12 research outputs found

    A CONCEPTUAL FRAMEWORK FOR MOBILE GROUP SUPPORT SYSTEMS

    Get PDF
    The rapid development of wireless communication and mobile devices has created a great opportunity to support mobile group coordination at a more efficient level than before. This article presents a framework for Mobile Group Support Systems (MGSS) that considers four dimensions: supporting whom, supporting what, where to support and how to support. A good MGSS design should take consideration with the characteristics of each dimension: the system should be able to support mobile users working jointly with members from multiple parties; using available and advanced mobile technology, the system should be able to support context freedom, context dependent, and ad hoc coordination under dynamic, uncertain, frequent disrupting, time and space stretched and fluid context. To meet these requirements, we discuss the issues related to three basic functions of MGSS: mobile communication, group coordination, and context awareness

    MANAGERS AND COLLABORATION TECHNOLOGY: A BUSINESS PERSPECTIVE FOR IMPROVING MANAGEMENT SUPPORT SYSTEMS

    Get PDF
    Over the last years managers have expanded their role in operations and nowadays they make decisions faster than in the past. Collaboration technology promises to support managers in doing so. Hence, the present situation is favorable for a redesign of management support systems (MSS) incorporating collaboration technology. To examine such technology, we consider analyst - and consumer -type managers´ perspectives and cover collaboration technology for different devices. Based on findings from a literature review and arguments validated in structured manager interviews, we propose four initial design guidelines facilitating collaboration for managers: (1) Coordination: MSS should indicate the availability of other users, send read confirmations, and provide document sharing. (2) Communication: MSS should enable on-topic annotations and sending them to other users at the push of a button. (3) Cooperation: MSS should provide a comprehensive managerial self-service search function. (4) Devices: For shared documents and textual annotations tablets have become managers most wanted smart device type

    Reducing the effect of network delay on tightly-coupled interaction

    Get PDF
    Tightly-coupled interaction is shared work in which each person’s actions immediately and continuously influence the actions of others. Tightly-coupled interaction is a hallmark of expert behaviour in face-to-face activity, but becomes extremely difficult to accomplish in distributed groupware. The main cause of this difficulty is network delay – even amounts as small as 100ms – that disrupts people’s ability to synchronize their actions with another person. To reduce the effects of delay on tightly-coupled interaction, I introduce a new technique called Feedback-Feedthrough Synchronization (FFS). FFS causes visual feedback from an action to occur at approximately the same time for both the local and the remote person, preventing one person from getting ahead of the other in the coordinated interaction. I tested the effects of FFS on group performance in several delay conditions, and my study showed that FFS substantially improved users’ performance: accuracy was significantly improved at all levels of delay, and without noticeable increase in perceived effort or frustration. Techniques like FFS that support the requirements of tightly-coupled interaction provide new means for improving the usability of groupware that operates on real-world networks

    High-speed coordination in groupware

    Get PDF
    Coordination is important in groupware because it helps users collaborate efficiently. However, groupware systems in which activities occur at a faster pace need faster coordination in order to keep up with the speed of the activity. Faster coordination is especially needed when actions are dependent on one another (i.e., they are tightly-coupled) and when each user can see and interact with other users’ actions as they occur (i.e., real time). There is little information available about this type of fast coordination (also named high-speed coordination or HSC) in groupware. In this thesis, I addressed this problem by providing a body of principles and information about high-speed coordination. This solution was achieved by creating a groupware game called RTChess and then conducting an exploratory evaluation in which high-speed coordination was investigated. The results of this evaluation show that there were small amounts of high-speed coordination in the game and that high-speed coordination was difficult to achieve. In addition, HSC was affected by five main characteristics of the groupware environment: user experience, level of awareness of the partner’s interactions, communication between partners, number of dependencies that affect the user’s interactions, and pace of activities in the system

    A Groupware Design Framework for Loosely Coupled Workgroups

    No full text
    Abstract. Loosely coupled workgroups – where workers are autonomous and weakly interdependent – are common in the real world. They have patterns of work and collaboration that distinguish them from other types of groups, and groupware systems that are designed to support loose coupling must address these differences. However, loosely coupled groups have not been studied in detail in CSCW, and the design process for these groups is currently underspecified. This forces designers to start from scratch each time they develop a system for loosely coupled groups, and they must approach new work settings with little information about how work practices are organized. In this paper, we present a design framework to improve the groupware design process for loosely coupled workgroups. The framework was developed to provide designers with a better understanding of how groupware systems can be designed to support loosely coupled work practices. It is based on information from CSCW and organizational research, and on real-world design experiences with one type of loosely coupled group— home care treatment teams. The framework was used to develop Mohoc, a groupware system for home care, and the system and underlying framework were evaluated during two field trials

