (−50*mV) ’ ,
r e s e t =’v = −70*mV’ ,
name=’Layer_Inh ’ , method = ’ euler ’ )
l aye r_ inh . v = −65*mV
post_neuron . v = −80*mV

#==============STDP synapses==
STDP_model = ’ ’ ’

w: amp
’ ’ ’

STDP_on_pre = ’ ’ ’
i e _po s t+=w

’ ’ ’

p re_post_synapses=Synapses ( layer0 , post_neuron ,
model = STDP_model , on_pre = STDP_on_pre , name=’raw ’ )
pre_post_synapses . connect ()
pre_post_synapses .w=np . array ( superv ised_weights11 )*amp
Synp_to_inh = Synapses ( post_neuron ,
layer_ inh , on_pre = ’ v_post+=22*mV’ , name=’Synp_to_inh ’ )
Synp_to_inh . connect ( i =[0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10] , j =0)
Synp_from_inh = Synapses ( layer_ inh ,
post_neuron , on_pre=’ i i _ p o s t+=−800*nA ’ ,
name=’Synp_from_inh ’ )
Synp_from_inh . connect ( i =0, j =[0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10])
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#=========================end========================
spikemon_post = SpikeMonitor ( post_neuron ,
v a r i a b l e s =’v ’ )

#==================== end ===========================================
run ( durat ion )
p l t . f i g u r e ()
f o r j in range (11) :

p l t . p l o t ( spikemon_post . t [ spikemon_post . i == j ]/ms ,
zeros ( len ( spikemon_post . t [ spikemon_post . i == j ]))+ j ,
’ o ’ , co lo r = ’ black ’ , markers ize=2)

seeds =[42356 ,3356 ,23 ,120 ,1140 ,160 ,1154 ,3 ,897 ,567]

f o r i in range (1) :
t r a i n i n g _ d a t a s e t =[]
t e s t i n g _ d a t a s e t =[]

t r a i n i n g _ d a t a s e t , t e s t i n g _ d a t a s e t=read_datase t (160)
t e s t i n g _ d a t a s e t=t e s t i n g _ d a t a s e t . as type ( f l o a t )
t e s t i n g ( superv ised_weights , t e s t i n g _ d a t a s e t )

B.2 Hardware Implementation Codes

B.2.1 Raspberry Pi Code

’ ’ ’
This code implemented on RP fo r
r e a l time c l a s s i f i c a t i o n
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
’ ’ ’
import ma tp lo t l i b . pyp lo t as p l t
import s e r i a l
import time
import numpy as np
from r p i _ l c d import LCD
lcd=LCD()
l cd . c l e a r ()
se r= s e r i a l . S e r i a l ( por t =’/dev/ttyACM0 ’ , baudrate=115200)
l i s t =[]
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t imeout=time . time () + 5
l i s t _ a r r a y =[]
f o r i in range (160):

l i s t _ a r r a y . append ( [ ] )
p r i n t ( " p re s s an o b j e c t " )
while True :

i f time . time () > timeout :
break

x=ser . r ead l i ne ()
xy=x . s p l i t ( " ; " )
p r i n t ( xy [1])
l i s t _ a r r a y [ i n t ( xy [ 0 ] ) ] . append ( i n t ( xy [1]))

p r i n t ( " take i t o f f " )
l eng th_ar ray =[]
f o r i in range (160):

l eng th_ar ray . append ( len ( l i s t _ a r r a y [ i ] ) )
maximum = np . max( leng th_ar ray )
p r i n t (maximum)
f o r i in range (160):

i f len ( l i s t _ a r r a y [ i ])==0:
l i s t _ a r r a y [ i ]=np . zeros (maximum)

e l s e :
l i s t _ a r r a y [ i ]=np . ar ray ( l i s t _ a r r a y [ i ])
i f len ( l i s t _ a r r a y [ i ])< maximum:

l i s t _ a r r a y [ i ]=np . concatenate
(( np . ar ray ( l i s t _ a r r a y [ i ] ) ,
np . zeros (maximum − len ( l i s t _ a r r a y [ i ]) ) ) )

l cd . t e x t ( " CLASSIFYING " ,1 )
I=l i s t _ a r r a y

#t1=process_t ime ()
#p r i n t ( " a " )
#t2=process_t ime ()
# coner t ing analog s i g n a l i n to neuromorphic sp i ke s
#LIF neuron model
# 160 neurons equal to the number of sensor s
durat ion=len ( I [0])
V=np . zeros ((160 , len ( I [0 ] ) ) )
v_ r e s e t=−80e−3
v _ r e s t=−80e−3
v_th=−50e−3
v_sp ike=−20e−3
Rm=10e−3
Rm1=0.1e−3
dt=1
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tau_m=20e−3
f o r i in range (160):

V[ i ][0]=−80e−3

sp ikes1=np . zeros ((160 , len ( I [0 ] ) ) )
sp i ke s =[]
f o r i in range (160):

sp i ke s . append ( [ ] )
t _ s t a r t=time . time ()
f o r ind in range (160):

f o r i in range (1 , durat ion ) :
i f (V[ ind ][ i−1]== v_sp ike ) :

V[ ind ][ i ]=v_ re se t
e l s e :

V[ ind ][ i ]=V[ ind ][ i −1] + ( dt *( v _ r e s t −
V[ ind ][ i −1] + (Rm* I [ ind ][ i −1])))/ tau_m

i f (V[ ind ][ i]>=v_th ) :
V[ ind ][ i ]=v_sp ike
sp i ke s [ ind ] . append ( i )
sp ikes1 [ ind ][ i ]=1

# end l a y e r one neurons model and conver t ing
#analog s i g n a l s i n to neuromorphic sp i ke s
#==============================================

# s t a r t i n g l a y e r two output l a y e r s imula t ion
# f i r s t multp ly ing the sp i ke s generated by laye
#r one with the weights between the two l a y e r s
# summation of cur ren t coming from a l l
#neurons in l a y e r one to each of neurons in l a y e r two
# a l i s t of cur ren t of 11 rows each
#row rep re sen t s the cur ren t a r r i v i n g from l a y e r one
#neurons to l a y e r two neurons f o r 11 o b j e c t
# normal iza t ion of cur ren t f o r the
#wta implementation
# winner take a l l implemetat ion done
#by c a l c u l a t i n g the maximum curren t f o r
#each o b j e c t and i n h i b i t s the remaining
#neurons which the summationis l e s s then
#the maximum curren t

I_output =[]
count=0
f o r i in range (160):

f o r j in range (11) :
I_output . append (np . ar ray ( sp ikes1 [ i ])*

156



B.2 Hardware Implementation Codes 157

superv i sed_weights [ count ])
count+=1

sum_array=np . zeros ( len ( I_output [0]))
counter r=0
I _ o u t p u t _ f i n a l =[]
f o r i in range (11) :

counter r=i
f o r i i in range (160):

sum_array=np . sum(( np . ar ray ( sum_array ) ,
np . ar ray ( I_output [ counter r ] ) ) , a x i s =0)
counter r+=11

I _ o u t p u t _ f i n a l . append ( sum_array )
sum_array=np . zeros ( len ( I_output [0]))

max_number=0
max_array=[]
f o r i in range ( len ( I _ o u t p u t _ f i n a l [ 0 ] ) ) :

f o r j in range (11) :
i f I _ o u t p u t _ f i n a l [ j ][ i ]>max_number :

max_number=I _ o u t p u t _ f i n a l [ j ] [ i ]
max_array . append (max_number)
max_number=0

f o r i in range ( len ( I _ o u t p u t _ f i n a l [ 0 ] ) ) :
f o r j in range (11) :

i f I _ o u t p u t _ f i n a l [ j ][ i ]< max_array [ i ] :
I _ o u t p u t _ f i n a l [ j ] [ i ]=0

sp ikes_output =[]
f o r i in range (11) :

sp ikes_output . append ( [ ] )

V_output=np . zeros ((11 , len ( I [0 ] ) ) )
f o r i in range (11) :

V_output [ i ][0]=−80e−3

f o r ind in range (11) :
f o r i in range (1 , durat ion ) :

i f ( V_output [ ind ][ i−1]== v_sp ike ) :
V_output [ ind ][ i ]=v_ re se t

e l s e :
V_output [ ind ][ i ]=V_output [ ind ][ i −1] +
( dt *( v _ r e s t − V_output [ ind ][ i −1] +
(Rm1* I _ o u t p u t _ f i n a l [ ind ][ i −1])))/ tau_m

i f ( V_output [ ind ][ i]>=v_th ) :
V_output [ ind ][ i ]=v_sp ike
sp ikes_output [ ind ] . append ( i )