    Closing Information Gaps with Need-driven Knowledge Sharing

    Get PDF
    Informationslücken schließen durch bedarfsgetriebenen Wissensaustausch Systeme zum asynchronen Wissensaustausch – wie Intranets, Wikis oder Dateiserver – leiden häufig unter mangelnden Nutzerbeiträgen. Ein Hauptgrund dafür ist, dass Informationsanbieter von Informationsuchenden entkoppelt, und deshalb nur wenig über deren Informationsbedarf gewahr sind. Zentrale Fragen des Wissensmanagements sind daher, welches Wissen besonders wertvoll ist und mit welchen Mitteln Wissensträger dazu motiviert werden können, es zu teilen. Diese Arbeit entwirft dazu den Ansatz des bedarfsgetriebenen Wissensaustauschs (NKS), der aus drei Elementen besteht. Zunächst werden dabei Indikatoren für den Informationsbedarf erhoben – insbesondere Suchanfragen – über deren Aggregation eine fortlaufende Prognose des organisationalen Informationsbedarfs (OIN) abgeleitet wird. Durch den Abgleich mit vorhandenen Informationen in persönlichen und geteilten Informationsräumen werden daraus organisationale Informationslücken (OIG) ermittelt, die auf fehlende Informationen hindeuten. Diese Lücken werden mit Hilfe so genannter Mediationsdienste und Mediationsräume transparent gemacht. Diese helfen Aufmerksamkeit für organisationale Informationsbedürfnisse zu schaffen und den Wissensaustausch zu steuern. Die konkrete Umsetzung von NKS wird durch drei unterschiedliche Anwendungen illustriert, die allesamt auf bewährten Wissensmanagementsystemen aufbauen. Bei der Inversen Suche handelt es sich um ein Werkzeug das Wissensträgern vorschlägt Dokumente aus ihrem persönlichen Informationsraum zu teilen, um damit organisationale Informationslücken zu schließen. Woogle erweitert herkömmliche Wiki-Systeme um Steuerungsinstrumente zur Erkennung und Priorisierung fehlender Informationen, so dass die Weiterentwicklung der Wiki-Inhalte nachfrageorientiert gestaltet werden kann. Auf ähnliche Weise steuert Semantic Need, eine Erweiterung für Semantic MediaWiki, die Erfassung von strukturierten, semantischen Daten basierend auf Informationsbedarf der in Form strukturierter Anfragen vorliegt. Die Umsetzung und Evaluation der drei Werkzeuge zeigt, dass bedarfsgetriebener Wissensaustausch technisch realisierbar ist und eine wichtige Ergänzung für das Wissensmanagement sein kann. Darüber hinaus bietet das Konzept der Mediationsdienste und Mediationsräume einen Rahmen für die Analyse und Gestaltung von Werkzeugen gemäß der NKS-Prinzipien. Schließlich liefert der hier vorstellte Ansatz auch Impulse für die Weiterentwicklung von Internetdiensten und -Infrastrukturen wie der Wikipedia oder dem Semantic Web

    General Concepts for Human Supervision of Autonomous Robot Teams

    Get PDF
    For many dangerous, dirty or dull tasks like in search and rescue missions, deployment of autonomous teams of robots can be beneficial due to several reasons. First, robots can replace humans in the workspace. Second, autonomous robots reduce the workload of a human compared to teleoperated robots, and therefore multiple robots can in principle be supervised by a single human. Third, teams of robots allow distributed operation in time and space. This thesis investigates concepts of how to efficiently enable a human to supervise and support an autonomous robot team, as common concepts for teleoperation of robots do not apply because of the high mental workload. The goal is to find a way in between the two extremes of full autonomy and pure teleoperation, by allowing to adapt the robots’ level of autonomy to the current situation and the needs of the human supervisor. The methods presented in this thesis make use of the complementary strengths of humans and robots, by letting the robots do what they are good at, while the human should support the robots in situations that correspond to the human strengths. To enable this type of collaboration between a human and a robot team, the human needs to have an adequate knowledge about the current state of the robots, the environment, and the mission. For this purpose, the concept of situation overview (SO) has been developed in this thesis, which is composed of the two components robot SO and mission SO. Robot SO includes information about the state and activities of each single robot in the team, while mission SO deals with the progress of the mission and the cooperation between the robots. For obtaining SO a new event-based communication concept is presented in this thesis, that allows the robots to aggregate information into discrete events using methods from complex event processing. The quality and quantity of the events that are actually sent to the supervisor can be adapted during runtime by defining positive and negative policies for (not) sending events that fulfill specific criteria. This reduces the required communication bandwidth compared to sending all available data. Based on SO, the supervisor is enabled to efficiently interact with the robot team. Interactions can be initiated either by the human or by the robots. The developed concept for robot-initiated interactions is based on queries, that allow the robots to transfer decisions to another process or the supervisor. Various modes for answering the queries, ranging from fully autonomous to pure human decisions, allow to adapt the robots’ level of autonomy during runtime. Human-initiated interactions are limited to high-level commands, whereas interactions on the action level (e. g., teleoperation) are avoided, to account for the specific strengths of humans and robots. These commands can in principle be applied to quite general classes of task allocation methods for autonomous robot teams, e. g., in terms of specific restrictions, which are introduced into the system as constraints. In that way, the desired allocations emerge implicitly because of the introduced constraints, and the task allocation method does not need to be aware of the human supervisor in the loop. This method is applicable to different task allocation approaches, e. g., instantaneous or time-extended task assignments, and centralized or distributed algorithms. The presented methods are evaluated by a number of different experiments with physical and simulated scenarios from urban search and rescue as well as robot soccer, and during robot competitions. The results show that with these methods a human supervisor can significantly improve the robot team performance
    corecore