t _ s top=time . time ()
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p r i n t ( " time i s : " , t_s top−t _ s t a r t )
# end of s imula t ion
#========================================

output =[ ’ BOTTLE CAP ’ , ’ ERASER ’ , ’ GAS LASHES ’ ,
’ HIGHLIGHTER CAP ’ , ’ KEY ’ , ’ marbel ’ ,
’ rock ’ , ’ shaped screw dr iver ’ ,
’ spray cover ’ , ’ tape ’ , ’ wood ’ ]
f o r i in range (11) :

i f len ( sp ikes_output [ i ])>=1:
l cd . t e x t ( output [ i ] ,2)
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Touch Modality Classification Codes

C.1 Brian2 Codes for Software Implementation

C.1.1 Training

" " "
This code demonstrates the STDP lea rn ing ru l e
implementation and the t r a i n i g procedure
f o r touch modal i ty c l a s s i f i c a t i o n s
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
" " "

import numpy as np

import p i c k l e
import csv

# seed (11922)
import numpy as np
import csv
import ma tp lo t l i b . pyp lo t as p l t
import pandas as pd

def create_components ( ) :
ce l l_params = {

’ c_m ’ : 0.025*pF , ’ i _ o f f s e t ’ : 0.0*nA ,
’R_m ’ : 800E6 * ohm,
’ t au_re f rac ’ : 10.0*ms ,
’ L2tau_syn_e ’ : 10.0*ms ,
’ L2tau_syn_i ’ : 10.0 * ms ,
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’ v_rese t ’ : −70.0 * mV,
’ v_res t ’ : −65.0 * mV, ’ v_thresh ’ : −50.0 * mV}

v _ r e s t =−65.0*mV
L0 leaky_ i a f = ’ ’ ’

dv/ dt= ((−80*mV) − v +
(10*Mohm * i n p u t _ s t i m u l i ( t , i ) ) )/(20*ms)

: v o l t ( un les s r e f r a c t o r y )

’ ’ ’
L1 l eaky_ i a f = ’ ’ ’

dv/ dt = ((−65*mV)−v )/(22*ms) +
( i_syn + (0.0*nA) + i _ i n j )/(25*pF) : v o l t
i _ i n j : amp
die / dt = −i e /(50.0*ms) : amp
d i i / dt = −i i /(50.0*ms) : amp
i_syn = i e + i i : amp
tau_syn_e : second
tau_syn_ i : second

’ ’ ’
l ayer0 = NeuronGroup (160 , model=L0leaky_ ia f ,

th re sho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV" , r e f r a c t o r y=1*ms ,
method=" eu le r " )

l ayer1 = NeuronGroup (16 , model=L1leaky_ ia f ,
th re sho ld =’v > (−50.0 * mV) ’ ,
r e f r a c t o r y=cel l_params [ ’ t au_re f rac ’ ] ,
r e s e t =’v = −70.0 * mV’ , name=’Layer1 ’ ,
method=’ euler ’ )

l ayer0 . v = −80*mV
layer1 . v =−65.0*mV
Synp01 = Synapses ( layer0 , layer1 , model=’w : 1 ’ ,

on_pre=’v+=1.5*w*mV’ , delay=100 * ms , name=’S01 ’ )
Synp01 . connect ()

re turn layer0 , layer1 , Synp01

def create_w01 ( seed ) :
np . random . seed ( seed )

data = range (0 , 160)
b = np . ones (160)
f o r i in ( data ) :

b[ i ] = b[ i ] * i
c = np . random . s h u f f l e (b)
a = np . zeros ([160 ,16])
f o r k in range (0 ,160):

rowindex = i n t (b[k ])
column_index = k//10
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a[ rowindex , column_index ] = 1

re turn a

seed = 2

np . random . seed ( seed )
d e f a u l t c l o c k . dt = 1 * ms
analog_c lock = 10 * ms
durat ion = len ( datase t1 [0])*10*ms #93 #4500 weights two
nNeurons_layer0 = 192 # number of neurons in layer0
nNeurons_layer1 = 16 # number of neurons in layer1
a l l i n p u t = np . sum( dataset1 , a x i s =0)
s t a r t p o i n t _ i n p u t = []
endpoint_ input = []
i = 0
avg=0
while i < ( len ( a l l i n p u t ) ) :

i f a l l i n p u t [ i ] != 0:
f o r j in range ( i , len ( a l l i n p u t )−18):

i f a l l i n p u t [ j ] == 0:
f o r n in range ( j , j + 18):

i f a l l i n p u t [n] == 0:
avg += 1

i f avg == 18:
endpoint_ input . append ( j )
s t a r t p o i n t _ i n p u t . append ( i )
i = j + 1

avg = 0
break

i += 1

i n p u t _ s t i m u l i = TimedArray (( datase t1 . T)* nA ,
dt=analog_c lock )

layer0 , layer1 , Synp01 = create_components ()
w01=create_w01 (60)
w01=np . concatenate (w01 , a x i s=None)
Synp01 .w = w01
#================= curren t s i g n a l f o r l a y e r three====================

laye r3_cur ren t=np . ar ray ([ np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [0] ) ) ,
np . zeros ( len ( datase t1 [ 0 ] ) ) ] )

cur=0
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pres sure_va lue=30
f o r j in range ( len ( s t a r t p o i n t _ i n p u t ) ) :

# parameter+=layer3_t ime [ j ]
f o r k in range ( s t a r t p o i n t _ i n p u t [ j ] , endpoint_ input [ j ] ) :

l aye r3_cur ren t [ cur ][ k]=pressure_va lue
cur+=1
i f cur == 6:

cur=0

pos t_cur ren t=TimedArray (( l aye r3_cur ren t . T)* nA , dt=10*ms)
V_res t=−70*mV
V_rese t=−65*mV
V_threshold=−50*mV
tau_ re f=1*ms
C_m=1.5* nfarad #1.5
tau_m=20*ms #10
tau_cur rent=0*ms
tau_ t r=3*ms
t g t=2
eqs_post = ’ ’ ’
dv/ dt= ((−80*mV) − v + (10*Mohm * pos t_cur ren t ( t , i ) )

− (( g_sra )*70*Mohm*
( v − (−80*mV))))/(20*ms) :

v o l t ( un le s s r e f r a c t o r y )
dg_sra / dt= − g_sra /(1000*ms) : siemens
d t r / dt=(1.9− t r )/ t au_ t r :1
’ ’ ’
post_neuron = NeuronGroup (6 , model=eqs_post ,

th resho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV; g_sra +=0*nS " ,
r e f r a c t o r y =10*ms ,
method=" eu le r " )

post_neuron . v = −80*mV
post_neuron . g_sra =’rand ()*0*nS ’
post_neuron . t r=0
w_max=1*nA
w_min=−1*nA
#===========================STDp synapses==============
STDP_model = ’ ’ ’

w: amp
’ ’ ’

STDP_on_pre = ’ ’ ’
w+=0.02* i n t ( tg t−t r_pos t <0)*nA +
(−0.0001)* i n t ( tg t− t r_pos t >0)*nA
w=w_max* i n t (w >= w_max) +
w* i n t (w < w_max and w>w_min) +
w_min* i n t (w <= w_min)
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’ ’ ’
STDP_on_post = ’ ’ ’

t r _ p o s t= t r _ p o s t + 0.1
’ ’ ’
p re_post_synapses=Synapses ( layer1 , post_neuron ,

model = STDP_model ,
on_pre = STDP_on_pre ,
on_post= STDP_on_post ,
name=’raw ’ )

pre_post_synapses . connect ()
pre_post_synapses .w=np . zeros (96)*nA

#=========================end========================
stSynp12 = StateMonitor ( pre_post_synapses ,

v a r i a b l e s = [ ’w’ ] ,
record=[ i f o r i in range (0 ,16*6)] , dt = 10*ms)

#==================== end ===========================================
run ( durat ion )

C.1.2 Testing

" " "
This code fo r v a l i d a t i n g the network
a f t e r l ea rn ing with 6 d i f f e r e n t
touch moda l i t i e s
Author : A l i Dabbous
Cosmic LAB / DITEN / UNIGE
EDPR LAB / I IT
a l i . dabbous@edu . unige . i t
a l i .m. dabbous@gmail . com
" " "
import numpy as np
from brian2 import *
import p i c k l e
import csv
from brian2 import *
# seed (11922)
import numpy as np
import csv
import ma tp lo t l i b . pyp lo t as p l t
import pandas as pd
da ta se t =[]
path = ’/ Users /adabbous/ Desktop / d y n a m i c _ s t a t i c _ t e s t i n g /wheel / ’
def readcsv ( f i lename ) :

i f i l e = open ( fi lename , " rU " )
reader = csv . reader ( i f i l e , d e l i m i t e r =" , " )
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rownum = 0
a = []

f o r row in reader :
a . append (row)
rownum += 1

i f i l e . c l o s e ()
re turn a

f o r i in range (1 ,11) :
grab_datase t = readcsv ( path+’ da ta se t ( ’+ s t r ( i )+ ’) . csv ’ )
grab_dataset1=np . zeros (( len ( grab_datase t )−1,

len ( grab_datase t [1]) −1))

f o r i i in range (1 , len ( grab_datase t ) ) :
f o r j j in range (1 , len ( grab_datase t [ 1 ] ) ) :

grab_dataset1 [ i i −1][ j j −1]=grab_datase t [ i i ] [ j j ]
da ta se t . append ( grab_dataset1 )

f o r i in range ( len ( da ta se t ) ) :
da ta se t [ i ]=np . ar ray ( da ta se t [ i ] ) . T

datase t2=np . zeros ((160 ,1))
f o r i in range (10) :

datase t2=np . concatenate (( dataset2 , np . ar ray ( da ta se t [ i ] ) ,
np . zeros ((160 ,20))) , a x i s =1)

datase t1=np . zeros ((160 ,1))
f o r i in range (1) :

datase t1=np . concatenate (( dataset1 , dataset2 ,
np . zeros ((160 ,20))) , a x i s =1)

def create_components ( ) :
ce l l_params = {

’ c_m ’ : 0.025*pF , ’ i _ o f f s e t ’ : 0.0*nA ,
’R_m ’ : 800E6 * ohm,
’ t au_re f rac ’ : 10.0*ms , ’ L2tau_syn_e ’ : 10.0*ms
, ’ L2tau_syn_i ’ : 10.0 * ms ,
’ v_rese t ’ : −70.0 * mV, ’ v_res t ’ : −65.0 * mV,
’ v_thresh ’ : −50.0 * mV}

v _ r e s t =−65.0*mV
L0 leaky_ i a f = ’ ’ ’
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dv/ dt= ((−80*mV) − v + (10*Mohm *
i n p u t _ s t i m u l i ( t , i ) ) )/(20*ms)

: v o l t ( un les s r e f r a c t o r y )

’ ’ ’
L1 l eaky_ i a f = ’ ’ ’

dv/ dt = ((−65*mV)−v )/(22*ms) +
( i_syn + (0.0*nA) + i _ i n j )/(25*pF)
: v o l t
i _ i n j : amp
die / dt = −i e /(50.0*ms) : amp
d i i / dt = −i i /(50.0*ms) : amp
i_syn = i e + i i : amp
tau_syn_e : second
tau_syn_ i : second

’ ’ ’
l ayer0 = NeuronGroup (160 , model=L0leaky_ ia f ,

th re sho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV" , r e f r a c t o r y=1*ms ,
method=" eu le r " )

# t r a i n i n g = SpikeGeneratorGroup
( N_input , s t i m u l i [0] , s t i m u l i [1] * second , name=’ t r a in ing ’ )
l ayer1 = NeuronGroup (16 , model=L1leaky_ ia f ,

th re sho ld =’v > (−50.0 * mV) ’ ,
r e f r a c t o r y=cel l_params [ ’ t au_re f rac ’ ] ,

r e s e t =’v = −70.0 * mV’ , name=’Layer1 ’ ,
method=’ euler ’ )

l ayer0 . v = −80*mV

layer1 . v =−65.0*mV
Synp01 = Synapses ( layer0 , layer1 , model=’w : 1 ’ ,

on_pre=’v+=2*w*mV’ ,
delay=100 * ms , name=’S01 ’ )

Synp01 . connect ()

re turn layer0 , layer1 , Synp01

def create_w01 ( seed ) :
np . random . seed ( seed )

data = range (0 , 160)
b = np . ones (160)
f o r i in ( data ) :

b[ i ] = b[ i ] * i
#p r i n t (b)

c = np . random . s h u f f l e (b)
#p r i n t (b)
a = np . zeros ([160 ,16])
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#p r i n t ( a . shape )
f o r k in range (0 ,160):

rowindex = i n t (b[k ])
column_index = k//10

# p r i n t ( rowindex , column_index )
a [ rowindex , column_index ] = 1

re turn a

seed = 2

np . random . seed ( seed )
d e f a u l t c l o c k . dt = 0.1 * ms
analog_c lock = 10 * ms
durat ion = len ( datase t1 [0])*10*ms
nNeurons_layer0 = 192 # number of neurons in layer0
nNeurons_layer1 = 16 # number of neurons in layer1
FILE_PATH = ’/ Users /adabbous/ Desktop / ’
f i l e _ a l i=FILE_PATH+’ superv i sed_weights_s ta t i c_dynamic_1 ’
superv i sed_weights=p i c k l e . load ( open ( f i l e _ a l i , ’ rb ’ ) )

a l l i n p u t = np . sum( dataset1 , a x i s =0)
# p l t . f i g u r e ()
# p l t . p l o t ( a l l i n p u t )
s t a r t p o i n t _ i n p u t = []
endpoint_ input = []
i = 0
avg=0
while i < ( len ( a l l i n p u t ) ) :

i f a l l i n p u t [ i ] != 0:
f o r j in range ( i , len ( a l l i n p u t )−8):

i f a l l i n p u t [ j ] == 0:
f o r n in range ( j , j + 8) :

i f a l l i n p u t [n] == 0:
avg += 1

i f avg == 8:
endpoint_ input . append ( j )
s t a r t p o i n t _ i n p u t . append ( i )
i = j + 1

avg = 0
break

i += 1

i n p u t _ s t i m u l i = TimedArray (( datase t1 . T)*
nA , dt=analog_c lock )
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layer0 , layer1 , Synp01 = create_components ()
w01=create_w01 (60)
w01=np . concatenate (w01 , a x i s=None)
Synp01 .w = w01
spLayer1 = SpikeMonitor ( layer1 , record=True )

V_res t=−70*mV
V_rese t=−65*mV
V_threshold=−50*mV
tau_ re f=1*ms
C_m=1.5* nfarad #1.5
tau_m=20*ms #10
tau_cur rent=0*ms
tau_ t r=3*ms
t g t=2
eqs_post = ’ ’ ’
dv/ dt= ((−80*mV)−v )/(15*ms) +(( i e *60)+ i i )/(5*nF)
: v o l t ( un les s r e f r a c t o r y )

d t r / dt=(1.9− t r )/ t au_ t r :1
die / dt=−i e /(20*ms ) : amp
d i i / dt=−i i /(2*ms) :amp
’ ’ ’
post_neuron = NeuronGroup (6 , model=eqs_post ,

th resho ld ="v>(−50.0 * mV) " ,
r e s e t ="v=−80*mV" ,
r e f r a c t o r y =10*ms , method=" eu le r " )

l aye r_ inh=NeuronGroup (1 , model=’v : vo l t ’ ,
th re sho ld =’v > (−50*mV) ’ ,
r e s e t =’v = −70*mV’ ,

name=’Layer_Inh ’ ,
method = ’ euler ’ )

l aye r_ inh . v = −65*mV
post_neuron . v = −80*mV

post_neuron . t r=0
w_max=1*nA
w_min=−1*nA
#===========================STDp synapses==============
STDP_model = ’ ’ ’

w: amp
’ ’ ’

STDP_on_pre = ’ ’ ’
w+=0*nA
ie_pos t+=w
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’ ’ ’
STDP_on_post = ’ ’ ’

t r _ p o s t= t r _ p o s t + 0.1
’ ’ ’
p re_post_synapses=Synapses ( layer1 ,

post_neuron , model = STDP_model ,
on_pre = STDP_on_pre ,
on_post= STDP_on_post
,name=’raw ’ )

pre_post_synapses . connect ()
pre_post_synapses .w=np . array ( superv i sed_weights )*amp
Synp_to_inh = Synapses ( post_neuron , layer_ inh ,

on_pre = ’ v_post+=22*mV’ ,
name=’Synp_to_inh ’ )

Synp_to_inh . connect ( i =[0 ,1 ,2 ,3 ,4 ,5] , j =0)
Synp_from_inh = Synapses ( layer_ inh , post_neuron ,

on_pre=’ i i _ p o s t+=−800*nA ’ ,
name=’Synp_from_inh ’ )

Synp_from_inh . connect ( i =0, j =[0 ,1 ,2 ,3 ,4 ,5])
#=========================end========================
statemon_post = StateMonitor ( post_neuron , [ ’ v ’ , ’ t r ’ ] ,

record=True )
spikemon_post = SpikeMonitor ( post_neuron , v a r i a b l e s =’v ’ )
stSynp12 = StateMonitor ( pre_post_synapses , v a r i a b l e s = [ ’w’ ] ,

record=[ i f o r i in range (0 ,16*6)] , dt = 1*ms)
#==================== end ===========================================
run ( durat ion )

p l t . f i g u r e ()
f o r j in range (16) :

p l t . p l o t ( spLayer1 . t [ spLayer1 . i == j ]/ms ,
zeros ( len ( spLayer1 . t [ spLayer1 . i == j ]))+ j ,
’ o ’ , co lo r = ’ black ’ , markers ize =0.6)

p l t . f i g u r e ()
f o r j in range (6) :

p l t . p l o t ( spikemon_post . t [ spikemon_post . i == j ]/ms ,
zeros ( len ( spikemon_post . t [ spikemon_post . i == j ]))+ j ,
’ o ’ , co lo r = ’ black ’ , markers ize=2)

168


	
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 List of Publications
	1.5 Organization of the Thesis Document

	2 Literature Review
	2.1 Introduction
	2.2 Human Sense of Touch
	2.2.1 Introduction
	2.2.2 Mechanoreceptors
	2.2.3 Tactile Pathway and Information Processing

	2.3 Artificial Sense of Touch
	2.3.1 Introduction
	2.3.2 Transduction Mechanisms
	2.3.3 Tactile Sensors Implementation in Robotics

	2.4 Feature Extraction and Edge Orientation Selectivity
	2.4.1 Feature Extraction and Tactile Perception Overview
	2.4.1.1 Traditional Machine Learning
	2.4.1.2 Spiking Neural Networks and Neuromorphic Approaches

	2.4.2 Edge Orientation Selectivity Overview

	2.5 Discussion

	3 Neuromorphic Approach for Tactile Perception
	3.1 Introduction
	3.2 Biologically Inspired Neuromorphic Approach for Tactile Perception
	3.2.1 Touch Afferents: First-Layer Neurons 
	3.2.2 Receptive Fields: Second-Layer Neurons
	3.2.3 Decoder Layer: Third-Layer Neurons
	3.2.4 Winner-Take-All

	3.3 Neuromorphic Architecture for Edge Orientation Selectivity
	3.3.1 Sensors and Dataset
	3.3.2 Network Architecture

	3.4 Neuromorphic Architecture for Touch Modalities Classification
	3.4.1 Sensors and Dataset
	3.4.2 Network Architecture

	3.5 Neuromorphic Architecture for Tactile Object Shape Classification
	3.5.1 Sensors and Dataset
	3.5.2 Network Architecture

	3.6 Discussion

	4 Receptive Fields
	4.1 Introduction
	4.2 Edge Orientation Discrimination with Designed Receptive Fields
	4.3 Receptive Field Structure
	4.3.1 Uniform Receptive Fields
	4.3.2 Random Receptive Fields
	4.3.3 Random with Subfields Receptive Fields

	4.4 Receptive Fields Assessments Using Mutual Information Theory 
	4.4.1 Mutual Information Theory
	4.4.2 Connected Sensors Study
	4.4.3 Edge Length Study
	4.4.4 Center position Study

	4.5 Discussion

	5 Spike Based Learning with Synaptic Normalization 
	5.1 Introduction
	5.2 Spike Timing Dependent Plasticity (STDP)
	5.3 Spike Driven Synaptic Plasticity (SDSP)
	5.4 Unsupervised Learning and Synaptic Normalization Mechanisms for Edge Orientation Selectivity
	5.4.1 Baseline Network
	5.4.2 Weights Normalization Network
	5.4.3 Homeostasis Network

	5.5 Touch Modality Classification Using Supervised STDP Learning
	5.6 Object Contact Shape Classification using Supervised-STDP
	5.6.1 Software Implementation
	5.6.2 Hardware Implementation

	5.7 Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Appendix A SDSP Learning Rule
	A.1 SDSP Learning Rule Code

	Appendix B Object Contact Shape Classification Codes
	B.1 Brian2 Codes for Software Implementation
	B.1.1 Dataset Splitting
	B.1.2 STDP Rule and Training
	B.1.3 Testing

	B.2 Hardware Implementation Codes
	B.2.1 Raspberry Pi Code


	Appendix C Touch Modality Classification Codes
	C.1 Brian2 Codes for Software Implementation
	C.1.1 Training
	C.1.2 Testing



